Institutos Universitarios

Boletín Nº 178

Boletín del IMI

ISSN: 2951-6625
Nº 178 (12 de junio de 2025)

 
 

 1) Activities from 12 to 20 June

 
Seminario de Análisis Matemático y Matemática Aplicada
Título: Big Lip and Little Lip and the Takagi Function. Joint work with Jesús Llorente
Orador: Bruce Hanson (St. Olaf College)
Fecha: 12 de junio, 2025
Lugar: Seminario Alberto Dou (Aula 209)
Hora: 13:00
Organizado por: Departamento de Análisis Matemático y Matemática Aplicada e Instituto de Matemática Interdisciplinar (IMI)
 
 
 
 
 
 
 
 
 
 
 
International Workshop on Reaction-Diffusion Equations
Speakers:  E. Muñoz-Hernández (UCM), F. Herrero Hervás (UCM), K. Kuto (UnB)
Day: June 16, 2025
Place: Seminario Alberto Dou (Room 209)
Hour: 10:00
Organized by: Instituto de Matemática Interdisciplinar (IMI), GR-UCM-17 970846 and PID2021-123343NB-I00.

 

 

 
 
47th Summer Symposium in Real Analysis
Speakers: Luis Bernal (Universidad de Sevila), Per Enflo (Kent State University), Audrey Fovelle (Instituto de Matemáticas, Universidad de Granada), Krystal Taylor (The Ohio State University)
Date:  June 16 - 20, 2025
Place: Facultad de Ciencias Matemáticas
Coorganized by: Instituto de Matemática Interdisciplinar (IMI)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2) New publications

 
I. M. Gómez-Chacón. J. M. Marbán. Epistemic emotions and pre-service mathematics teachers’ knowledge for teaching. ZDM. Mathematics Education, 56, 1223-1237. 2024. IF 2.0 Q1 in the cathegory of  "Education & Educational Research" JCR DOI: 10.1080/0020739X.2024.2308034
 

 

 

 3) La viñeta matemática

 
Comic strip sent by Ben Orlin, and used with permission.


 

 4) Math Puzzle

 
Puzzle sent by Rik Tangerman.
 
 
The solution will be provided in the next issue of Boletin del IMI.
 

Eye of the apple

Level: Advanced. 

A circle with an inscribed triangle with an inscribed circle. The centre of the large circle is on the small one. What fraction of the area is blue?

 
 
Solution to last issue's Math Puzzle, sent by Rutwig Campoamor and published on issue No. 177 of the Boletín del IMI:

 

 

Let P(n) denote the number of possibilities. For a triangle (n=3) we obviously have P(3)=1.

Suppose that we have determined P(k) for values k<n, and proceed by induction on n.

Without loss of generality, we can suppose that A1 A2 is always a side of one of the resulting triangles in the partition of the n-gon. The third vertex of the triangle must be one point among A3 ,…, An.

The number of partition possibilities for the (n-1)-gon A1, A3,… ,An is P(n-1). If the third vertex is A4, then number of possibilities is that of the (n-2)-gon A1, A4,… ,An added to those of A2, A3,A4, i.e., P(n-2)P(3). If the third vertex is A5, then the number is given by P(n-3)P(4), corresponding to the possibilities for the (n-3)-gon A1, A5,… ,An added to those of A2, A3, A4,A5 . Hence for Ak as third vertex, the number of possibilities is given by P(n+2-k)P(k-1), from which:

P(n) =  P(n-1) + P(n-2)P(3) + P(n-3)P(4)+ P(n-4)P(5) + … +  P(n-3)P(4)+   P(n-2)P(3) +   P(n-1)

 

From this relation the exact number in dependence of n can be derived as:

 

 

 5) Math Art

 
Math Art sent by Jos Leys

 
Instituto de Matemática Interdisciplinar
Universidad Complutense de Madrid
Plaza de Ciencias 3, 28040, Madrid
https://www.ucm.es/imi

Haga click aquí para recibir el Boletín del IMI / Click here to receive the Boletín del IMI
Para dejar de recibir el Boletín del IMI escriba a secreadm.imi@mat.ucm.es / To unsubscribe send an email to secreadm.imi@mat.ucm.es
Los anteriores boletines se pueden encontrar en / Previous bulletins can be found at
https://www.ucm.es/imi/boletin-del-imi