Matemáticas

Grado y Doble Grado. Curso 2021/2022.

TEORÍA CLÁSICA DE ECUACIONES EN DERIVADAS PARCIALES - 800599

Curso Académico 2021-22

Datos Generales

SINOPSIS

COMPETENCIAS

Generales
Conocer la teoría clásica de las ecuaciones en derivadas parciales y las propiedades fundamentales de las ecuaciones de Laplace, difusión y ondas .
Transversales
Obtención y discusión de modelos matemáticos en ciencias naturales.
Específicas
Propiedades básicas y resolución de problemas de contorno para las ecuación de Laplace, de difusion y de ondas .

ACTIVIDADES DOCENTES

Clases teóricas
Dos horas semanales en promedio. Cubren un total de 1.2 créditos presenciales.
Seminarios
Clases prácticas
Durante los seminarios se abordará el estudio de cuestiones de naturaleza teórica o practica por parte del alumnado, de la mano del profesor, para que los alumnos aprendan a plantearse problemas matemáticos y a resolverlos utilizando las herramientas técnicas disponibles. En total corresponden a este apartado 1.2 créditos presenciales.
Laboratorios
TOTAL
60 horas presenciales.

Presenciales

2,4

No presenciales

3,6

Semestre

1

Breve descriptor:

Se explicará el papel central desempeñado por las ecuaciones en derivadas parciales en el avance de la Matemática, en particular, y de las ciencias físicas y de la vida, la economía y la ingeniería, en general. Los temas a desarrollar incluyen los siguientes:Propiedades de leyes de conservación,  problema de contorno para la ecuación de Laplace,  problemas de valores iniciales y de contorno  para las ecuaciones de la difusión lineal y de las ondas. 

Requisitos

Cálculo diferencial e integral de varias variables y conocimientos de ecuaciones diferenciales ordinarias .

Objetivos

Introducción a la teoría de ecuaciones en derivadas parciales desde un punto de vista clásico . El objetivo principal es que el alumnado comprenda el papel central de las ecuaciones en derivadas parciales en la física, las ciencias de la vida y la ingeniería, así como la importante cantidad de resultados matemáticos que su estudio ha generado desde el siglo XVIII hasta nuestros días.

Contenido

1. Introducción general a las Ecuaciones en Derivadas Parciales.  
2. Introducción al Analisis de Fourier. Método de separacion de variables. Ejemplos y aplicaciones. 
3. Teoría del potencial clásico.  Ecuación de Laplace. Funcion de Green. Problema de Dirichlet para la ecuación de Laplace.Propiedades de valor medio. Principio del máximo. Teorema de     Poisson. Método de Perron. 
4.Transformadas integrales. Las Transformadas de Fourier y de Laplace.
5. Ecuaciones de ondas . Características. Formula de D´ Alembert. Medias esféricas. Ondas planas y espaciales.
5. Ecuación del calor.Procesos de difusión. Modelos mesoscópicos y macroscópicos. Nucleo de Gauss.Propiedades fundamentales de las soluciones.

Evaluación

Se realizará a partir del examen final de la asignatura, complementado con la información que pueda ser obtenida sobre la participación activa de los alumnos en el curso. El examen final tendra un peso no inferior al 60% de la nota final y el porcentaje correspondiente al resto de actividades evaluables no superará el 40% del total..

Bibliografía

Referencias básicas:

[1] F. John, Partial Differential Equations, Applied Mathematical Sciences 1, Springer, New York, 1982.
[2] R. T. Seeley. An Introduction to Fourier series and integrals. Dover, 2006
[3] H. F. Weinberger, A first course in partial differential equations, Dover, 1995 .

Otra información relevante

Textos complementarios

[4]D. Colton . An introduction to Partial Differential Equations, Dover 1988.
[5]L.C. Evans. Partial Differential Equations, MAS Graduate Studies in Mathematics, 1998.
[6] J. López-Gómez, Elementos de Ecuaciones Diferenciales y Variable Compleja, Pearson, Madrid 2001 (Matemáticas).
[7]P. Puig Adam. Ecuaciones Diferenciales. R. Puig editor ( varias ediciones )
[8]S. Salsa. Partial Differential Equations in Action : From Modelling to Theory. Springer Verlag Italia, 2008.

Además de los textos anteriores, en el desarrollo de cada curso se suministrará a los alumnos cuanta bibliografia adicional pueda resultarles de utilidad .

Estructura

MódulosMaterias
MATEMÁTICA PURA Y APLICADAECUACIONES EN DERIVADAS PARCIALES

Grupos

Clases teóricas
GrupoPeriodosHorariosAulaProfesor
Grupo m06/09/2021 - 17/12/2021LUNES 10:00 - 11:00B12JULIAN LOPEZ GOMEZ
MIÉRCOLES 10:00 - 11:00B12JULIAN LOPEZ GOMEZ
Grupo t06/09/2021 - 17/12/2021LUNES 16:00 - 17:00B12JOSE MARIA ARRIETA ALGARRA
MIÉRCOLES 16:00 - 17:00B12JOSE MARIA ARRIETA ALGARRA


Clases prácticas
GrupoPeriodosHorariosAulaProfesor
Grupo m06/09/2021 - 17/12/2021MARTES 10:00 - 11:00B12JULIAN LOPEZ GOMEZ
JUEVES 10:00 - 11:00B12JULIAN LOPEZ GOMEZ
Grupo t06/09/2021 - 17/12/2021MARTES 16:00 - 17:00B12JOSE MARIA ARRIETA ALGARRA
JUEVES 16:00 - 17:00B12JOSE MARIA ARRIETA ALGARRA