Institutos Universitarios

Mathematical Models in Science and Technology with an Interdisciplinary Approach

Brief description

One of the main goals of research is to solve problems that arise in a social, economical and technological context of society. In order to address these problems effectively, the multidisciplinary contribution of researchers of different scientific fields is needed. In this way, Mathematics are increasingly becoming an essential ingredient for new technological and scientific challenges, which in turn enrich this Science. The general aim of this scientific program is to do research, from a mathematical point of view, on several topics of interest for society, collaborating with other mathematicians and researchers of other scientific fields, as well as companies and other institutions or agencies. In particular, we will focus on mathematical modeling, which has become a powerful tool for computer simulation, optimization and control of processes. This allows, among other things, to avoid a large amount of experimental work in the laboratory, which is usually time consuming and expensive. The scientific program is divided into 4 objectives:

  1. Mathematical modeling of the spreading and impact of epidemics.
  2. Modeling of Lithium batteries.
  3. Modeling of oil spills and optimization of its recovery with skimmers.
  4. Other topics.

Our goal is to develop suitable mathematical models (or improving the existing ones), analyze them mathematically, develop algorithms for their numerical resolution, simulate study cases, solve associated optimization problems and to draw relevant conclusions.


Researchers IMI



  •  M.A. Capistrán, J. A. Infante, A. M. Ramos, J. M. ReyDisentangling the role of virus infectiousness and awareness-based human behavior during the early phase of the COVID-19 pandemic in the European Union. Applied Mathematical Modelling, Vol 122, pp 187-199. DOI link:
  • A. M. Ramos, Nash Equilibria Strategies and Equivalent Single-Objective Optimization Problems. The Case of Linear Partial Differential Equations.Applied Mathematics & Optimization, Vol. 87, Article Number: 30, 2023.
  • M. Capistrán, J.A. Infante and A.M. Ramos, Thermal uncertainty analysis of a single particle model for a Lithium-Ion cell. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117:64.
  • A. B. Kubik,  M. R. Ferrández, M. Vela-Pérez, B. Ivorra A. M. RamosModelling the COVID-19 pandemic: variants and vaccines. In Proceedings of The 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022, 5-9 June 2022, Oslo, Norway. 
  • I. M. Gómez-Chacón, A. Díaz-Cano, J. A. Infante, A. Riesco. Teaching Inquiry-Oriented Mathematics: Establishing Support for Novice Lecturers. In Inquiry in University Mathematics Teaching and Learning. Editorial: Masaryk University Press. ISBN 978-80-210-9982-1 e-ISBN 978-80-210-9983-8.
  • R. Seck, D. Ngom, B. Ivorra, A. M. Ramos. An optimal control model to design strategies for reducing the spread of the Ebola Virus Disease. Mathematical Biosciences and Engineering. 2022, 19(2), 1746 - 1774. DOI link:
  • S. Barroso-Arévalo, A. Barneto, A. M. Ramos, B. Rivera, R. Sánchez, L- Sánchez-Morales, M. Pérez-Sancho, A. Buendía, E. Ferreras, J. C. Ortiz-Menéndez, I. Moreno, C. Serres, C. Vela, M. A. Risalde, L. Domínguez, J. M. Sánchez-Vizcaíno. Large-scale study on virological and serological prevalence of SARS-CoV-2 in cats and dogs in Spain. Transboundary and Emerging Diseases. 2021,
  • B. Ivorra, S. Gómez, J. Carrera, A. M. Ramos. A Compositional Eulerian Approach for Modelling Oil Spills in the Sea. Ocean Engineering. 2021, 242, 110096. DOI link:
  • G. W. Richardson, J. M. Foster, R. Ranom, C. P. Please and A. M. Ramos. Charge transport modelling of Lithium-ion batteries. European Journal of Applied Mathematics. 2021. DOI link:
  • A. M. Ramos, M. R. Ferrández, M. Vela-Pérez, A. B. Kubik, B. Ivorra. A simple but complex enough θthetaθ-SIR type model to be used with COVID-19 real data. Application to the case of Italy. Physica D: Nonlinear Phenomena, Vol. 421 (2021) 132839. DOI link: ResearchGate. Preprint, 2020. DOI link:
  • M. R. Ferrández, J. L. Redondo, B. Ivorra, A. M. Ramos, P. M. Ortigosa, B. Paechter. Improving the performance of a preference-based multi-objective algorithm to optimize food treatment processes. Engineering Optimization. 2020, 52, 5.
  • M. A. Capistrán, J. A. Infante del Río. Estimating a pressure dependent thermal conductivity coefficient with applications in food technology. Inverse Problems in Science and Engineering. 2020, 28, 2, 277-293.
  • B. Ivorra, M.R. Ferrández, M. Vela-Pérez and A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of ChinaCommunications in Nonlinear Science and Numerical Simulation, Vol. 88, 2020, 105303, DOI link:, 1 April 2020:
  • B. Ivorra, D. Ngom, A.M. Ramos. Stability and sensitivity analysis of epidemiological model Be-CoDiS predicting the spread of human diseases between countries. Electronic Journal of Differential Equations. 62,  1--29. ISSN: 1072-6691, 2020.
  • M.R. Ferrández, B. Ivorra and A.M. Ramos. Final validation of the forecast for the spread of the Ebola virus disease 2018-20 (EVD 2018-20) done with the Be-CoDiS mathematical model. Technical Report. Research Gate, (17 July 2020);

  • M.R. Ferrández, B. Ivorra and A.M. Ramos. Validation of the forecasts for the spread of the Ebola virus disease 2018-20 (EVD 2018-20) done with the Be-CoDiS mathematical model. Technical Report. Research Gate, (23 February 2020);

  • M.R. Ferrández, B. Ivorra, P.M. Ortigosa, A.M. Ramos and J.L. Redondo. Application of the Be-CoDiS model to the 2018-19 Ebola Virus Disease outbreak in the Democratic Republic of Congo. Technical Report. Research Gate, (23 july 2019);

  • B. Ivorra, Ngom and A.M. Ramos. Be-CoDiS: A deterministic mathematical model to predict the risk of human diseases spread between countries. Application to the 2014-15 Ebola Virus Disease epidemic. In Proceedings of the XXIV Congress on Differential Equations and Applications / XIV Congress on Applied Mathematics– Cádiz, June 8-12, 2015. (Editors: J.M. Díaz Moreno, J.C. Díaz Moreno, C. García Vázquez, J. Medina Moreno, F. Ortegón Gallego, C. Pérez Martínez, M.V. Redondo Neble and J.R. Rodríguez Galván), pp. 114-120, 2015. Available online:



Click here


  • 3 de mayo de 2023. Unidad de Cultura Científica - UCM. El espectro de la luz, clave para optimizar la instalación de placas solaresUn estudio llevado a cabo por varios grupos de investigación de España y Chile, entre los que se encuentra el grupo MOMAT del Instituto de Matemática Interdisciplinar (IMI), muestra la importancia de tener en cuenta el espectro de la luz de la zona de instalación a la hora de diseñar placas solares, para aumentar su eficiencia. Nos lo cuenta Benjamin Ivorra (miembro del Grupo MOMAT, del IMI), junto con otros autores del trabajo de la Universidad de Málaga, de la Universidad de Almería, de la Universidad de Antofagasta y de la Universidad Técnica Federico Santa María.

  • Febrero de 2020. Nova Ciencia. Superordenadores tras el rastro del ébola (ver págs. 20-21). Artículo sobre los trabajos del Grupo MOMAT del IMI, en colaboración con la Universidad de Almería, en relación con la modelización de las epidemias de ébola.

  • 13 de enero de 2020. El Grupo de Investigación MOMAT, del Instituto de Matemática Interdisciplinar, ha firmado su segundo contrato en México para el análisis de riesgo de derrames de petróleo en el Golfo de México, mediante la herramienta SOSMAR, desarrollada por el grupo y basada en modelos matemáticos con EDPs.

Los investigadores responsables del Grupo MOMAT para este contrato son B. Ivorra y A.M. Ramos.


See previous news.