El exoplaneta Gliese 486 b se convierte en el mejor estudiado fuera del Sistema Solar

  • Un equipo científico internacional, liderado por el Centro de Astrobiología (CAB) CSIC-INTA, en el que participa el grupo de Astrofísica Estelar de la Universidad Complutense de Madrid, ha medido la masa y el radio de un exoplaneta similar a la Tierra con una precisión sin precedentes, lo que les permite hacer predicciones sólidas sobre la estructura y composición de su interior y de su atmósfera.

  • El detallado análisis se anuncia hoy en la revista Astronomy & Astrophysics.

 

 

Región Pampeana en el sudoeste de la provincia de Buenos Aires (Argentina). / Rodrigo L. Tomassini.

Reproducción artística de la hipotética atmósfera y estructura interna del exoplaneta Gliese 486 b. / RenderArea

UCC-UCM, 22 de junio de 2022.- A partir de los datos obtenidos con un conjunto de instrumentos y telescopios espaciales, un equipo de astrónomos liderado por el Centro de Astrobiología (CAB) CSIC-INTA y en el que participa la Universidad Complutense de Madrid, han podido modelar el interior y estimar los tamaños relativos del núcleo (metálico) y el manto (rocoso) del exoplaneta Gliese 486 b, descubierto en 2021.

“Según nuestros modelos, nuestro exoplaneta, Gliese 486 b, tiene un núcleo de hierro proporcionalmente más pequeño que el de la Tierra y está rodeado por un manto profundo hecho de silicatos”, indica José A. Caballero, líder del equipo del CAB.

El análisis, que se publica en la revista Astronomy & Astrophysics, es tan detallado que ha permitido estudiar cosas nunca antes vistas. Gracias a los datos obtenidos con instrumentos como CHARA, CHEOPS, Hubble Space Telescope (HST), MAROON-X, TESS y CARMENES, el equipo también ha hecho predicciones sobre la composición de la atmósfera del planeta y su detectabilidad con el Telescopio Espacial James Webb (JWST), que pronto apuntará su espejo segmentado al sistema planetario.

“Gliese 486 b se ha convertido en la Piedra Rosetta de la exoplanetología: en el Sistema Solar, tenemos los planetas telúricos Mercurio, Venus, Tierra y Marte. Ahora, el quinto planeta terrestre mejor estudiado en el Universo es Gliese 486 b", indica Caballero.

Sin embargo, aunque es uno de los planetas transitantes más cercanos conocidos, una sonda que viajara todo el tiempo a un 10% de la velocidad de la luz tardaría la friolera de 260 años en llegar a Gliese 486 b.

El Consorcio CARMENES, un equipo germano-español de astrónomos y astrónomas, descubrió en 2019 el exoplaneta que más se asemeja a la Tierra (Teegarden's Star b). Sin embargo, este exoplaneta no transita (es decir, no pasa por delante de su estrella vista desde el Sistema Solar) y, por lo tanto, es difícil determinar su radio con precisión. Aunque la mayoría de ellos no son habitables, los planetas en tránsito son más interesantes para la comunidad astronómica porque permiten investigar sus atmósferas y, solo para los sistemas planetarios más cercanos a nuestro Sol, sus interiores.

El mismo consorcio CARMENES, en alianza con equipos internacionales de EE.UU., descubrió tres de los ocho sistemas más cercanos gracias a este tipo de planetas en tránsito, el último de ellos (HD 260655) anunciado la semana pasada.

Probablemente los resultados más importantes detrás de este trabajo no son los valores en sí, sino las oportunidades que ofrecen para futuros estudios.

Impacto en el futuro de la ciencia exoplanetaria

Este sistema planetario permitirá futuros estudios, como la formación de campos magnéticos planetarios en la zona externa del núcleo con metales líquidos, ya que Gliese 486 b parece tener uno como nuestra Tierra. Estos campos magnéticos pueden actuar como un escudo contra las tormentas originadas en el huésped estelar y evitar la erosión de la atmósfera.

“¿Podría una atmósfera de este tipo ser primitiva y estar hecha de hidrógeno y helio? ¿O estar compuesta por dióxido de carbono y vapor de agua proveniente de erupciones volcánicas? ¿Podría Gliese 486 b tener tectónica?”, plantea David Montes, investigador del grupo de Astrofísica Estelar de la Facultad de Ciencias Físicas de la UCM y el Instituto de Física de Partículas y del Cosmos (IPARCOS-UCM).

Y aunque Gliese 486 b parece estar demasiado caliente para ser habitable, debido a su caracterización precisa y exacta, “puede convertirse en el primer y único exoplaneta, por el momento, donde podemos formular estas preguntas. Hace solo unos años, tratar de buscar una respuesta era ciencia ficción”, añade.

El primer exoplaneta alrededor de una estrella similar a nuestro Sol, 51 Pegasi b, fue descubierto en 1995. Desde entonces, cada año, la comunidad astronómica descubre exoplanetas que son cada vez menos masivos, cada vez más cercanos, y cada vez más similares a la Tierra.

Proyectos e instrumentos involucrados

El equipo de CAB que lidera este trabajo y el investigador David Montes colaboran en el proyecto CARMENES, cuyo consorcio está formado por once instituciones de investigación de España y Alemania. Su propósito es monitorear unas 350 estrellas enanas rojas en busca de signos de planetas de baja masa utilizando un espectrógrafo instalado en el telescopio de 3,5 m de Calar Alto, en Almería (España).

El equipo también obtuvo observaciones espectroscópicas con el instrumento MAROON-X, instalado en el telescopio Gemini North de 8,1 m (EE.UU.) y con el instrumento STIS, a bordo del Telescopio Espacial Hubble. Las observaciones fotométricas para derivar el tamaño del planeta provienen de los telescopios espaciales CHEOPS (CHaracterising ExOPlanets Satellite), de la ESA, y TESS (Transiting Exoplanet Survey Satellite), de la NASA. El radio de la estrella se midió con la matriz CHARA (Centro de Astronomía de Alta Resolución Angular), en Mount Wilson, California. Se utilizó una batería de telescopios más pequeños, incluidos telescopios de astrónomos aficionados, para determinar el período de rotación de la estrella.

 

Referencia bibliográfica: Caballero, et al: “A detailed analysis of the Gl 486 planetary system”, Astronomy & Astrophysics2022.DOI10.48550/arXiv.2206.09990

Imágenes y otros materiales audiovisuales en este enlace.


 

      
Unidad de Cultura Científica y de la Innovación
Oficina de Transferencia de Resultados de Investigación (OTRI)
Universidad Complutense de Madrid
uccucm@ucm.es - Tlf.: 617691087