Grupos de investigación

Publications

2021

  • Garcia-Cervilla, R., Santos, A., Romero, A., Lorenzo, D (2021). 

    Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase. Science opf the Total Environment. 751, 141782.

  • Lorenzo, D., Santos, A., Sánchez-Yepes, A., Conte, L.Ó., Domínguez, C.M (2021). 

    Abatement of 1,2,4-trichlorobencene by wet peroxide oxidation catalysed by goethite and enhanced by visible led light at neutral ph. 

    Catalysts, 11(1) 1–21.

     

  • Dominguez, Carmen María., Romero, Arturo., Checa-Fernández, Alicia., Santos, Aurora (2021). Remediation of HCHs-contaminated sediments by chemical oxidation treatments Science of The Total Environment 751, 141754.

  •  

    Checa-Fernández, Alicia, Santos, Aurora, Romero, Arturo, Dominguez, Carmen María (2021). Remediation of real soil polluted with Hexachlorocyclohexanes (a-HCH and b-HCH) using combined thermal and alkaline activation of persulfate: Optimization of the operating conditions. 270, 118795.

  •  

    Dominguez, Carmen M., Checa-Fernandez, Alicia, Romero, Arturo , Santos, Aurora (2021) Degradation of HCHs by thermally activated persulfate in soil system: Effect of temperature and oxidant concentration. Journal of Environmental Chemical Engineering. 9, 105668

  •  

    Checa-Fernandez, Alicia, Santos, Aurora, Romero, Arturo, Dominguez, Carmen M. (2021). Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review. Catalyst. 11, 722

  •  

    Garcia Cervilla, Raul, Romero, Arturo, Santos, Aurora y Lorenzo, David (2021). Partition of a mixture of chlorinated organic compounds in real contaminated soils between soil and aqueous phase using surfactants: Influence of pH and surfactant type. Journal of Environmental Chemical Engineering. 9, 105908.

2020

  • Rodríguez, S., Lorenzo, D., Santos, A., & Romero, A. (2020). Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe (II). Journal of Environmental Management255. DOI: https://doi.org/10.1016/j.jenvman.2019.109926.
  • Lorenzo, D., García-Cervilla, R., Romero, A., & Santos, A. (2020). Partitioning of chlorinated organic compounds from dense non-aqueous phase liquids and contaminated soils from lindane production wastes to the aqueous phase. Chemosphere239, 124798. DOI: https://doi.org/10.1016/j.chemosphere.2019.124798
  • Dominguez, C. M., Rodriguez, V., Montero, E., Romero, A., & Santos, A. (2020). Abatement of Dichloromethane using Persulfate Activated by Alkali: a kinetic study. Separation and Purification Technology, 116679. https://doi.org/10.1016/j.seppur.2020.116679.
  • Dominguez, C. M., Romero, a., Lorenzo, D., Santos, A (2020). Thermally activated persulfate for the chemical oxidation of chlorinated organic compounds in groundwater. Journal of Environmental Management. 261, 110240.
  • Garcia-Cervilla, R., Romero, A., Santos, A., Lorenzo, D (2020). 

    Surfactant-Enhanced Solubilization of Chlorinated Organic Compounds Contained in DNAPL from Lindane Waste: Effect of Surfactant Type and pH.

     Int. J. Environ. Res. Public Health. 17(12), 4494.
  • Garcia-Cervilla, R., Santos, A., Romero. A., Lorenzo, D (2020). Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chemical engineering Journal. 393, 124646.
  • Santos, A., Dominguez, C.M., Lorenzo, D (2020). HCH-contaminated soils and remediation Technologies. Soil Contamination.  IntechOpen (edited: Marcelo L. Larramendy)
  •  

     Lorenzo, D., Santos, A., Domínguez, C. M., Guadaño, J., Gómez, J., Fernández, J (2020). Transport Model of Fluids Injected in a Landfill Polluted with Lindane Wastes. Computer Aided Chemical Engineering. Elsevier.

2019

  • Lorenzo, D., Romero, A., Del-Arco, L., & Santos, A. (2019). Linear amides in Caprolactam from Linear ketone impurities in Cyclohexanone obtained from cyclohexane: kinetics and identification. Industrial & Engineering Chemistry Research. DOI: https://doi.org/10.1021/acs.iecr.9b01997
  • Lorenzo, D., Romero, A., del Arco Puente, L., & Santos, A. (2019). Transformation of cyclic ketones as impurities in cyclohexanone in the caprolactam production process. Industrial & Engineering Chemistry Research. DOI: https://doi.org/10.1021/acs.iecr.9b04982
  • Aurora Santos, David Lorenzo, Carmen M. Dominguez (2019). Book: Electrochemically assisted remediation of contaminated soils: fundamentals, technologies, combined processes and pre-pilot and scale-up applications. Chapter 10: Persulfate in the remediation of soil and groundwater contaminated by organic compounds. SpringerNature.

  • Carmen M. Dominguez, Arturo Romero, Aurora Santos (2019). Improved etherification of glycerol by tert-butyl alcohol by the addition of dibutyl ether as solvent. Catalysts 2019, 9, 378; doi:10.3390/catal9040378.

  • David Lorenzo,   Carmen M. Dominguez , Arturo Romero and Aurora Santos (2019). Wet Peroxide Oxidation of Chlorobenzenes Catalyzed by Goethite and Promoted by Hydroxylamine.  Catalysts 2019, 9, 553; doi:10.3390/catal9060553

  •  Domínguez, C., Rodríguez, V., Montero, E., Romero, A. & Santos, A. (2019). Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment, 666, 631-634.

  • Dominguez, C. M., Romero, A., Santos, A (2019). Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chemical Engineering Journal. 376, 120009.
  • Dominguez, C. M., Rodriguez, V., Montero, E., Romero, A., Santos, A (2019). Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment. 666, 631-640.
  • Santos, A., Dominguez, C.M., Lorenzo, D., Garcia-Cervilla, R., Lominchar, M.A., Fernandez, J., Gomez, J., Guadaño, J (2019). Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production. Heliyon. 5, E02875.

2018

  • Lorenzo, D., Santos, A., Perez-Galvan, C., Triana, C., Romero, A., & Bogle, I. D. L. (2018). Optimization-Based Design of a Reactive Distillation Column for the Purification Process of Cyclohexanone Using Rigorous Simulation Model and Validated Using an Experimental Packed Column. Industrial & Engineering Chemistry Research57(48), 16407-16422. DOI: https://doi.org/10.1021/acs.iecr.8b03560
  • Lominchar, M. A., Santos, A., De Miguel, E., Romero, A. (2018). Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment. 622-623, 41-48.
  • Santos, A., Fernandez, J., Rodriguez, S., Dominguez, C. M., Lominchar, M. A., Lorenzo, D., Romero, A. (2018). Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Science of the Total Environment. 615, 1070- 1077.
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research 135,220-230. (https://doi.org/10.1016/j.watres.2018.02.037)
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Removal of Organochlorine Pesticides from Lindane Production Wastes by Electrochemical Oxidation. Environmental Science and Pollution Research (https://doi.org/10.1007/s11356-018-1425-4)
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere (accepted).
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Optimization of Electro Fenton Process for Effective Degradation of Organochlorine Pesticide Lindane. Catalysis Today. 313, 196-202.
  • Santos, A, Fernandez, j., Guadaño, J., Lorenzo, D., Romero, A. (2018). Chlorinated organic compounds in liquid wastes (DNAPL) from lindane production dumped in landfills in sabiñanigo (Spain). Environmental Pollution, 242, B, 1616-1624.
  • Dominguez, C.M., Romero, A.,Fernandez, J., Santos, A. (2018). In situ chemical reduction of chlorinated organic compounds from lindane production wastes by zero valent iron microparticles. Journal of Water Process Engineering. 26, 146-155.

2017

  • Lominchar, M. A., Rodríguez, S., Lorenzo, D., Santos, N., Romero, A., Santos, A. (2017). Phenol abatement using persulfate activated by nZVI, H2O2 and NaOH and development of a kinetic model for alkaline activation. Journal: Environmental Technology, 35-43.
  • Lominchar, M.A., Rodríguez, S., Lorenzo, D., Santos, N., Romero, A., Santos, A. (2017). Activated persulfate by nZVI, H2O2 and NaOH in phenol abatement and development of a kinetic model for alkaline activation. Environmental Technology (accepted).
  • Lominchar, M. A., Lorenzo, D., Romero, A., Santos, A. (2017). Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. Journal of Chemical &Technology & Biotechnology.

2016

  • Santos, A., Rodriguez, S., Pardo, F., Romero, A. (2016). Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water. Science of the Total Environment. 563-564, 657-663.
  • Peluffo, M., Pardo, F., Santos, A., Romero, A. (2016). Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Science of the Total Environment. 563-564, 649-656.
  • Pardo, F., Peluffo, M., Santos, A., Romero, A. (2016). Optimization of the application of the Fenton chemistry for the remediation of a contaminated soil with polycyclic aromatic hydrocarbons. Journal of Chemical Technology and Biotechnology. 19763-1772.
  • Dominguez, C.M., Parchao, J., Rodriguez, S., Lorenzo, D., Romero, A., Santos, A. (2016). Kinetics of lindane dechlorination by zero valent iron microparticles: Effect of different salts and stability study. Industrial & Engineering Chemistry Research, 50, 12776-12785.       
  • Dominguez, C.M., Rodriguez, S., Lorenzo, D., Romero, A., Santos, A. (2016). Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles. Water, Air & Soil Pollution, 227, 446 – 457.
  • Pardo, F., Santos, A., Romero, A. (2016). Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study. Science of the Total Environment. 566-567, 480 - 488.
  • Rodriguez, S., Santos, A., Romero, A. (2016). Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal 318, 197-205.

2015

  • Pardo, F., Rosas, J. M., Santos, A., Romero, A. (2015). Remediation of soil contaminated by NAPLs using modified Fenton reagent: Application to gasoline type compounds. Journal of Chemical Technology and Biotechnology. 754-764.
  • Pardo, F., Rosas, J.M., Santos, A., Romero, A., (2015). Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron. Water, Air, & Soil Pollution. 226:17. 
  •  Pardo, F., Peluffo, M., Santos A., Romero, A. (2015). Optimization of the application of the Fenton chemistry for the remediation of a contaminated soil with polycyclic aromatic hydrocarbons. Journal of Chemical Technology and Biotechnology. 91, 1763-1772.
  •  Peluffo, M., Pardo, F., Santos A., Romero, A. (2015). Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Science of the Total Environment  563-564, 649-656. 
  • A. Santos, S Rodriguez, F. Pardo, A. Romero (2015). Use of Fenton Reagent combined with humic acids for the removal of PFOA from contaminated water. Science of the Total Environment  563-564, 657-663. 

2014

  • Pardo, F., Rosas, J. M., Santos, A., Romero, A. (2014). Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environmental Science and Pollution Research.12198-12207.
  • D. Lorenzo, E. Simon, A. Santos, A. Romero (2014)  Kinetic Model of Catalytic Self-Condensation of Cyclohexanone over Amberlyst 15 Industrial & Engineering Chemistry Research. 53 (49) 19117-19127.
  • S. Rodriguez, L. Vasquez, A. Romero, A. Santos (2014) Dye Oxidation in Aqueous Phase by Using Zero-Valent Iron as Persulfate Activator: Kinetic Model and Effect of Particle Size. Industrial & Engineering Chemistry Research 53 (31) 12288-12294
  • M. Prisciandaro, M. Capocelli, A. Lancia, D. Musmarra, S. Rodriguez, A. Santos, A. Romero (2014) On the Comparison and the Synergistic Effect of Chemical AOP and Hydrodynamic Cavitation. Chemical Engineering Transactions 39,1783-1788
  • JM Rosas, F Vicente, E. Saguillo, A. Santos, A. Romero (2014) Remediation of soil polluted with herbicides by Fenton-like reaction: Kinetic model of diuron degradation. Applied Catalysis B-Environmental. 144, 252-260
  • Pardo, F., Rosas, J.M., Santos, A., Romero, A., (2014). Remediation of soil contaminated by NAPLs using modified Fenton reagent: application to gasoline type compounds. Journal of Chemical Technology and Biotechnology. 90, 754-764.
  • Pardo, F., Rosas, J.M., Santos, A., Romero, A., (2014). Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environmental Science and Pollution Research. 12198-12207.
  • S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos (2014). Oxidation of Orange G by Persulfate Activated by Fe2+, Fe3+ and Zero Valent Iron (ZVI). Chemosphere. 101, 86-92.

2013

  • Rosas, J. M., F. Vicente, A. Santos and A. Romero (2013). Soil remediation using soil washing followed by Fenton oxidation. Chemical Engineering Journal. 220: 125-132.
  • Pilar Pico, M., S. Rodriguez, A. Santos and A. Romero (2013). Etherification of Glycerol with Benzyl Alcohol. Industrial & Engineering Chemistry Research. 52(41): 14545-14555.
  • Rosas, J.M., Santos, A., Romero, A. (2013). Soil-washing effluent treatment by selective adsorption of toxic organic contaminants on activated carbon. Water, Air, and Soil Pollution. 224, 1506.
  • Antoniou, M.G., Rodríguez Vega, S., Spiliotopoulou, A., Tysklind, M., La Cour Jansen, J., Andersen, H.R. (2013). Required ozone doses for removing pharmaceuticals from wastewater effluents. Science of the Total Environment, 456-457, 42-49.
  • Hansen, K.M., Zortea, R., Piketty, A., Vega, S.R., Andersen, H.R. (2013). Photolytic removal of DBPs by Medium pressure UV in swimming pool water. Science of the Total Environment, 443, 850-856.  
  • Pico, M. P., J. Maria Rosas, S. Rodriguez, A. Santos and A. Romero (2013). Glycerol etherification over acid ion exchange resins: effect of catalyst concentration and reusability. Journal of Chemical Technology and Biotechnology. 88(11): 2027-2038.
  • Lorenzo, D., A. Santos, E. Simon and A. Romero (2013). Kinetic of Alkali Catalyzed Self-Condensation of Cyclohexanone. Industrial & Engineering Chemistry Research. 52(6): 2257-2265.
  • Lorenzo, D., A. Santos, E. Simon and A. Romero (2013). Kinetics of Alkali-Catalyzed Condensation of Impurities in the Cyclohexanone Purification Process. Industrial & Engineering Chemistry Research. 52(45): 15780-15788.
  • Simon, E., J. Maria Rosas, A. Santos and A. Romero (2013). Coke formation in copper catalyst during cyclohexanol dehydrogenation: Kinetic deactivation model and catalyst characterization. Chemical Engineering Journal. 214: 119-128.

2012

  • Vicente, F., A. Santos, E. G. Sagueillo, A. M. Martinez-Villacorta, J. Maria Rosas and A. Romero (2012). Diuron abatement in contaminated soil using Fenton-like process. Chemical Engineering Journal. 183: 357-364.
  • Simon, E., J. Maria Rosas, A. Santos and A. Romero (2012). Study of the deactivation of copper-based catalysts for dehydrogenation of cyclohexanol to cyclohexanone. Catalysis Today. 187(1): 150-158.
  • Simon, E., F. Pardo, D. Lorenzo, A. Santos and A. Romero (2012). Kinetic model of 2-cyclohexenone formation from cyclohexanol and 2-cyclohexenol dehydrogenation. Chemical Engineering Journal. 192: 129-137.
  • Rodriguez, S., A. Santos, A. Romero and F. Vicente (2012). Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal. 213: 225-234.
  • Pilar Pico, M., A. Romero, S. Rodriguez and A. Santos (2012). Etherification of Glycerol by tert-Butyl Alcohol: Kinetic Model. Industrial & Engineering Chemistry Research. 51(28): 9500-9509.

2011

  • Romero, A., A. Santos, T. Cordero, J. Rodriguez-Mirasol, J. Maria Rosas and F. Vicente (2011). Soil remediation by Fenton-like process: Phenol removal and soil organic matter modification. Chemical Engineering Journal. 170(1): 36-43.
  • Vicente, F., A. Santos, A. Romero and S. Rodriguez (2011). Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method. Chemical Engineering Journal. 170(1): 127-135.
  • Vicente, F., J. M. Rosas, A. Santos and A. Romero (2011). Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal. 172(2-3): 689-697.
  • Rosas, J. M., F. Vicente, A. Santos and A. Romero (2011). Enhancing p-cresol extraction from soil. Chemosphere. 84(2): 260-264.
  • Romero, A., A. Santos, G. Ruiz and E. Simon (2011). Phenol Production Kinetic Model in the Cyclohexanol Dehydrogenation Process. Industrial & Engineering Chemistry Research. 50(14): 8498-8504.
  • Romero, A., A. Santos, D. Escrig and E. Simon (2011). Comparative dehydrogenation of cyclohexanol to cyclohexanone with commercial copper catalysts: Catalytic activity and impurities formed. Applied Catalysis a-General. 392(1-2): 19-27.
  • Rodriguez, S., A. Santos and A. Romero (2011). Effectiveness of AOP's on abatement of emerging pollutants and their oxidation intermediates: Nicotine removal with Fenton's Reagent. Desalination. 280(1-3): 108-113.

2010

  • Santos, A., P. Yustos, S. Rodriguez, E. Simon and A. Romero (2010). Fenton Pretreatment in the Catalytic Wet Oxidation of Phenol. Industrial & Engineering Chemistry Research. 49(12): 5583-5587.
  • Santos, A., P. Yustos, S. Rodriguez and A. Romero (2010). Mineralization lumping kinetic model for abatement of organic pollutants using Fenton's reagent. Catalysis Today. 151(1-2): 89-93.
  • Romero, A., A. Santos, F. Vicente and C. Gonzalez (2010). Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal. 162(1): 257-265.

2009

  • Santos, A., P. Yustos, S. Rodriguez, F. Vicente and A. Romero (2009). Kinetic Modeling of Toxicity Evolution during Phenol Oxidation. Industrial & Engineering Chemistry Research. 48(6): 2844-2850.
  • Romero, A., A. Santos, F. Vicente, S. Rodriguez and A. Lopez Lafuente (2009). In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. Journal of Hazardous Materials. 170(2-3): 627-632.
  • Romero, A., A. Santos and F. Vicente (2009). Chemical oxidation of 2,4-dimethylphenol in soil by heterogeneous Fenton process. Journal of Hazardous Materials. 162(2-3): 785-790.

2008

  • Santos, A., P. Yustos, S. Rodriguez, F. Vicente and A. Romero (2008). Detoxification Kinetic Modeling for Nonbiodegradable Wastewaters: An Ecotoxicity Lumping Approach. Industrial & Engineering Chemistry Research. 47(22): 8639-8644.
  • Romero, A., A. Santos, J. Tojo and A. Rodriguez (2008). Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials. 151(1): 268-273.
  • Cordero, T., J. Rodriguez-Mirasol, J. Bedia, S. Gomis, P. Yustos, F. Garcia-Ochoa and A. Santos (2008). Activated carbon as catalyst in wet oxidation of phenol: Effect of the oxidation reaction on the catalyst properties and stability. Applied Catalysis B-Environmental. 81(1-2): 122-131.

2007

  • Santos A., Rodriguez S., Garcia-Ochoa F., Yustos P. (2007). Oxidation and mineralization of substituted phenols by Fenton's reagent and catalytic wet oxidation. Water Science and Technology. 55: 37-45.
  • Santos A., Yustos P., Rodríguez S., García-Ochoa F. (2007). Decolorization of textile dyes by wet oxidation using activated carbon as catalyst. Ind. Eng. Chem. Res. 46(8): 2423-2427.
  • Santos A., Yustos P., Rodríguez S., Simón E., García-Ochoa F. (2007). Abatement of phenolic mixtures by catalytic wet oxidation enhanced by fenton´s pre-treatment: effect of H2O2 dosage and temperature. J. Hazard Mater. 146 (3): 595-601.

2006

  • Santos A. Yustos P., Rodríguez S., García-Ochoa F. (2006).  Catalytic wet oxidation of phenol, cresols and nitrophenols by using activated carbon in acid and basic media. Appl. Catal. B: Environ. 65: 269-281.  
  • Santos A., Yustos P., Gomis S., Ruiz G., Garcia-Ochoa F. (2006). Reaction Network and Kinetic Modelling of Catalytic Wet Oxidation of Phenol Catalyzed by Activated Carbon. Chem. Eng. Sci. 61: 2457-2467.

2005

  • Romero C.S., Olmo R., Teijón C., Blanco M.D., Teijón J.M., Romero A. (2005). Structural and functional implications of the hexoquinase-nickel interaction. J. Inorg. Biochem. 99: 2395-2402.
  • Santos A., Yustos P., Quintanilla A., Garcia-Ochoa F. (2005). Influence of pH on the Wet Oxidation of Phenol with Copper Catalyst. Top. Catal. 33: 181-192.
  • Santos A., Yustos P., Quintanilla A., Ruiz, G., Garcia-Ochoa F. (2005). Kinetic model of wet oxidation of phenol at basic pH using a copper catalyst. Chem. Eng. Sci. 60: 4868- 4880.
  • Santos A., Yustos P., Gomis S., Ruiz G., Garcia-Ochoa F. (2005). Generalized Kinetic Model for the Catalytic Wet Oxidation of Phenol Using Activated Carbon as the Catalyst. Ind. Eng. Chem. Res. 44: 3869-3878.
  • Santos A., Yustos P., Cordero T., Gomis S., Rodríguez S., García-Ochoa F. (2005). Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization. Catal.Today. 102-103: 213-218.

2004

  • Santos A., Yustos P., Quintanilla A., García-Ochoa F. (2004). Lower toxicity route in catalytic wet oxidation of phenol at basic ph by using bicarbonate media. Appl. Catal. B: Environ. 53: 181-194.
  • Santos A., Yustos P., Quintanilla A., García-Ochoa F., Casas J.A., Rodríguez J.J. (2004). Evolution of toxicity upon wet catalytic oxidation of phenol. Env. Sci. Technol. 38: 133-138.