Grupos de investigación

Advance Oxidation Processes for Wastewater Treatment

Introduction:

Industrial activities generate polluted wastewaters with a vast variety of contaminants that may form a mixture of compounds in a wide range of concentrations. The growth of wastewater production has become a major problem to be solved due to the presence of persistent organic pollutants that cannot be conveniently removed through conventional treatments. The toxicity associated to these harmful pollutants constitutes a serious environmental health problem that requires the development of more effective technologies for the removal of such toxic organic pollutants from wastewaters.

Oxidation technologies that could be conducted at atmospheric pressure and mild temperatures represent desirable alternatives from an economical point of view. Advanced oxidation processes (AOPs), such as ozonation, photocatalysis , electrochemical processesand Fenton’s Reagent, or using catalytic wet peroxide oxidation (CWPO).. The use of advanced oxidation aims to eliminate these pollutants or at least reduce the hazardous nature of treated aqueous waste to allow a subsequent conventional treatment.


Results


Abatement of Organic Compounds in Aqueous Phase using Advanced Fenton Treatments. Lorenzo et al. Catalyst, 2019, DOI: 10.3390/catal9060553


Abatement of Organic Compounds in Industrial Wastewater by Different Advanced Oxidation Processes. Rodríguez et. al 2020. Journal of environmental management. DOI:10.1016/j.jenvman.2019.109926


Related works:

  • Rodríguez, S., Lorenzo, D., Santos, A., & Romero, A. (2020). Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe (II). Journal of Environmental Management255. DOI: https://doi.org/10.1016/j.jenvman.2019.109926.
  •  Domínguez, C., Rodríguez, V., Montero, E., Romero, A. & Santos, A. (2019). Methanol-enhanced degradation of carbon tetrachloride by alkaline activation of persulfate: Kinetic model. Science of the Total Environment, 666, 631-634.
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research 135,220-230. (https://doi.org/10.1016/j.watres.2018.02.037)
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Removal of Organochlorine Pesticides from Lindane Production Wastes by Electrochemical Oxidation. Environmental Science and Pollution Research (https://doi.org/10.1007/s11356-018-1425-4)
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere (accepted).
  • Dominguez, C. M., Oturan, N., Romero, A., Santos, A., Oturan, M. A. (2018). Optimization of Electro Fenton Process for Effective Degradation of Organochlorine Pesticide Lindane. Catalysis Today. 313, 196-202
  • Dominguez, C.M., Parchao, J., Rodriguez, S., Lorenzo, D., Romero, A., Santos, A. (2016). Kinetics of lindane dechlorination by zero valent iron microparticles: Effect of different salts and stability study. Industrial & Engineering Chemistry Research, 50, 12776-12785.       
  • Dominguez, C.M., Rodriguez, S., Lorenzo, D., Romero, A., Santos, A. (2016). Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles. Water, Air & Soil Pollution, 227, 446 – 457.
  • Rodriguez, S., Santos, A., Romero, A. (2016). Oxidation of priority and emerging pollutants with persulfate activated by iron: Effect of iron valence and particle size. Chemical Engineering Journal 318, 197-205.
  • A. Santos, S Rodriguez, F. Pardo, A. Romero (2015). Use of Fenton Reagent combined with humic acids for the removal of PFOA from contaminated water. Science of the Total Environment  563-564, 657-663. 
  • S. Rodriguez, L. Vasquez, A. Romero, A. Santos (2014) Dye Oxidation in Aqueous Phase by Using Zero-Valent Iron as Persulfate Activator: Kinetic Model and Effect of Particle Size. Industrial & Engineering Chemistry Research 53 (31) 12288-12294
  • M. Prisciandaro, M. Capocelli, A. Lancia, D. Musmarra, S. Rodriguez, A. Santos, A. Romero (2014) On the Comparison and the Synergistic Effect of Chemical AOP and Hydrodynamic Cavitation. Chemical Engineering Transactions 39,1783-1788
  • S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos (2014). Oxidation of Orange G by Persulfate Activated by Fe2+, Fe3+ and Zero Valent Iron (ZVI). Chemosphere. 101, 86-92.
  • Rodriguez, S., A. Santos, A. Romero and F. Vicente (2012). Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chemical Engineering Journal. 213: 225-234.
  • Rodriguez, S., A. Santos and A. Romero (2011). Effectiveness of AOP's on abatement of emerging pollutants and their oxidation intermediates: Nicotine removal with Fenton's Reagent. Desalination. 280(1-3): 108-113.
  • Santos, A., P. Yustos, S. Rodriguez, E. Simon and A. Romero (2010). Fenton Pretreatment in the Catalytic Wet Oxidation of Phenol. Industrial & Engineering Chemistry Research. 49(12): 5583-5587.
  • Santos, A., P. Yustos, S. Rodriguez and A. Romero (2010). Mineralization lumping kinetic model for abatement of organic pollutants using Fenton's reagent. Catalysis Today. 151(1-2): 89-93.
  • Romero, A., A. Santos, F. Vicente and C. Gonzalez (2010). Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal. 162(1): 257-265.