Institutos Universitarios

Mihaela Negreanu Pruna

Catedrática de Universidad (Full Professor)
Department of Applied Mathematics and Mathematical Analysis
School of Chemical Sciences
Complutense University of Madrid
910143 Matemática Aplicada a Modelos Físicos y Biológicos

 

 

 

Bio

Professor of Applied Mathematics and Mathematical Analysis at the Universidad Complutense de Madrid (UCM).

 

Research interests

Partial Differential Equations, mathematical biology, chemotaxis, control theory, optimization, and the Lubrication Theory of fluid dynamics.


Thesis on Numerical Methods for the Analysis, Observation and Control of waves in one dimension by the UCM, under the direction of Enrique Zuazua Iriondo.


Recognized for the work on chemotaxis and the control problems, with the main results involving the existence and asymptotic behavior of solutions for systems with chemotaxis, or contributing to the modelling, simulation, design and control of various natural phenomena and industrial processes.


Many national and international Research projects and currently is the Head Researcher at the UCM/UPM project on Non-linear Systems in Industrial Mathematics and Applications.

 

Latest Publications

  • A. García , M. Negreanu, F. Ureña, A.M. Vargas. On the numerical solution to space fractional differential equations using meshless finite differences. Journal of Computational and Applied Mathematics, 457. DOI: 10.1016/j.cam.2024.116322.
  • A. García, M. Negreanu, F. Ureña, A. M. Vargas. Numerical solution of a hydrodynamic model with cavitation using finite difference method at arbitrary meshes. Computational Particle Mechanics. 205, 195-205. 2024. DOI: 10.1016/j.apnum.2024.07.007.
  • J. J. Benito, A. García, M. Negreanu, F. Ureña, A. M. Vargas. Solving nonlinear Fisher–Kolmogorov–Petrovsky–Piskunov equation using two meshless methods.  Computational Particle Mechanics. 2024. 10.1007/s40571-024-00794-z.
  • J. J. Benito, A. García, M. Negreanu, F. Ureña, A. Manuel Vargas. On the Comparison of Two Meshless Finite Difference Methods for Solving Shallow Water Equations. Bulletin of the Iranian Mathematical Society, 50 (1). 2024. DOI: 10.1007/s41980-023-00839-8.
  • M. Negreanu, J. I. Tello, and A. M. Vargas. On a Parabolic-ODE chemotaxis system with periodic asymptotic behavior. In Contemporary Mathematics. Volume 787: Mathematical Modelling: Theory and Application, H. Dutta (ed.), American Mathematical Society, 2023. ISBN: 978-1-4704-6965-8 (físico), 978-1-4704-7389-1 (online).
  • J. J. Benito, A. García, M. Negreanu, F. Ureña, A. M. Vargas. Two finite difference methods for solving the Zakharov–Kuznetsov-Modified Equal-Width equation. Engineering Analysis with Boundary Elements. 2023, 153. https://doi.org/10.1016/j.enganabound.2023.05.003
  • J. Flores, A. García, M. Negreanu, E. Salete, F. Ureña, A. M. Vargas. Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method. Mathematics. 2022, 10(3), 332. https://doi.org/10.3390/math10030332
  • M. Negreanu, A. M. Vargas. Dynamics in a Chemotaxis Model with Periodic Source. Mathematics. 2022, 10(3), 312. https://doi.org/10.3390/math10030312
  • A. García, M. Negreanu, F. Ureña, A. M. Vargas. Convergence and numerical solution of nonlinear generalized Benjamin–Bona–Mahony–Burgers equation in 2D and 3D via generalized finite difference method. International Journal of Computer Mathematics. 2021. https://doi.org/10.1080/00207160.2021.1989423
  • A. García, M. Negreanu, F. Ureña, A. M. Vargas. A note on a meshless method for fractional laplacian at arbitrary irregular meshes. Mathematics. 2021, 9, 22, Article number 2843. https://doi.org/10.3390/math9222843
  • E. Salete, J. Flores, A. García, M. Negreanu, A. M. Vargas, F. Ureña. Solving Eikonal equation in 2D and 3D by generalized finite difference method. Computational and Mathematical Methods. 2021, 3, 6, e1203. https://doi.org/10.1002/cmm4.1203
  • J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A. M. Vargas. Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method. Applied Numerical Mathematics. 2020, 157, 356 – 371. https://doi.org/10.1016/j.apnum.2020.06.011
  • M. Negreanu, J. I. Tello, A. M. Vargas. On a fully parabolic chemotaxis system with nonlocal growth term. Nonlinear Analysis, Theory, Methods and Applications. 2021, 213, Article number 112518. https://doi.org/10.1016/j.na.2021.112518
  • J. J. Benito, A. Garcia, M. L. Gavete, M. Negreanu, F. Urena, A. M. Vargas. On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion. Computational Particle Mechanics. 2021, 8, 3, 625 - 636. https://doi.org/10.1007/s40571-020-00359-w
  • J. J. Benito, A. Garcia, M. L. Gavete, M. Negreanu, F. Urena, A. M. Vargas. Convergence and numerical solution of a model for tumor growth. Mathematics. 2021, 9, 122, Article number 1355. https://doi.org/10.3390/math9121355
  • M. Negreanu, A. M. Vargas. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. Communications in Nonlinear Science and Numerical Simulation. 2021, 95, Article number 105592. https://doi.org/10.1016/j.cnsns.2020.105592
  • J. J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A. M. Vargas. Solving Monge-Ampère equation in 2D and 3D by Generalized Finite Difference Method. Engineering Analysis with Boundary Elements. 2021, 124, 52-63. https://doi.org/10.1016/j.enganabound.2020.12.007
  • M. Aquino, R. Dáger, M. Negreanu. Uniform Boundedness of Solutions for a Two Species Taxis System with Intraspecific and Interspecific Competition. Results in Mathematics. 2021, 76, 2, Article number 69. https://doi.org/10.1007/s00025-021-01385-7
  • J. J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A. M. Vargas. Solving a reaction–diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence. Journal of Computational and Applied Mathematics. 2021, 389, 113325. https://doi.org/10.1016/j.cam.2020.113325
  • R. Dáger, V. Navarro, M. Negreanu. Uniform Boundedness for a Predator-prey System with Chemotaxis and Dormancy of Predators. Quarterly of Applied Mathematics. 2021, 79, 2, 367-382. https://doi.org/10.1090/qam/1583
  • M. Negreanu, J. I. Tello, A. M. Vargas. On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior. Zeitschrift fur Angewandte Mathematik und Physik. 2020, 71 (2), 65. DOI: https://doi.org/10.1007/s00033-020-1282-0