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IntroductionSince the apparition of Donaldson's invariants [7] nearly ten years ago, thesehave been very useful in classifying a range of di�erentiable 4-manifolds. Earlyresults about the vanishing of the invariants for connected sums where both sum-mands have b+ > 0 produce corollaries about the indecomposability of certainfour-manifolds (see [13, chapter 10]). Computing the invariants of a given four-manifold has been a major and very challenging problem in most cases. Nonethe-less, Kronheimer and Mrowka [38] have discovered that, for a wide range of themanifolds (the so called of simple type), they are encoded in a �nite collection ofcohomology classes (called the basic classes of the manifold) and some rationalnumbers attached to them, satisfying very restrictive constraints. The computa-tion of the basic classes for a manifold which appears as a the union of two openmanifolds with the same boundary is the key for understanding the behaviour ofthe invariants under surgery. Here one can proceed in the style of a TQFT, i.e.one attaches to every closed oriented three-manifold Y a vector space VY , in somenatural way, and for every open manifold X with boundary Y a vector �X 2 VY .When we glue two open manifolds X1 and X2 with @X1 = Y , @X2 = Y , theinvariant for X = X1 [Y X2 appears as the product �X1 � �X2, where �X1 2 VY ,�X2 2 VY = V �Y . This program has been carried out to some extent [3][9][10].The vector spaces are the instanton Floer homology groups of Y . But these arein general di�cult to compute.In the case of Y = � � S1, with � a Riemann surface of genus g � 1,and bundles E ! Y which have odd �rst Chern class in H2(Y ;Z), there is adescription of the Floer groups as the homology of the moduli space of stablebundles of odd degree over �. One expects to be able to use this to get someinformation on the basic classes of a manifold (in the shape of constraints thatthey satisfy) which is a connected sum along a Riemann surface. In this thesis,we succeed in carrying on this program for the cases of g = 1 and 2.v



vi INTRODUCTIONIn the late 1994 there was a revolution in gauge theory with the introduction ofSeiberg-Witten invariants. They are much easier to compute, but keep the avourof the former invariants. Conjecturally [63] they give the same information onthe manifold whenever b+ > 1, b1 = 0 and the manifold is of simple type. Ananalogous gluing theory for this case is under development, constructing Floer-Seiberg-Witten homology groups [40][62]. One can use similar sort of argumentsto get constraints on the Seiberg-Witten basic classes for connected sums alongRiemann surfaces.The thesis is mainly divided in two parts, the �rst one corresponding to com-putations with the Donaldson invariants and the second part dedicated to theSeiberg-Witten invariants. In the �rst instance our intention was to carry onlooking to connected sums along � of genus bigger than 2, but the introductionof Seiberg-Witten invariants made more sensible to turn around and look intothe direction of using a sort of Floer-Seiberg-Witten theory. This was quite use-ful, although not at all a trivial problem. Many things remain to be said aboutthe computation of Seiberg-Witten invariants for connected sums along Riemannsurfaces or more general three-manifolds.The �rst chapter introduces the rudiments and notations of gauge theory andDonaldson invariants and is complemented with an exposition of Floer homologyand Fukaya-Floer homology, which we think has not been exploited as much asone could.The second chapter is very basic and contains essentially topology about con-nected sums of two four-manifolds along Riemann surfaces. The more interestingpart is the introduction of the extended homology groups HR2 (X; @X) for a man-ifold X with boundary @X.Then we have added a description of algebraic manifolds which are �bred with�bres being elliptic curves and complex curves of genus 2. This has been insertedfor the sake of completeness, as these manifolds are examples to which we couldapply all the theory developed in this thesis.In chapter four we use the gluing techniques to compute basic classes formanifolds coming from open manifolds glued along a three-torus. The seed ofthis work is the �rst year dissertation of the student, and we thought worthwhileto add our own proof of Friedman's theorem [22], as it uses a very elementarygluing theory. Essentially, we reduce the computation of the low dimensionalinvariants of an arbitrary simply-connected elliptic surface to those of T2� CP1and then we compute these ones. This is the reason for having a section with a



INTRODUCTION viidescription of the wall-crossing formulae for algebraic manifolds in chapter three(we must say that we have another proof that avoid the wall-crossing formulae,�nding out the moduli space of stable bundles explicitly, but it is not as beautifulas this one). We complete the chapter with general results about basic classes forglued manifolds along a T3 (which are a bit more general than some of the resultsthere are in the literature so far) and for a manifold in which we have performeda log-transform.The last chapter of the �rst part is devoted to the case of connected sumalong a Riemann surface of genus 2 and it forms the main bulk of the thesis.We have to look at the invariants on three di�erent types of cycles in the gluedmanifold, according to the way they intersect Y = ��S1, since the Fukaya-Floergroups di�er. The main task is to determine the invariants of an open manifoldin terms of the invariants of closings (or cappings) of it, and this can be done forg = 2 since the dimension of the Floer homology of Y is not too big. Our mainargumental line goes through assuming Conjecture 1.22 about the action of thehomology of Y on its Floer homology. We also have to assume Conjectures 5.11and 5.20 which are variations of the former about the action of the homology ofY on its Fukaya-Floer homology.The principal results, theorems 5.6, 5.17 and 5.23, yield that di�erent iden-ti�cations for Y = � �S1 inducing the same action on homology give the sameinvariants, although in principle the resulting manifolds might not be di�eomor-phic. We also deduce a �nite type condition for manifolds with b+ > 1, b1 = 0and an embedded � of genus 2 representing an odd homology class, theorem 5.16.The main task left for future research is try to remove the use of the conjecturesand to generalise these results to the case of connected sums along surfaces ofhigher genus. One would expect that the �nite type condition holds in all cases.The second part of the thesis deals with the Seiberg-Witten theory. In chaptersix we introduce the Seiberg-Witten equations and prove that the basic classesL for a connected sum X = �X1# �X2 satisfy the condition LjY = n[S1], with n aneven integer between �(2g � 2) and (2g � 2) (corollary 6.13).In chapter seven we make some use of a gluing theory for the Seiberg-Witteninvariants which is being developed by many people at the moment (so in thissense the chapter is rather speculative). Now there are no restrictions on the genusof �, but there are restrictions on the degree of the line bundle along the curve.We �nally compare the results now obtained with the ones obtained previously.For future research it is left the rigorous de�nition of the Seiberg-Witten-Floer



viii INTRODUCTIONhomology and the study of the gluing for line bundles L with jc1(L) ��j < 2g�2.We have tried to be short and clear at the same time in our exposition, but wehave decided to include some results which overlap whenever we have consideredenlightening the di�erent ways provided to prove them.



Chapter 1Basic notions1.1 Polynomial invariantsWe begin with a review of the de�nition of Donaldson's polynomial invariants.Throughout X will be any compact oriented connected smooth manifold of di-mension four, but we will not suppose in principle that it is simply connected.1.1.1 Spaces of connectionsHere we follow [38] mainly. Very good references for the basics on gauge theoryare [13] and [20]. The set-up for gauge theory on X is the following. Fix a linebundle w and a U(2)-bundle E ! X (whose �bres are C 2 with the standardrepresentation of U(2)) with an isomorphism : det(E)! w:The topological type of E is given by its Chern numbers c1(E) and c2(E). Let gEdenote the bundle of traceless skew-hermitian endomorphisms of E. This is theassociated SO(3)-bundle with second Stiefel-Whitney class w2 2 H2(X;Z2) thereduction mod 2 of c1(E) and with Pontrjagin class p1 2 H4(X;Z)�=Zgiven by� = �14 < p1(gE); [X] >=< c2(E)� 14c21(E); [X] > :We recall that an SO(3)-bundle is uniquely determined by w2 and p1, subject tothe constraint p1 � w22 (mod 4).The gauge group G = GE is the group of determinant one unitary automor-phisms of E (i.e. those that respect  ) and acts in a natural way on gE. We1



2 CHAPTER 1. BASIC NOTIONSdenote by A = AE the space of connections in gE. Then G acts on A and thequotient is denoted by B = Bw� . We can think of this space as the moduli space ofconnections in E all inducing the same connection in det(E). For all the spaces ofconnections and gauge groups we have to consider coe�cients in suitable Sobolevspaces to make the theory work, but we will not be explicit about this point.For a connection A in gE, we denote its curvature by FA. By Chern-Weiltheory, the action of A is� = �14 < p1(gE); [X] >= 132�2 Z tr(F 2A):The possible stabilisers of connections are as follows. The typical connectionhas stabiliser �1 � Z(SU(2)) � G, in which case it is called irreducible. Thespace of irreducible connections is A� � A and the quotient A�=G, denoted byB� = Bw;�� , is a Banach manifold. If the connection is non-trivial but preserves asplitting gE = R�L, where L is a complex line bundle, then the stabiliser of theconnection is a circle subgroup S1 � G. These connections are called reducible. IfH1(X;Z2) 6= 0 then we might have connections preserving a splitting gE = ��L,where � is a non-orientable real line bundle and L is a non-orientable real twoplane bundle with orientation bundle isomorphic to �. These are called twistedreducible connections. Note that the stabiliser of a twisted reducible connectionis �1. Finally, the trivial connection has stabiliser SU(2).Now we choose a riemannian metric g on X. We have a Hodge operator �gand put Mw� =Mw� (X)g = f[A] 2 B = �g FA = �FAg=Gfor the space of g-antiselfdual connections (abbreviated as ASD). We havethe following result for generic metrics for a closed manifoldProposition 1.1 ([20][38, corollary 2.5]) For a generic metric on X, themoduli spaces Mw� are smooth manifolds, except at at or reducible connections.For a generic path of metrics  = fgtgt2[0;1], the same is true of the parametrisedmoduli space Mw� (X) = [tMw� (X)gt.The (formal) dimension of the moduli space Mw� is 8�� 3 (1� b1+ b+). Thisis its actual dimension for a generic metric at points which correspond to non-atirreducible connections.Remark 1.2 The point of proposition 1.1 is that twisted reducible connectionsdo not appear for closed manifolds, as they are ruled out on dimensional grounds.



1.1. POLYNOMIAL INVARIANTS 3So in that sense, it is rather special for closed manifolds. For open manifolds(manifolds with cylindrical ends) we only have the general result that for a genericmetric the moduli spaces of ASD connections are smooth except at locally reducibleconnections. These also include twisted reducible connections, as well as at andreducible connections.To orient the moduli spaces Mw� we need to choose a homology orientation
. This is an orientation of H0(X;R)�H1(X;R)�H2+(X;R). The orientationof the moduli space reverses when we change 
 to �
.Remark 1.3 Instead of using this U(2) gauge set up, we might have started upwith an SO(3)-bundle � with �bre R3 and associated principle bundle P , de�nedby its classes w2 and p1 (with the constraint w22 � p1 (mod 4)). The spaceof connections in this bundle is acted on by the gauge group G� consisting ofthe sections of the adjoint bundle AdP . Now every lift w 2 H2(X;Z) of w2to integer coe�cients (this might not exist) de�nes a lift of P to a U(2)-bundleE with c1(E) = w � w2 (mod 2) and p1 = c21 � 4c2. Clearly � and gE areisomorphic and the spaces of connections coincide, but the gauge groups are notquite the same. One has the following exact sequence0! GE= � 1! Aut(gE)! Hom(�1(X); �1(SO(3))) = H1(X;Z2)! 0:Then if M� denotes the moduli space of ASD connections in � = gE moduloG� = Aut(gE), one has M� =Mw� =H1(X;Z2):The �xed points of this action of H1(X;Z2) onMw� are the O(2) reductions whichare not SO(2) reductions (i.e. the twisted reducibles). The advantage of workingwith U(2) instead of SO(3) is that the only reductions are to a copy of U(1), nomatter whether X is simply connected or not.The moduli space of SO(3)-connections is oriented by choosing a homology ori-entation 
 of X and an integral lift w of w2. If we pick another integral lift w0,the orientation of the moduli space reverses or not depending on whether (w�w02 )2is odd or even (see [34]).Recall that there is a universal SO(3)-bundle P ! B� � X de�ned as thequotient (A� � FrE)=G, where FrE is the orthogonal frame bundle of gE, andthere is a map � : Hi(X;R)! H4�i(B�;R)



4 CHAPTER 1. BASIC NOTIONSgiven by the slant product �(�) = �14p1(P)=�. Also there is a natural compact-i�cation of Mw� , the Uhlenbeck compacti�cation (see [13, section 4.4]).Mw� �Mw� t (Mw��1 �X) t (Mw��2 � Sym2X) t : : : t (Mw��[�] � Sym[�]X);where SymiX is the i-th symmetric product of X and [x] is the integer part ofx 2 R. Now Donaldson and Kronheimer [13] and Kronheimer and Mrowka [38]construct geometric representatives for �(�) which have good properties with re-spect to this compacti�cation, i.e. they de�ne cycles V � �Mw� , for any homologyclass � 2 H�(X).1.1.2 De�nition of the invariantsConsider a manifold X with b+ > 0 and a �xed homology orientation 
. Don-aldson's polynomial invariants are di�eomorphism invariants of X (more exactly,X with homology orientation 
, and only when b+ > 1) and are de�ned as mul-tilinear functions on the (rational) homology of X. First �x w 2 H2(X;Z). Weconsider the algebraA (X) = Sym�(Heven(X))
^�(Hodd(X));where deg(�) = 4 � i if � 2 Hi(X). Throughout this thesis, H�(X) will denotehomology with rational coe�cients, unless otherwise stated (and similarly forH�(X)). The Donaldson invariant will be a linear function on A (X). For amonomial z = �1�2 : : : �r of degree �, we de�ne Dw;�X (z) in the following way. SetDw;�X (z) = 0 if � 6� �2w2 � 3(1 � b1 + b+) (mod 8):Otherwise choose p1 � w2 (mod 4) such that � = �2p1 � 3(1 � b1 + b+) andconsider the moduli space Mw� with � = �14p1. Then proposition 1.1 says thatfor generic metric, this moduli space has dimension � and is smooth away fromat or reducible connections. Since b+ � 1, reducible non-at connections willnot appear for a generic metric. For the moment let us suppose that at con-nections do not appear. Then we can compactifyMw� as explained at the end ofsubsection 1.1.1 and choose generic representatives V�i of �(�i) (compatible withthe compacti�cation). They intersect in a �nite (transverse) number of points inMw� . We de�ne the invariant to be the algebraic count of these points using theorientation of Mw� , i.e. Dw;�X (z) = #V�1 \ � � � \ V�r :



1.1. POLYNOMIAL INVARIANTS 5This invariant turns out to be linear. The usual cobordism argument alongwith proposition 1.1 for paths of metrics proves that it does not depend on the(generic) metric in the case b+ > 1. For b+ = 1 the picture is more complicatedand will be discussed in subsection 1.1.3. In this case we will have to specify themetric g and denote Dw;�X;g for the invariants with respect to the generic metric g.The usual trick to get rid of at solutions (see [42]) is to blow-upX at one point(the de�nition of blow-up is well-known but it is recalled in de�nition 2.1). Call~X the blow-up of X and E the exceptional divisor, put ~� = �+ 14, ~w = w+E and~z = zE 2 A ( ~X ). As ~w does not vanish when restricted to the sphere representingE, there can not be any at connections in M ~w~� ( ~X). So now we setDw;�X (z) = Dw+E;�+2~X (zE):The right hand side is always de�ned. When both sides are de�ned, they areequal as proved in [34] (they have a factor of �2 because of di�erent gauge groupconventions). Otherwise the left hand side is de�ned to be equal to the righthand side. (This is also valid for b+ = 1 choosing a metric on ~X which is closeto the metric g on the X part, close to the Fubini-Study metric on the CP2 partand gives very large length to the neck joining both parts).When we change w by w0 = w + 2�, we obtain the same invariants multi-plied by a factor of (�1)�2. This is due to the fact that the moduli spaces Mw�and Mw0� are naturally isomorphic but the orientations di�er by (�1)(w0�w2 )2 (seeremark 1.3).In general we will be dealing with manifolds with b1 = 0 and so we shallrestrict attention to the case � 2 H2(X). There are several ways of wrapping upall the information about the di�erent degrees � in a single series. We put �rstDwX = ��Dw;�X . Now for instance, calling x the class of the point, we de�ne for� 2 H2(X) DwX (et�) =X Dw;dX (�d)d! td:This is a formal series on t. In the same vein as Witten [63] does, considerDwX(�) = DwX(et�+�x) =X Dw;d+2aX (�dxa)d! a! td�a;which is a formal series on t and �, although we do not add these variables in theleft hand side.De�nition 1.4 Let X be a four-manifold and w 2 H2(X;Z). Then we de�ned0 = d0(X;w) = �w2 � 32(1 � b1 + b+).



6 CHAPTER 1. BASIC NOTIONSWith this notation the only coe�cients of the series DwX(et�) which are non-vanishing are on degrees d � d0 (mod 4). Analogously, the non-zero coe�cientsof DwX(�) have d+ 2a � d0 (mod 4).De�nition 1.5 Let X have b+ > 1. We say that X is of w-simple type whenx2� 4 annihilates the Donaldson invariant DwX , that is, when DwX((x2� 4)z) = 0for all z 2 A (X).When b1 = 0 and b+ > 1, it is an important fact proved in [38] that whenever Xis of w-simple type for some w, it is so for every w0, and it is called of simpletype for brevity.When b+ = 1 the invariant does depend on the (generic) metric g and so we havethat X is of w-simple type with respect to g when DwX;g((x2 � 4)z) = 0 for allz 2 A (X).Many manifolds, like elliptic surfaces, algebraic complete intersections in CPnand many others are known to be of simple type (see [38]). At the moment thereare no examples of simply connected non-simple type manifolds with b+ > 1.When X is of simple type, we haveDwX(�) = DwX(et�) cosh 2� +DwX(x2et�) sinh 2�:Kronheimer and Mrowka de�ned in [38] another series for simple type manifoldscontaining the same informationD wX (t�) = DwX(et�) +DwX(x2et�):We warn the reader that this notation di�ers slightly from that of DwX in thatwe keep track of the variable t in the left hand side. This series has non-zerocoe�cients only for d � d0 (mod 2) and therefore it is even or odd depending onwhether d0 is even or odd. The most fundamental result of [38] [18] isProposition 1.6 Let X be a manifold of simple type with b1 = 0 and b+ > 1and odd. Then we haveD wX (�) = eQ(�)=2X(�1)Ki�w+w22 aieKi��for �nitely many cohomology classes Ki (called basic classes) and rational num-bers ai (the collection is empty when the invariants all vanish). These classes arelifts to integral cohomology of w2(X). Moreover, for any embedded surface S ,! Xof genus g and with S2 > 0, one has 2g � 2 � S2 + jKi � Sj.



1.1. POLYNOMIAL INVARIANTS 7Proposition 1.7 ([38]) Let X be a 4-manifold with b1 = 0 and b+ > 1 and odd.Suppose that it contains a tight surface � (i.e. an embedded surface � ,! Xwith �2 > 0 and genus g satisfying 2g � 2 = �2). Then X is of simple type.1.1.3 The case b+ = 1When b+ = 1 the invariants depend on a fundamental way on the metric gof X, since for a generic path of metrics reducibles may appear. Thanks toproposition 1.1 we only have to deal with reductions of the sort gE = R� L,with L a complex line bundle. If we put e = c1(L), we have e � w (mod 2),p1(gE) = e2 and the connection corresponding to the reduction is ASD if andonly if e 2 Hg� � H2(X;R), the subspace consisting of antiselfdual harmonic2-forms for (the conformal class of) the metric g. This space is of codimension1 so one expects that for generic 1-families of metrics gt, t 2 [ 0; 1], there will besome t with e 2 Hgt� .Let H be the image of fx 2 H2(X;R)=x2 > 0g in P(H2(X;R)). Note thatthis is the model of the hyperbolic space of dimension b�. Its boundary is theprojectivisation of the set fx 2 H2(X;R)=x 6= 0; x2 = 0g. The positive harmonicspace of g (being of dimension b+ = 1) de�nes a point !g in H called the periodpoint. The reducibles in Mw�;g correspond to pairs �e 2 H2(X;Z) with e �w (mod 2), e2 = p1(gE) and !g � e = 0. Finally, for the compacti�ed modulispace Mw�;g, the reductions which can appear for di�erent strata and varyingmetric correspond to pairs �e 2 H2(X;Z) such that e � w (mod 2) andp1 � e2 � 0.Remark 1.8 The second inequality is strict whenever there are no reducible atconnections. The usual trick for ruling out reducible at connections is to blow-upas explained in subsection 1.1.2. Other case in which these at reductions are notpresent is when there is an embedded Riemann surface � with w �� � 1 (mod 2).This case is obviously equivalent to w being odd in H2(X;Z)=torsion.We will suppose that w is odd in H2(X;Z)=torsion. In that case if e2 = 0and e � !g = 0, it should be e = 0 and therefore e 6� w (mod 2) (in the SU(2)case one must deal with at connections). So we de�neDe�nition 1.9 Let e 2 H2(X;Z) be such that e � w (mod 2) and p1 � e2 < 0.We call the image of the hyperplane e? = fx 2 H2(X;R)=x2 > 0; x � e = 0g in H



8 CHAPTER 1. BASIC NOTIONSthe wall de�ned by e, and denote it by We. We say that We is a wall associatedto (w; p1).The wallWe divides H in two connected components. All the walls associatedto (w; p1) partition H into in�nitely many components (but the union of thewalls form a locally �nite subset) called chambers. When the metric move withits period point in a �xed chamber C the invariants remain constant, but whenit crosses a wall they change. The main issue is whether the �bres of the periodmap are connected or not. This is not known, so in principle the invariantsdepend not only on the chambers. Also it might happen that the period mapis not surjective (and therefore there are no metrics with period points in someparticular chambers at all).When X has b1 = 0, Kotschick and Morgan [35] have proved that the invari-ants only depend on the chamber by proving that the change of the invariantsunder the crossing of a wall is independent of the particular path of metrics (theirargument also allows them to de�ne the invariants in chambers in which thereare not period points of any metric).For an algebraic manifold, if we restrict attention to the ample cone (thesubcone of fx 2 H2(X;R)=x2 > 0g spanned by ample line bundles, see section 3.1for de�nition of ampleness), and it happens that the invariants can be computedwith moduli spaces of stable bundles (because these were generic, see section 3.1),then these invariants are the same for Hodge metrics with period points in a �xedchamber. We will only use this for X = � � CP1, in which case any point in His the period point of some Hodge metric.Remark 1.10 Let [x] 2 H be any point not contained in any wall associated to(w; p1) for any p1 (this is the case if for instance x 2 H2(X;Z) and x � w �1 (mod 2)). Then for every p1, [x] is in the interior of a chamber and supposethat we can �nd a generic metric g in it (this is going to happen in all the caseswe will be dealing with). De�ne Dw;�X;[x] = Dw;�X;g. In this way we have de�ned DwX;[x](at least when X has b1 = 0 or for the case X = �� CP1).We also can allow [x] to lie in the closure of H , i.e. x2 = 0. These invariantsappear for metrics g giving a very small volume (with respect to the two-form!g) to surfaces representing homology classes orthogonal to x. For instance, ifwe consider X = X1 [ (Y � [0; 1]) [X2 and metrics giving a very long neck, wewill have x = P.D.[T ] with [T ] 2 H2(Y ) � H2(X). Obviously there are di�erent



1.1. POLYNOMIAL INVARIANTS 9ways of stretching the neck, corresponding to di�erent metrics on Y and di�erent[T ] 2 H2(Y ).1.1.4 De�nition of D(w;�)XLet us suppose now that we have w;� 2 H2(X;Z) satisfying w � � � 1 (mod 2)and �2 = 0. Then we de�ne, for b+ > 1,DX = D(w;�)X = DwX +Dw+�Xand similarly DX = D(w;�)X = DwX + Dw+�X . When b+ = 1 we consider theinvariants referring to the chambers de�ned by [�], i.e. D(w;�)X = DwX;[�] +Dw+�X;[�].Obviously, DX depends only on � and w (mod �), since Dw+2�X = DwX bysubsection 1.1.2. Now we note that since (w + �)2 � w2 + 2 (mod 4), we canrecover DwX and Dw+�X from the series DX . This series is even or odd accordingto whether d0 = �w2 � 32(1 � b1 + b+) is even or odd.Proposition 1.11 Suppose X is a manifold of simple type with b1 = 0 andb+ > 1 and odd. Write the Donaldson series as D wX = eQ=2P(�1)Kj �w+w22 aj eKj .Then setting d0 = d0(X;w) = �w2 � 32(1 + b+) we haveD(w;�)X (e�) = eQ(�)=2 XKj���2 (mod 4)(�1)Kj �w+w22 ajeKj��+e�Q(�)=2 XKj���0 (mod 4)i�d0(�1)Kj �w+w22 ajeiKj��So giving D wX is equivalent to giving D(w;�)X .Proof. Since ((w +�)2 +Kj � (w +�)) = (w2 +Kj �w) + 2(w �� +Kj � �=2) wehave D w+�X = eQ=2 XKj���2 (mod 4)(�1)Kj �w+w22 aj eKj � eQ=2 XKj���0 (mod 4)(�1)Kj �w+w22 aj eKjNow since the only powers in DwX(et�) are those td with d � d0 (mod 4) one hasDwX(et�) = 12(D wX (t�) + i�d0D wX (it�))and analogously Dw+�X (et�) = 12(D w+�X (t�)� i�d0D w+�X (it�))



10 CHAPTER 1. BASIC NOTIONSsince d0(X;w + �) = d0(X;w) + 2. So we �nally getD(w;�)X (e�) = eQ(�)=2 XKj���2 (mod 4)(�1)Kj �w+w22 ajeKj��+ i�d0e�Q(�)=2 XKj���0 (mod 4)(�1)Kj �w+w22 ajeiKj���Remark 1.12 For the class of the point x 2 H0(X), aj;w = (�1)Kj �w+w22 ,D(w;�)X (x e�) = 2eQ(�)=2 XKj���2 (mod 4)aj;weKj�� � 2i�d0e�Q(�)=2 XKj���0 (mod 4)aj;weiKj��:1.2 Gluing theoryA natural way of computing the invariants for a closed manifold X is to split itinto elementary pieces for which the invariants are easily computable. For thiswe need to understand, for every splitting X = X1 [Y X2 along a three-manifoldY , how to the record di�erential-topological information about the open pieces1Xi from which we can recover the invariants of X. This was answered in the �rstplace with the (instanton) Floer homology of Y , which allows us to calculate theinvariants of X on classes � 2 H2(X1)�H2(X2) (i.e. classes not split in two byY ). The general case is treated with the so called Fukaya-Floer homology.1.2.1 Instanton Floer homologyLet Y be an oriented three-manifold and let PY ! Y be a U(2) bundle such thatc1(PY ) is odd in H2(Y ;Z)=torsion (what will be called odd). In this situationPY only carries irreducible at connections (with �xed determinant). We saythat PY is free of at reductions. Possibly after a small perturbation of theat equations, there will be �nitely many at connections �j, and they will allbe non-degenerate. The Floer complex CF�(Y ) is the free abelian group on thegenerators �j, where the grading is given by the index (see [9] [8]) and lies in ana�ne Z=8-space (this complex depends on c1(PY ) but we do not express this inthe notation). When Y is a homology sphere (and PY is obviously trivial) thetrivial connections were used to �x the index (see [2]). In the general case, theindex is only de�ned up to a constant.1An open manifold will refer to a manifold with boundary or with a cylindrical end. Aclosed manifold is a compact manifold (without boundary).



1.2. GLUING THEORY 11Now for every two at connections �k and �l such that ind(�k) = ind(�l) + 1,there is a compact zero dimensional moduli spaceM0(�k; �l) of (perturbed) ASDconnections on the tube Y �R with limits �k and �l modulo translations. Thisspace can be oriented2 and so we have well de�ned the algebraic number of itspoints, #M0(�k; �l). We de�ne the boundary map of the Floer complex to be@ : CFi(Y ) ! CFi�1(Y )�k 7! X�lind(�l)=ind(�k)�1#M0(�k; �l)�lLemma 1.13 ([15][2][8]) @2 = 0.Proof. Consider �k and �l at connections such that ind(�l) = ind(�k)� 2. Thenthe moduli space M0(�k; �l) is a smooth one dimensional manifold which can becompacti�ed adding the broken instantons in[�mind(�m)=ind(�k)�1M0(�k; �m)�M0(�m; �l): (1.1)So this compacti�cation,M0(�k; �l), is a manifold with boundary given by (1.1).Therefore X�mind(�m)=ind(�k)�1#M0(�k; �m) �#M0(�m; �l) = 0;from where we get @2 = 0. �We de�ne the Floer homology HF�(Y ) as the homology of this complex (thisis what Floer did originally [15]). It can be proved that these groups do notdepend on the metric of Y or on the chosen perturbation of the ASD equations.The groups HF�(Y ) are natural under di�eomorphisms of the pair (Y; PY ). TheFloer cohomology HF �(Y ) is de�ned analogously out of the dual complex andit is naturally isomorphic to HFc��(Y ), for some constant c (where Y is Y withreversed orientation). Therefore we have a natural pairing� : HF�(Y ) 
HFc��(Y )!Z:2The orientation involves choosing a manifold Z with boundary Y and for every �k a con-nection Ak on Z with limit �k. Also we need to choose a homology orientation of X = Z [Y Z.ThenM0(�k; �l) is oriented in such a way that the orientations for the moduli spacesM(Z; �k),M0(�k ; �l), M(Z; �l) and M(X) match up correctly.



12 CHAPTER 1. BASIC NOTIONSIt is worth noticing that when Y has an orientation reversing di�eomorphism,i.e. Y �= Y , we have a pairing� : HF�(Y ) 
HFc��(Y )!Z:In [8] it is explained that there is an extra symmetry which gives an involutiveisomorphism h : HFi(Y )! HFi+4(Y ) lifting degrees by 4, allowing us to considerthe Floer homology graded mod 4. This will be done systematically in this thesis.It is equivalent to consider the Floer homology starting with an SO(3)-bundle.Let � 2 H3�i(Y ). We have cycles V�, in the moduli spaces M(�k; �l), ofcodimension i+1, representing �(��pt), for ��pt � Y �R, much in the sameway as in the case of a closed manifold. Using them, we construct a map�(�) : CFj(Y ) ! CFj�i�1(Y )�k 7! X�lind(�l)=ind(�k)�i�1(#M(�k; �l) \ V�) �lIt is easily seen that @ � �(�) + �(�) � @ = 0 by considering the 1-dimensionalmoduli spaceM(�k; �l)\V� for ind(�l) = ind(�k)�i�2 and counting the numberof its ends, which yieldsX�sind(�s)=ind(�l)+1(#M(�k; �s) \ V�) �#M(�s; �l) ++ X�sind(�s)=ind(�k)�1#M(�k; �s) � (#M(�s; �l) \ V�) = 0:So �(�) descends to a map�(�) : HF�(Y )! HF��i�1(Y ):Consider now an open (oriented) manifold X with @X = Y and3 let z =�1�2 : : : �r 2 A (X) of degree 2d. We are going to de�ne relative invariants forX. Choose w 2 H2(X;Z) such that wjY = c1(PY ). We give X a cylindricalend modelled on Y � [0;1) and denote it by X again (we hope no confusionarises out of this). Then we have moduli spaces M(X; �l) of (perturbed) ASDconnections with �nite action and asymptotic to �l. The dimension of M(X; �l)is dimM(X; �l) = ind(�l) + C, for some constant C. For orienting the spaces3The orientation of Y followed by the inward normal gives the orientation of X.



1.2. GLUING THEORY 13M(X; �l) we have to choose a manifold Z as in the footnote of page 11 and ahomology orientation for X [Y Z. Then orient M(X; �l) coherently with theorientations of M(Z; �l) and M(X [Y Z). Now we can choose (generic) cyclesV�i �M(X; �l), so we have de�ned an element�wd (X; z) = X�lind(�l)+C=2d(#M(X; �l) \ V�1 \ � � � \ V�r ) �l 2 CF�(Y ):This element has boundary zero and hence it de�nes a homology class in HF�(Y )(see [12]). In the same vein, one de�nes �wd (X;D) = �wd (X;Dd) for D 2 H2(X).Now the important gluing theorem reads as followsTheorem 1.14 Let X = X1 [Y X2 with b+(X) > 0 and w 2 H2(X;Z) with wjYodd. Let T 2 H2(X;Z) whose Poincar�e dual lies in the image of H2(Y ;Z) !H2(X;Z) and satisfying w � T � 1 (mod 2). Put w = w1 + w2 (this merelymeans that wi = wjXi 2 H2(Xi;Z), and di�erent w's can be written in this way).Choose zi 2 A (Xi) of degree 2di. ThenD(w;T )X (z1 z2) = �(�w1d1 (X1; z1); �w2d2 (X2; z2)):Also for �i 2 H2(Xi) and di � 0D(w;T )X (�d11 �d22 ) = �(�w1d1 (X1; �1); �w2d2 (X2; �2)):Proof. The essential feature is to consider a family of metrics stretching out theneck joining X1 and X2 into a long tube. Then the instantons A on X splitinto pairs (A1; A2) of instantons on X1 and X2, whose limits are the same atconnection on Y . Then we also need the result that we can glue two instantonsA1 and A2 with the same at limit � in a unique way (depending on a parametert 2 (0; �)) and this happens as long as � is irreducible (see [12] for details). Whenb+ = 1 this forces the metric to be in chambers corresponding to metrics giving along neck to X. This is the case for the chambers de�ned by [T ]. The explanationof the appearance of (w;T ) is in the remark below. �De�nition 1.15 We de�ne an allowable pair to be a pair (w;T ) with w 2H2(X;Z), wjY odd, T 2 H2(X;Z) whose Poincar�e dual lies in the image ofH2(Y ;Z)! H2(X;Z), and satisfying w � T � 1 (mod 2).



14 CHAPTER 1. BASIC NOTIONSRemark 1.16 When we glue two line bundles Li ! Xi, c1(Li) = wi, withL1jY �= L2jY (under the orientation reversing di�eomorphism Y �! Y ), we havean element of choice lying in H1(Y ;Z) �= H2(Y ;Z). An isomorphism L �! L,L = c1(PY ), covering the identity is given thus by an element T 2 H2(Y ;Z).This lifts to an isomorphism PY �! PY (which is not a gauge transformation, asit does not preserve the determinant). We have�0(Aut(L)) = Hom(�1(Y ); �1(S1)) = H1(Y ;Z)!! �0(Aut(PY )) = Hom(�1(Y ); �1(SO(3))) = H1(Y ;Z2) �w!Z2:This isomorphism is an element of the SO(3) gauge group, so the induced mor-phism on HF�(Y ) is the identity when we consider the Z=4Zgrading. For theZ=8Zgrading, when w � T � 0 (mod 2), the induced map HF�(Y ) ! HF�(Y )is the identity. When w � T � 1 (mod 2), it is the involution shifting degreesby 4. (Considering the mapping torus of T as an automorphism of PY , we havean U(2)-bundle over Y �S1 with �rst Chern class w + [T ]
 [S1]. The index is4 (mod 8) precisely when w �T � 1 (mod 2)). So if (w;T ) is allowable, then forgrading mod 8 we haveDwX(z1 z2) = �(�w1d1 (X1; z1); �w2d2 (X2; z2))for �w1d1 (X1; z1) 2 HFi(Y ), �w2d2 (X2; z2) 2 HFc�i(Y ) andDw+TX (z1 z2) = �(�w1d1 (X1; z1); �w2d2 (X2; z2))for �w1d1 (X1; z1) 2 HFi(Y ), �w2d2 (X2; z2) 2 HFc+4�i(Y ). This gives the result forour groups graded mod 4.If we write �w(X; et�) =Xd �wd (X;�d)d! td;we have the following version of theorem 1.14Theorem 1.17 Let X = X1 [Y X2 with b+(X) > 0 and let (w;T ) be any allow-able pair. Then for �i 2 H2(Xi)D(w;T )X (et(�1+�2)) = �(�w1(X1; et�1); �w2(X2; et�2)):



1.2. GLUING THEORY 15Computing e�ectively the Floer homology is a very di�cult task. In chapter 5we will be using the Floer homology of Y = ��S1 where � is a Riemann surfaceof genus 2. The Atiyah-Floer conjecture (which has been already proved in thecase of ��S1 by Dostoglou and Salamon [14]) relates these (instanton) Floer ho-mology groups with the (symplectic) Floer homology of the moduli space of atconnections over � with odd second Stiefel-Whitney class. In turn these symplec-tic Floer homology groups are identi�ed with the quantum cohomology throughwork of many authors [53]. Moreover, quantum multiplication is intertwined withthe pair-of-pants product in Floer homology.Remark 1.18 ([53]) Let M be a positive symplectic manifold (i.e. c1(Modd� ) =�!, for some positive number �) of dimension 2n with minimal Chern numberN . The quantum cohomology of M , QH�(M) is equal to the usual cohomologyof M , as abelian groups, but with a di�erent ring structure given by the quantummultiplication. Quantum multiplication is a deformation of the usual cup producton the cohomology of M . If � 2 QH i(M), � 2 QHj(M), the quantum product� � � is a sum of terms (� � �)k 2 QH i+j�2Nk(M) for k � 0. The leading termis (� � �)0 = � [ �. The other terms, the quantum corrections, are de�ned bycounting pseudoholomorphic curves (for some generic compatible almost complexstructure J on M). More precisely < (� � �)k;  >,  2 QH2n�(i+j�2Nk)(M), isthe number of pseudoholomorphic spheres f : S2!M with f(0) 2 A, f(1) 2 B,f(1) 2 C for generic cycles A, B, C in M representing Poincar�e duals of �, �and  respectively and c1(f�[S2]) = Nk.Proposition 1.19 ([14]) Let Y = � � S1 and w2(PY ) = P.D.[S1] 2 H2(� �S1;Z2). Then we have the following isomorphismHF�(��S1) �= QH(6g�6)��(Modd� ) (1.2)of the Floer cohomology of Y with the homology of the moduli space Modd� of odddegree rank two stable vector bundles on �, with the grading considered mod 4.The natural pairings on both sides correspond under this isomorphism.Proof. In [14], Dostoglou and Salamon prove thatHF�(��S1; PY ) �! HF symp� (Modd� ;Z):Now Modd� is a positive symplectic manifold (see [9, page 133]). Then there is anisomorphism [53] HF symp� (Modd� ;Z) �! QH(6g�6)��(Modd� ;Z):



16 CHAPTER 1. BASIC NOTIONSwhich gives the desired result. �Remark 1.20 The number 6g � 6 is rather arbitrary, since the grading of theFloer homology is only de�ned up to a constant. We use this convention becauseit produces an isomorphism HF �(��S1) �= QH�(Modd� ) preserving the grading.Remark 1.21 We are only going to use the above proposition in the case ofgenus g = 2. In this case, Modd� is isomorphic to the intersection of two quadricsin CP5 (see [45]). Therefore the symplectic form corresponds to the hyperplanesection H and the canonical divisor is KModd� = (2 + 2 � 6)H = �4H. Hencec1(Modd� ) = 4! and Modd� is positive.D. Salamon gave a program for determining the equivalence of the di�erentproducts for the di�erent Floer theories in [55] (which has not been completed sofar). This is believed to be true, and it has been used in several places (see [9]).We state it as a conjecture, in the form which we are going to use later (only forthe manifolds Y = ��S1, but including the expected result about the action of�(pt)).Conjecture 1.22 For every homology class � 2 H�(�) there is an element~�(�) 2 QH(6g�6)��(Modd� ) given by slanting with �14 times the �rst Pontrja-gin class of the universal SO(3)-bundle. Then the action of �(�) in HF�(Y ) isintertwined with quantum multiplication by ~�(�) 2 QH(6g�6)��(Modd� ), for any� 2 H�(�) (� = 1; 2). For pt 2 H0(�), �(pt) is quantum multiplication by ~�(pt)plus (possibly) a correction term of lower degree.1.2.2 Fukaya-Floer homologyNow we pass on to the de�nition of the Fukaya-Floer homology for a triple(Y; PY ; ), where  is a loop in Y , i.e. an (oriented) embedding S1 ,! Y andc1(PY ) is odd (see [3]). The complex CFF�(Y; ) will be the total complex of thedouble complex CF�(Y ) 
 Ĥ�(CP1) (Ĥ�(CP1) is the completion of H�(CP1)).Recall that Hi(CP1) = 0 for i odd and Zfor i even. ThereforeCFFi(Y; ) = CFi(Y )� CFi�2(Y )� � � �So elements are in�nite sequences of (possibly non-zero) Floer chains. This com-plex is also graded moduloZ=8Zin principle, but we will reduce the grading mod



1.2. GLUING THEORY 174 again. There is a moduli space M0(�k; �l) for every pair of at connections �kand �l and we can construct generic cycles representing �( � R) and intersect-ing transversely in the top stratum of the compacti�cation of M0(�k; �l). Theboundary will be de�ned as@ : CFFi(Y ) ! CFFi�1(Y )�k 7! X�l  ��! < �( �R)���;M0(�k; �l) > �lfor �k 2 CFi�2�, �l 2 CFi�1�2� and � � �. M0(�k; �l) denotes again the modulispace of instantons on the cylinder with limits �k and �l, quotiented out by thetranslations, which is of dimension 2(� � �) = ind(�k)� ind(�l)� 1. AgainLemma 1.23 ([3]) @2 = 0.Proof. Consider two at connections �k and �l, such that ind(�l) = ind(�k) �2� 2e. Then the moduli spaceM0(�k; �l) \ V e�R is a one dimensional manifold.Then we compactify it and count the boundary points in the same way as inlemma 1.13 to getX�mind(�m)=ind(�k)�1�2f ef!#M0(�k; �m) \ V f�R �#M0(�m; �l) \ V e�f�R = 0from where @@�k = 0. �So we have de�ned thus the Fukaya-Floer homology HFF�(Y; ). Thesegroups are independent of metrics and of perturbations of equations (see [3]).There is a �ltration (K(i))� = CF�(Y )
 (Q��i Ĥ�(CP1)) of CFF�(Y; ) inducinga spectral sequence whose E3 term is HF�(Y )
 Ĥ�(CP1) and converging to theFukaya-Floer groups. The boundary d3 turns out to be�() : HFi(Y )
H2j(CP1)! HFi�3(Y )
H2j+2(CP1):The pairing in Floer homology descends to give a pairing for the Fukaya-Floerhomology groups � : HFF�(Y; )
HFF�(Y ;�)!Z;where � is  with reversed orientation.To de�ne relative invariants, let X be an open manifold with @X = Y . Wegive it a cylindrical end. Choose w such that wjY is odd. Let D � X be



18 CHAPTER 1. BASIC NOTIONSan embedded Riemann surface such that @D = D \ Y =  (more accurately,D\ (Y � [0;1)) = � [0;1)). One has the moduli spacesM(X; �k) and we canchoose generic cycles V (i)D representing �(D) and intersecting transversely. Thenwe have an element�wd (X;D) = X�kind(�k)+C=2d (#M(X; �k) \ V (1)D \ � � � \ V (d)D )�kin CF�(Y )
H2d(CP1) � CFF�(Y; ). We remark that this is not a cycle. Thenwe set �w(X;D) = Qd �wd (X;D), which is a cycle (we also denote by �w(X;D)the Fukaya-Floer homology class it represents). The de�nition of �wd (X;D) de-pends on some choices, but the homology class �w(X;D) only depends on (X;D).Moreover if we have a homology of D which is the identity in the cylindricalend of X, �w(X;D) remains �xed (otherwise stated, �w(X;D) only dependson the class D 2 HR2 (X; @X) in the terminology of subsection 2.3.2). Anal-ogously we have �wd (X;Dd z), for any z 2 A (X) of degree �, and the cycle�w(X; z;D) = Qd �wd (X;Dd z). The relevant gluing theorem is:Theorem 1.24 ([3]) Let X = X1 [Y X2 with b+(X) > 0 and let (w;T ) be anallowable pair in the sense of de�nition 1.15. Choose D 2 H2(X) decomposed asD = D1 +D2 with Di � Xi embedded as above, w = w1 + w2. ThenD(w;T )X (Dm) =Xi �mi ��(�w1i (X1;D1); �w2m�i(X2;D2)):Let us remark that the numbers �(�w1i (X1;D1); �w2m�i(X2;D2)) are dependentof the particular cycle representing the homology class, but their sum is onlydependent on the homology class [3].We write formally �w(X; etD) =Xd �wd (X;D)d! td:This element lies in Qd Vd td, where Qd Vd is the graded module associated to thespectral sequence of CF�(Y )
 Ĥ�(CP1) converging to HFF�(Y; ).Theorem 1.25 Let X = X1[Y X2 with b+(X) > 0 and let (w;T ) be an allowablepair. Choose D 2 H2(X) decomposed as D = D1 +D2 with Di � Xi embeddedas above, w = w1 + w2. ThenD(w;T )X (etD) = �(�w1(X1; etD1); �w2(X2; etD2)):



Chapter 2Connected sums2.1 General de�nitions2.1.1 Blow-upsSuppose given two closed oriented four-manifolds �X1 and �X2. The connectedsum X = �X1# �X2 is formed by removing two small balls from each of the �Xiand gluing the boundaries by an (orientation reversing) di�eomorphism. The(oriented) di�eomorphism type of the result does not depend on any choices.It is known since the introduction of the invariants that whenever b+( �Xi) > 0for both manifolds, the invariants of X vanish. When b+( �X2) = 0 the generalformula relating the invariants of X and �Xi, i = 1; 2 is not yet completely known.De�nition 2.1 If X is a closed oriented four-manifold, we call ~X = X#CP2the (di�erentiable) blow-up of X. We call E = [CP1] 2 H2(CP2) � H2( ~X)the exceptional divisor of the blow-up. This is represented by an embedded(�1)-sphere.When X is a complex manifold, we can perform the blow-up of X in thecategory of complex manifolds and we get a complex manifold whose underlyingdi�erentiable manifold is ~X.In general, if we have a manifoldX with an embedded � � X and we consider~X, with exceptional divisor E, we have the proper transform of � de�ned tobe ~� = �#(�E), the connected sum of � and the embedded sphere E (withreversed orientation) joined with a thin tube in ~X not intersecting either � orE. Therefore ~� is an embedded Riemann surface of the same genus as � but19



20 CHAPTER 2. CONNECTED SUMS~�2 = �2 � 1. Of course, ~� is strictly speaking well-de�ned, after a choice of apath connecting � and E (and with no further intersections to either �, E oritself), only up to isotopy. Also note that, in the complex context, when X is acomplex surface and � a complex curve, if we blow-up at a smooth point in �,then ~� is the proper transform of � in the complex sense.Fintushel and Stern [16] have found the precise relationship between the in-variants of X and those of ~X. Their result settles the case b+( �X2) = 0 whenever�X2 = #nCP2. In general, when �X2 is simply connected, it is homeomorphicto some #nCP2 (because of a result of Donaldson [6] which establishes that itsintersection form is standard) and it is conjectured that the same relationshipbetween the invariants would hold. When X is of simple type the result comesdown to the followingProposition 2.2 Let X be of simple type with b1 = 0 and b+ > 1 and odd. LetDX = eQ=2P aieKi be its Donaldson series. Then ~X is of simple type and hasseries D ~X = e�E2=2 coshE � DX = e ~Q=2X(ai2 eKi+E + ai2 eKi�E);where ~Q stands for the quadratic form of ~X and E 2 H2(CP2) � H2( ~X) is thecohomology class dual to the exceptional divisor.2.1.2 Connected sums along Riemann surfacesIn general, we may have a splitting ofX along an embedded (oriented) 3-manifoldY � X. This Y divides X into two manifolds1 with boundary X1 and X2 suchthat X = X1 [Y X2. The orientations of all pieces can be arranged to have@X1 = Y and @X2 = Y (that is, Y with reversed orientation). Conversely,we could have started with two manifolds with boundary X1 and X2 such that@X1 = Y and @X2 = Y , and choosing a (orientation reversing) di�eomorphism� : @X1 ! @X2, form the glued manifold X = X1 [� X2. The di�eomorphismtype of X depends only on the isotopy class of �.Consider the case of two manifolds �X1 and �X2 together with embeddings� ,! �Xi of the same Riemann surface. Identify � with its image �i and letni be the self-intersection of �i. Suppose n1 + n2 = 0. Then we can chooseopen tubular neighbourhoods Ni of �i, Xi = �Xi � Ni. The boundary Y = @X11A general 3-manifold Y does not necessarily split X. It does whenever [Y ] = 0 2 H3(X).



2.1. GENERAL DEFINITIONS 21is the total space of a circle bundle over the Riemann surface �1 with Chernclass equal to n1. Obviously, Y = @X2 is the total space of a circle bundle over�2 with Chern class n2 = �n1. So there is (at least) one orientation reversingdi�eomorphism � between the boundaries of X1 and X2, namely any bundleisomorphism covering the identity on � from @X1 to @X2. We want to considerthe manifold X = X1 [� X2. Obviously the di�eomorphism type of X dependson the isotopy class of �.It would be important for us to understand the group �0(Di��(Y )) of isotopyclasses of di�eomorphisms where Y is the total space of a circle bundle over theRiemann surface �. Let Y = Yg;n be the total space of a circle bundle of degree nover a Riemann surface of genus g. When g = 1 and n = 0, Y is a three-torus andeach isotopy class of di�eomorphisms is characterised by its action on H1(Y ;Z),hence giving that �0(Di�+(Y1;0)) = SL(3;Z) (see for instance [24, page 145]). Ingeneral, the group �0(Di�+(Yg;n)) is di�cult to compute, so we will restrict ourattention to the subgroup Aut(Yg;n) � Di�+(Yg;n) of automorphisms of Yg;n as acircle bundle. Then we haveProposition 2.3 Let Y = Yg;n and (g; n) 6= (1; 0). Then we have the exactsequence 0! H1(�;Z)! �0(Aut(Yg;n))! �0(Di��(�))! 0:Proof. By de�nition any element � 2 Aut(Y ) covers a di�eomorphism f of�, and isotopic elements in Aut(Y ) give isotopic di�eomorphisms. When f isorientation preserving, � will preserve the orientation of the �bres. If f is ori-entation reversing, � reverses the orientation of the �bres so � 2 Di�+(Yg;n).Any di�eomorphism f of � can be lifted to a bundle isomorphism Yg;n ! Yg;n,so the map above is surjective. The kernel is the set of isotopy classes of bun-dle isomorphisms covering the identity (the gauge group of Y ! �). This is�0(C1(�;S1)) = H1(�;Z). �Remark 2.4 The group �0(Di��(�)) is quite big. In general, �0(Di��(�)) =Out(�1(�)), the group of outer automorphisms of �1(�). We have an obviousmorphism �0(Di��(�))! Aut(H1(�;Z))given by the action on homology. The kernel of this homomorphism is called theTorelli group of �. It is an in�nite group for g � 2 and contains very interesting



22 CHAPTER 2. CONNECTED SUMSelements like Dehn twists along separating curves.De�nition 2.5 Let Y = Yg;n. If (g; n) 6= (1; 0), we de�ne an identi�cationfor Y to be any orientation reversing di�eomorphism � : Y �! Y which lies inAut(Y ) � Di�+(Y ) = Di��(Y; Y ). If (g; n) = (1; 0), an identi�cation for Y isany orientation reversing di�eomorphism � : Y �! Y .De�nition 2.6 Let �Xi be as in the beginning of this subsection. We call X =X(�) = X1 [� X2 the connected sum of �X1 and �X2 along � with identi�-cation �, and denote it by X = �X1#� �X2.Remark 2.7 The fact that g = 1, n = 0 is a special case will allow us to performlogarithmic transforms which have no analogue when the genus is bigger.Suppose now that we have n1 + n2 � 0. By blowing-up �X1 or �X2 su�cientlyoften and replacing �i by its proper transform at each stage, we can reducen1+n2 to zero, and then consider the connected sum along � of those manifolds.A simple extension of the arguments in [29] gives the followingProposition 2.8 The di�eomorphism type does not depend on the points atwhich we blow-up. More concretely, blow-up �Xi at ni points and �x an (isotopyclass of) identi�cation � between the boundaries of the tubular neighbourhoodsof the proper transforms of �i. Let X = X(�) be the connected sum along �.For other choice of integers si with s1 + s2 = n1 + n2, blow-up �Xi at si points.Then there is a isotopy class of di�eomorphisms  between the boundaries of thetubular neighbourhoods of the proper transforms of �i such that the resulting con-nected sum along � is di�eomorphic to X. Moreover, the correspondence � 7!  is bijective.Therefore we have a process consisting of blowing-up the manifolds, takingproper transforms and then doing the connected sum along �. What proposi-tion 2.8 tells us is that the only choice (up to di�eomorphism) involved in allthe process is an element of �0(Di�+(Y )) with Y a circle bundle of degree nover � (for any n in the range 0 � n � max(n1; n2)). Actually we will see incorollary 2.11 that whenever n1 + n2 > 0 (i.e. we have to perform at least oneblow-up) the choice reduces to an element in �0(Di��(�)).When n1 = n2 = 0, Y = � � S1 is a trivial circle bundle. Note that whenn1 � 0 and n2 � 0 we can lower both quantities to zero by blowing-up to haveY = ��S1.



2.2. GENERAL RESULTS ON CONNECTED SUMS 232.1.3 Characteristic numbers of the connected sumLet �X1 and �X2 be two manifolds with embedded Riemann surfaces �i ,! �Xi of thesame genus and self-intersection zero, and let X = �X1#� �X2 be their connectedsum along the Riemann surface (for some identi�cation). Let g stand for thegenus of �. Since �� = 2� 2g it is easy to prove that the characteristic numbersare related as follows:�X = � �X1 + � �X2 + 4g � 4�X = � �X1 + � �X2b�(X) � b1(X) = (b�( �X1)� b1( �X1)) + (b�( �X2)� b1( �X1)) + 2g � 1As a consequence, when b+( �Xi) > 0 and b1( �Xi) = 0 for both sides and g �1, one has that b+(X) > 1. Also in general b+(X) � b+( �X1) + b+( �X2) � 1.Suppose that �X1, �X2 and X are algebraic manifolds (we will see some casesin proposition 2.9 when this actually happens), or even only almost complexmanifolds, with canonical classes K �X1, K �X2 and KX respectively. We recall thatfor an almost complex manifold K2 = 2�+ 3�. This givesK2X = K2�X1 +K2�X2 + 8(g � 1):In the algebraic case, �(OX) = K2X+c212 and so if pg stands for the geometric genusof X and q for the irregularitypg(X)� q(X) = (pg( �X1)� q( �X1)) + (pg( �X2)� q( �X2)) + g:In general, q(X) � q( �X1) + q( �X2), so when q( �Xi) = 0, i = 1; 2 we concludeq(X) = 0 and pg(X) = pg( �X1) + pg( �X2) + g.2.2 General results on connected sumsIn this section we will state some general results about connected sums alongRiemann surfaces. The �rst one, proposition 2.9, relates the smoothing out ofan algebraic manifold with normal crossings with the connected sum of the twoirreducible components. The second one, corollary 2.11, gives a condition forthe connected sum to be independent of the choice of identi�cation of the normalbundle. The third and last, proposition 2.12, is a result of Gompf about connectedsums of symplectic manifolds.



24 CHAPTER 2. CONNECTED SUMSTo start with, consider the case when the manifolds �Xi are complex surfacesand �i are embedded complex curves and let �i denote the holomorphic normalbundle to �i. Suppose that the embeddings � �! �i � �Xi are holomorphic(which amounts to say that �1 and �2 are isomorphic complex curves and thatwe �x an isomorphism). If �1 and ��2 are isomorphic (obviously this implies thatn1 + n2 = 0), we have an isomorphism � : �1 �! ��2 (unique up to a constantfactor) and then there is a preferred di�eomorphism � : N1 ! N2 betweenthe tubular neighbourhoods of �i (the bar denotes orientation reversed). Then,restricting to the boundaries of the tubular neighbourhoods, there is a preferredidenti�cation � : @X1 ! @X2 between the boundaries of Xi = �Xi �Ni. We canuse this identi�cation to perform a connected sum of �Xi along �. Note that whenn1+n2 > 0 we need to blow-up. This only can be done if �1
�2 �= O�(p1+� � �+pr)for some points pi 2 �. In that case we must blow-up at the r points pi, but wecan choose at which of either �Xi to blow-up.Proposition 2.9 Let Z �! � = D(0; 1) � C be a (at) family of complexsurfaces. Suppose that Zt = ��1(t) are smooth for t 6= 0 and that X = Z0 isthe union of two surfaces �X1 and �X2 intersecting in a normal crossing along �(i.e. �X1 and �X2 are smooth and intersecting transversely). If n1+n2 = 0 (whereni is the self-intersection of � in �Xi), then the di�eomorphism type of a generic�bre is obtained by a connected sum along � of �X1 and �X2 with the preferredidenti�cation alluded above.Proof. We note that when n1 + n2 = 0, �1 
 �2 �= O. So the deformation isd-semistable in the terminology of Friedman [21]. Equivalently, the total defor-mation space is smooth. In this case the general �bre Zt is di�eomorphic to theconnected sum of �X1 and �X2 along � (see [24, page 162, lemma 2.13]). �We cannot hope for a converse of proposition 2.9 (even in the case of d-semistability), as it is shown in [51], where it is constructed an algebraic surfacewith a normal crossing which can not be deformed into a smooth algebraic surface.Theorem 2.10 Let X be a smooth four-manifold with an embedded Riemannsurface � � X. Suppose that there exists an embedded sphere E of self-intersec-tion �1 intersecting � transversely at one point. Then for any element  2H1(�;Z) there exists a di�eomorphism � : X �! X �xing � and inducing theisomorphism given by  in the normal bundles to � (see proposition 2.3).



2.2. GENERAL RESULTS ON CONNECTED SUMS 25Proof. We shall suppose that �2 = 0, but the argument is the same for �2 6= 0.We can also suppose � � E = 1. We contract E to a point to get a smoothmanifold X̂ with a smooth embedded Riemann surface �̂ � X̂ of the same genusas �, such that X is the blow-up of X̂ with exceptional divisor E and � is theproper transform of �̂. Obviously, H�(�) �! H�(�̂) in a natural way. Now weare going to move the point at which we blow-up around a curve g : S1! �̂ � X̂whose homology class is Poincar�e dual of  in �̂. To move the point at which weblow-up we argue as follows. Consider the family X̂ = X̂�S1 with the embeddedthree-manifold Ŝ = �̂�S1 � X̂ . Consider the curve � : S1! X̂ �S1 given by�(t) = (g(t); t):Then a tubular neighbourhood N = B �S1 (B is a four-ball) of the image of �has boundary S3�S1. We remove it and glue in (CP2�B 0)�S1 where B 0 is a smallball in CP2. The resulting manifold is X ! S1 with �bres Xo �= X, for o 2 S1(X = X �S1 when g = 0 2 �1(X)). We also glue together Ŝ = �̂�S1 minus thepart removed with (E�B 0\E)�S1 with reversed orientation (we choose the ballB0 to have centre on the exceptional sphere E), to get S = ��S1 ,! X . In thisway we have constructed a parametrised blow-up along g with a parametrisedproper transform of X̂ . Now �x a trivialisation of the normal bundle of ��fog inXo, o 2 S1 (equivalently �x the homotopy class of @N��fog �! (��fog)�S1, forN��fog a tubular neighbourhood of ��fog inXo) and transport the trivialisationalong g. To look at the holonomy as we go around the loop, we need to computethe global normal bundle of S in X . Its �rst Chern class is[S]jS 2 H2(S) = H2(��S1):Now [S] = P.D.[�̂�S1]�P.D.[E�S1] 2 H2(X ), [�̂�S1]jS = [S1] (since �̂2 = 1)and [E �S1]jS = [�]. So[S]jS = P.D.[S1]�P.D.[�] = �
[S1] 2 H2(��S1) = H2(�)�(H1(�)
H1(S1)):This is enough to infer the theorem. �Actually, the proof is based on the fact that the isotopy class of the propertransform of �̂ does depend on the chosen path from �̂ to the exceptional sphere.Morally, we have been comparing two di�erent proper transforms whose pathsdi�er by juxtaposition of a path which is given by moving g slightly o� �̂.



26 CHAPTER 2. CONNECTED SUMSCorollary 2.11 Let �X1 and �X2 be manifolds furnished with embeddings � ,! �Xiwith image �i, with self-intersection number ni. Suppose n1+n2 > 0. Perform theprocess of blowing-up until the intersection numbers of the proper transforms arezero and do the connected sum along �. If we choose two di�erent identi�cationsof the boundaries Y = � �S1, say � and  , whose homotopy classes in Aut(Y )di�er by an element  2 H1(�;Z) then X1[�X2 and X1[ X2 are di�eomorphic.We recall here remark 2.4 about the richness of the group �0(Di��(�)). Al-though this last result says that the di�eomorphism type of the resulting gluedmanifold depends on the identi�cation only through the homotopy class it inducesin �0(Di��(�)), this is still quite a big group. Actually, the homology groupsof X only depend on the induced element in Aut(H1(�;Z)). Now we pass on tostate the last result, which is proved by Gompf [29] and also by McCarthy andWolfson [41].Proposition 2.12 Suppose �X1 and �X2 are two symplectic four-manifolds withsymplectic submanifolds �i � �Xi being Riemann surfaces of the same genus g.Suppose that the self-intersections ni of �i satisfy n1 + n2 = 0. Fix an iden-ti�cation �. Then there is a natural isotopy class of symplectic structures forX = �X1#� �X2 associated to the symplectic structures on �X1, �X2 and the identi-�cation �.2.3 Gluing cycles in the connected sumFrom now on we are going to consider the case of two four-manifolds �X1 and �X2with b1 = 0 and with embeddings � ,! �Xi whose images �i represent cohomologyclasses [�i] 2 H2( �Xi;Z) which are non-torsion elements and have self-intersectionzero. Choose an identi�cation � between the boundaries of tubular neighbour-hoods of �i and form the connected sum along �, say X = �X1#� �X2.2.3.1 Computing the (co)homologyThe cohomology exact sequence for the pair ( �Xi;Xi) gives the exact sequence20! H2( �Xi;Z)=Z[�i]! H2(Xi;Z)! Li ! 0; (2.1)2The identi�cations between homology and cohomology groups are through Poincar�e duality.



2.3. GLUING CYCLES IN THE CONNECTED SUM 27where Li � H1(�;Z) is the image of the compositionH2(Xi;Z)! H2(Xi; @Xi;Z) @! H1(� �S1;Z) i�! H1(��D2;Z) = H1(�;Z);and it is a free abelian group of rank 2g. We also have isomorphismsH1(Xi;Z)�= H1( �Xi;Z) = 0H3(Xi;Z)�= H3( �Xi;Z)=(H1(�;Z)=Li)It is worth noticing that b1( �Xi) = 0, b1(Xi) = 0, b1( �Xi) = 0 and b1(Xi) = 0 areall equivalent (here we use that [�i] is non-torsion).From the exact sequence (2.1) one has that there is a (non-canonical) splittingH2(Xi;Z) = H2( �Xi;Z)=Z[�i]�Li. Giving one such splitting of the exact sequenceis equivalent to giving a subspace Vi � H2(Xi;Z) projecting isomorphically toLi � H1(�;Z). Suppose now that two such splittings Vi � H2(Xi;Z) being given.The Mayer-Vietoris sequence for X = X1 [X2 givesH1(X;Z)�= H1(X1;Z)�H1(X2;Z)and the exact sequence0! H1(Y ;Z)! H2(X;Z)! H2(X1;Z)�H2(X2;Z)!! H2(Y ;Z) = (H1(�) 
H1(S1))�H2(�) �= H1(�;Z)�H2(�;Z);where the last map is surjective when we tensor with rational coe�cients. The�rst conclusion is b1(X) = 0. Also, under the splittings Vi, we can describe thelast map as (we drop Zin the notation)(H2( �X1)=Z[�1]� V1)� (H2( �X2)=Z[�2]� V2) ! H1(�;Z)�H2(�;Z)(�1; �1; �2; �2) 7! (�1 � �2; �1 � �1 � �2 � �2):Now call G the subgroup of H2( �X1;Z)=Z[�1] � H2( �X2;Z)=Z[�2] consistingof elements (�1; �2) such that �1 � �1 = �2 � �2 (note that these pairings makesense). Then we have the exact sequence0! H1(Y ;Z)! H2(X;Z) �! G �H1(�;Z) (2.2)with the cokernel of last map being a torsion group.



28 CHAPTER 2. CONNECTED SUMSRemark 2.13 Call mi the divisibility of �i (that is, the minimum of the positivenumbers appearing as �i �Di, for Di 2 H2( �Xi;Z). Note that mi > 0 as �i is non-torsion. Put m for the least common multiple of m1 and m2 and d = m1m2=mfor the greatest common divisor. Then m is the divisibility of � � X. Thecokernel of � is isomorphic to H1(�;Z)=(L1\ L2). So � is surjective if and onlyif H3(Xi;Z)�= H3( �Xi;Z), i = 1; 2.Now let us rewrite the exact sequences we have for rational coe�cients (we recallthat H�(X) stands for rational coe�cients)0! H1(Y )! H2(X)! G �H1(�)! 0:Working with homology, we have an analogue exact sequence0! H2(Y )! H2(X)! H2(X1; @X1)�H2(X2; @X2)! H1(Y )! 0:Also we have the following0! H2(Y )! H2(X1)�H2(X2)! H2(X)! H1(Y )! 0;or working with cohomology0! H1(Y )! H2(X1; @X1)�H2(X2; @X2)! H2(X)! H2(Y )! 0: (2.3)Calling K the cokernel of the �rst map of (2.3), one has 0 ! K ! H2(X) !H2(Y ) ! 0, which tells us that the homology of X is always an extension ofH2(Y ) and K. If we use di�erent identi�cations �, the �rst map in (2.3) andhence K are only dependent on the action of � on the 2-homology.De�nition 2.14 Let  2 H1(�;Z) be a primitive class. Then we call T thehomology class in H2(Y ;Z) represented by g �S1 � � �S1, where g is any loopin � with  = [g]. So T =  
 [S1] is represented by a torus of self-intersectionzero.Now, the exact sequence (2.2) admits the following interpretation. The �rstterm corresponds to the 2-homology of Y , i.e. it is generated by � and the toriT. The subgroup ��1(G) consists of the classes obtained by gluing cycles comingfrom �X1 with cycles from �X2 intersecting �i on the same number of points,equivalently homology classes cutting Y in a multiple of [S1]. The preimageof H1(�;Z) corresponds to 2-homology classes whose intersection with Y is a



2.3. GLUING CYCLES IN THE CONNECTED SUM 29homology class lying in H1(�) � H1(Y ). All of these classes are necessarilyrepresented by cycles with a part in X1 and a part in X2 going through theneck. The process of gluing two homology classes is not well-de�ned. If we havehomology classesDi 2 H2(Xi; @Xi) with @D1 = �@D2, we can glue them togetherto give D 2 H2(X). For this, we choose cycles representing the homology classeswith the same cycle as boundary. The point is that di�erent representatives willlead to homology classes di�ering by an element in H2(Y ). This is due to thefact that a homology in (X1; @X1) does not extend to the whole of �X1.Now if we think of the exact sequence (2.2) in terms of line bundles andtheir �rst Chern classes, then for a line bundle L on X with c = c1(L), �(c)is the (Chern classes of the) restrictions of L to the two open manifolds Xi.Now H1(Y ;Z) expresses the indeterminacy present when we glue two di�erentline bundles Li ! Xi such that L1jY �= L2jY , that is, the possible choice ofidenti�cation of both Li along Y .2.3.2 The extended homology groupsThe reason for re�ning the second homology groups for the pairs (Xi; @Xi) istwo-fold. On the one hand, we want to keep track of the indeterminacy of gluingtwo homology classes or two line bundles on the pieces Xi. On the other hand,we have to use the Fukaya-Floer theory, in which the groups HFF�(Y; ) dependin principle on the isotopy class of the loop  and not only on its homology class.For this we de�ne the following concepts.De�nition 2.15 Let Y be a three-manifold. A loop  in Y is an embeddedoriented S1 � Y . We de�ne 
(Y ) to be the vector space (over Q) generated byall loops in Y (with the identi�cation of � with  with opposite orientation). Aframing for a loop  is a homotopy class of trivialisations of its normal bundlein Y . A framed loop is a loop endowed with a framing. We denote by F
(Y )the vector space generated by all framed loops in Y . Obviously Zacts freely andtransitively on the framings of a loop, and hence it acts freely on F
(Y ) withquotient 
(Y ).Now we are ready to de�ne our extended relative homology groups. Let X bean open manifold with boundary @X = Y . We will give X a cylindrical end, i.e.we will considerX 0 = X[Y (Y �[0;1)). LetXo = X 0�(Y�[1;1)) and letC 02(X 0)be the subgroup of 2-chains � � X 0 such that � \ (Y � [0;1)) =  � [0;1), for



30 CHAPTER 2. CONNECTED SUMSsome  2 
(Y ). Let Z 02(X 0) � C 02(X 0) be those which are cycles and let B2(Xo)be the boundaries supported in Xo.De�nition 2.16 We de�ne the extended non-framed homology groups ofthe pair (X; @X) as ~HR2 (X; @X) = Z 02(X 0)B2(Xo) \ Z 02(X 0) :We have an exact sequence0! H2(Xo)! ~HR2 (X; @X)! 
(Y ):We de�ne the extended homology groups HR2 (X; @X) as the pull-back of~HR2 (X; @X) under the projection F
(Y )! 
(Y ). So we have0! H2(Xo)! HR2 (X; @X) q! F
(Y ):The image of q is given by those loops  2 F
(Y ) whose homology classes liein the image of H2(X; @X) ! H1(Y ) (so the map is surjective when H1(X) =0). The group HR2 (X; @X) is natural under di�eomorphisms of X inducing theidentity in Y . We have obvious surjective maps HR2 (X; @X) ! H2(X; @X) andF
(Y )! H1(Y ). If K is the kernel of the �rst map, one has an exact sequenceH2(@X)! K ! F
(Y )! H1(Y )! 0. The kernel of the �rst map in this exactsequence is the kernel of H2(@X)! H2(X).Let now X1 and X2 be two manifolds with � : @X1 �! @X2 and X = X1[�X2.We have a natural map� : HR2 (X1; @X1)�HR2 (X2; @X2)! F
(Y )given by �(D1;D2) = ��(q1(D1))� q2(D2). Its kernel is the diagonal� = f(D1;D2) 2 HR2 (X1; @X1)�HR2 (X2; @X2)=��(q1(D1)) = q2(D2)g:The gluing of cycles is encoded in the following exact sequence0! H2(Y )! �! H2(X)� F
(Y );where the �rst map is � 7! (�; ��(�)). This expresses that every pair (D1;D2) 2HR2 (X1; @X1)�HR2 (X2; @X2) with ��(q1(D1)) = q2(D2) can be glued in a uniqueway to give a homology class for X. Also every class D 2 H2(X) can be decom-posed in this way, i.e. �! H2(X) is surjective.



2.3. GLUING CYCLES IN THE CONNECTED SUM 31Now we also have to extend the intersection pairing to HR2 (Xi; @Xi) (andhere it enters the fact that we have used F
(Y ) rather than 
(Y )). For an openmanifold X with boundary Y = @X we de�neQ : HR2 (X; @X)! Qin the following way. Let  be a loop in Y and D 2 HR2 (X; @X) with q(D) = .Perturb slightly D by moving its boundary along the framing, so that we getanother cycle homologous to D which does not intersect D in Y � [0;1). Thencount the intersection points with signs to get Q(D). Now if we represent byDn = n �D 2 HR2 (X; @X) the cycle D with the framing of its boundary twistedn times, we have Q(Dn) = Q(D) + n.Now let X1, X2 be two open manifolds with boundary @X1 = @X2 = Y , andlet Qi be the intersection pairings in HR2 (Xi; @Xi). If Q denotes the intersectionpairing of X = X1 [Y X2, then for any cycle D 2 H2(X) decomposed as D =D1 +D2, Di 2 HR2 (Xi; @Xi), one has Q(D) = Q1(D1) + Q2(D2). Obviously thisis independent of the framing since when twisting D = (D1)n + (D2)�n, for anyn 2Z.Remark 2.17 Note that for  = pt � S1 � � �S1 there is always a preferredframing since Y ! � is a circle bundle over �. Also if there is a canonicaldi�eomorphism Y �= ��S1 and  � � � ��S1, there is a preferred framing of, namely the framing inside �.Remark 2.18 For the manifold A = � � D2, the extended group contains asubgroup Q[�] � Q[�] with � = pt �D2 being a horizontal section, for a �xedpoint pt 2 �. Also �2 = 0, with the framing as in remark 2.17.Remark 2.19 Sometimes we can �nd a collection D(j)i , j = 1; 2, formed by(�1)-discs, i.e. embedded discs of self-intersection �1 (any self-intersection canbe achieved by modifying the framing), for 2g framed loops i � � whose homologyclasses form a basis of H1(Y ;Z) together with [S1]. When this is possible and �matches up the cycles and the framings, the resulting D are embedded (�2)-spheres and T� �D = � � p() (for p : H1(Y )! H1(�)). So for every D there issome torus T� of self-intersection zero intersecting D in one point. Thus D+T�can be represented by a torus of self-intersection zero as well. All the T� and theD generate a primitive sublattice V � H2(X;Z) hence V �V ? = H2(X;Z) and



32 CHAPTER 2. CONNECTED SUMSthe exact sequence (2.2) reduces to0!Z[�]! V ? �! G! 0: (2.4)Remark 2.20 In the situation of the previous remark, we can split the (rational)homology of X in a nice way. Choose cohomology classes D 2 V ?Q � H2(X),�D1 2 H2( �X1), �D2 2 H2( �X2) with D � � = 1, and such that D = D1 + D2,�D1 = D1 + �, �D2 = D2 + �. Let W = Q[�;D] be the vector subspace ofV ?Q generated by � and D. Let Wi = Q[�i; �Di] � H2( �Xi). Then � induces anisomorphism W? �! W?1 �W?2 preserving the intersection forms. So �nallyH2(X) �= VQ�Q[�1; �D1]? �Q[�2; �D2]? �Q[�;D]This decomposition is orthogonal. Also note that Q[�i; �Di] �= H2(Xi)=Q[�i].We can de�ne the Fukaya-Floer theory of Y asHFF�(Y ) = M framed loop(HFF�(Y; )
ZQ)! F
(Y );which collects all Fukaya-Floer groups at once. Then every D 2 HR2 (X; @X) de-�nes a cycle �w(X;D) 2 HFF�(Y ). Now the pairing is de�ned as � : HFF�(Y )
HFF�(Y )! Q and for a closed manifoldX = X1[Y X2, D = D1+D2 2 H2(X),w = w1 + w2 2 H2(X;Z), one hasD(w;T )X (etD) = �(�w1(X1; etD1); �w2(X2; etD2)):



Chapter 3Complex manifoldsThis chapter tries to gather together some results concerning the computation ofDonaldson invariants for 4-manifolds which are furnished with the extra structureof algebraic surfaces. In this case the invariants can be obtained via algebraicgeometry as will be explained in section 3.1. The next two sections containremarks on (and examples of) surfaces which are �bred as complex manifolds overcomplex curves, with �bres being generically curves of genus 1 and 2, respectively.These are the basic blocks to which we apply the theory developed in chapters 4and 5. The last section is devoted to the computation of wall-crossing formulaefor some algebraic surfaces with pg = 0.3.1 Invariants for algebraic surfacesThe �rst computations of Donaldson invariants for four-manifolds (except in somecases of vanishing) were carried out for complex surfaces. This is due to the factthat in this case one can study the moduli space of stable bundles with �xedChern classes instead of the moduli space of ASD connections.Let S be a smooth projective surface and g a Hodge metric on S with corre-sponding ample line bundle H. Such an H is also called a polarisation of S. Thetwo-form ! 2 H2(S;Z) given by H is a positive form. By de�nition of ampleness,there is an embedding of S in some projective space1 such that the hyperplanesection is a positive integer multiple of H, or equivalently, the K�ahler form cor-responding to the Fubini-Study metric restricts to a positive integer multiple of1For smooth algebraic surfaces, it is equivalent the existence of an ample line bundle H, tobe algebraic and to be projective. 33



34 CHAPTER 3. COMPLEX MANIFOLDS!. Then ! is a Hodge form corresponding to a hermitian metric h, whose realpart is the Hodge metric g.Fix the Chern classes c1 and c2 and also a holomorphic line bundle O(L) withc1(L) = c1. We consider the setMH(c1; c2) of stable bundles E ! S with respectto the polarisation H (for de�nition see for instance [24, page 322]), with Chernclasses c1(E) = c1 and c2(E) = c2 and with a �xed isomorphism det(E) �! O(L)of holomorphic line bundles. Di�erent choices of L would give isomorphic modulispaces.Proposition 3.1 ([5]) Under the conditions above, there is an isomorphism ofreal analytic varieties Mw� �!MH(c1; c2) from the moduli space of ASD connec-tions on S with respect to the metric g and with w = c1, � = c2 � 14c21, to thespace of stable bundles with respect to H with given Chern classes.The metric g is generic in the sense of section 1.1 if the following condition issatis�ed: H0(End0(E)) = H2(End0(E)) = 0; for all E 2MH(c1; c2),where End0(E) is the sheaf of trace-free endomorphisms of E. This meansthat the moduli space of stable bundles is reduced and of the virtual dimen-sion. MH(c1; c2) is naturally a complex variety and therefore it has a natural(complex) orientation. The Hodge form ! selects a homology orientation sinceH2+(S;R) �= H0;2 � H2;0 � R � ! and H1(S;R) = H0;1 � H1;0 (and H0;i � H i;0are naturally complex vector spaces). We will always consider this homologyorientation. The orientations under the isomorphism of proposition 3.1 compareas (�1)w2+K�w2 , where K = KS is the canonical class for S.Now we have to construct the �-map. In some cases there exists a universalbundle U !MH(c1; c2)� S, and then we have de�ned a class�14p1(gU) = 14c2(End0(U)) = c2(U) � 14c1(U)2 2 H4(MH(c1; c2)� S);as (gU)C = End0(U). The good news is that such a class exists even when U doesnot [24, section 5.1]. So for an algebraic curve C � S, we can de�ne�([C]) = �14p1(gU)=[C] 2 H2(MH(c1; c2)):Proposition 3.2 ([24, section 5.1]) Suppose that c1 � C � 0 (mod 2). Let �be a holomorphic line bundle such that �
2 = KC 
OC(L�1) (which exists by the



3.2. SIMPLY CONNECTED ELLIPTIC SURFACES 35assumption on c1). PutZc1;c2(C; �) = fV 2MH(c1; c2)=h0(C; (V jC)
 �) 6= 0g:If Zc1;c2(C; �) is a proper hypersurface in MH(c1; c2) (i.e. of codimension oneand not containing any irreducible component ofMH(c1; c2)) then it is naturally adivisor representing �([C]), such that the multiplicity of an irreducible componentZ of Zc1;c2(C; �) is given by the length of R1p1�(U 
 p�2�) at a generic point ofZ. Here U ! MH(c1; c2) � S is a universal bundle (at least locally) and p1and p2 denote the projections of MH(c1; c2)� S onto its �rst and second factorsrespectively.We have a word to say about the case b+ = 1. Since for an algebraic surfacewe have b+ = 1 + 2pg, b+ = 1 is equivalent to pg = 0. The space of selfdualharmonic forms for S with the Hodge metric g is H0;2 � H2;0 � R � !, so whenpg = dimH0;2 = 0 the positive harmonic space is just generated by !. The spaceof antiselfdual harmonic forms is its orthogonal complement, i.e. H� = fD 2H2(S;R)=D �H = 0g. The period point corresponding to the metric g is [!] 2 H .When h is a hermitian metric coming from a polarisation H, such a point is theline spanned by H.The moduli spaces MH(c1; c2) do not change when we vary H inside a cham-ber. Therefore if we restrict to the ample cone and the moduli spaces MH(c1; c2)are generic (which is going to be the case for the case we need S = � � CP1),then remark 1.10 and the discussion preceding it remain valid.A very detailed study of the behaviour of Donaldson invariants when crossinga wall will be undertaken in section 3.4.3.2 Simply connected elliptic surfacesWe feel it necessary to gather some of the results on the classi�cation of smoothprojective surfaces since they have been very important in the story of Donald-son invariants. In chapter 4 we will compute the basic classes (and hence theinvariants) of elliptic surfaces. Furthermore, all the theory of chapter 5 can beused to compute the basic classes of algebraic surfaces which admit �brationsover complex curves with �bres being generically of genus two.A rough classi�cation of algebraic surfaces with b1 = 0 can be made usingthe Enriques-Kodaira classi�cation of surfaces (see [1, page 188]), so we get (�



36 CHAPTER 3. COMPLEX MANIFOLDSdenotes the Kodaira dimension):1. For � = �1 we have the rational surfaces. This group consists of theprojective plane CP2, its blow-ups CP2#nCP2, the quadric S2�S2 and theruled surfaces over CP1 (i.e. the Hirzebruch surfaces) and their blow-ups.So any of these surfaces is di�eomorphic to either CP2#nCP2 or S2�S2.2. For � = 0 we have the Enriques and the K3 surfaces. The non-minimalexamples are the blow-ups of these.3. For � = 1 we have the rest of the irrational, elliptic surfaces with b1 = 0. Allthese surfaces admit an elliptic �bration over CP1. Again the non-minimalexamples are their blow-ups.4. For � = 2 we have the surfaces of general type with b1 = 0. This groupincludes all hypersurfaces in CP3 of degree d � 5, and is poorly understood.All of these surfaces are projective (equivalently, algebraic) except for someexamples of K3 surfaces and some elliptic surfaces with � = 1.In this section we will discuss briey the surfaces in the second and thirdgroups. A very good reference for this is the book [24]. An elliptic surface S is acomplex manifold with an algebraic projection � : S ! C onto a complex curvewith �bres being generically smooth elliptic curves. We denote by F the class ofthe �bre. When b1 = 0, C = CP1 necessarily and the irregularity is q = 0. S iscalled relatively minimal when there are no exceptional divisors contained in any�bre. S is algebraic if and only if it admits a multisection, i.e. a connected curveC 0 � S not contained in a �bre (see [24, page 34]).A multiple �bre of multiplicity m is a non-reduced �bre which is m times areduced divisor. By [1, page 162], the canonical divisor isKS = (n� 2)F +X(mi � 1)Fi;where n = �(OS) and Fi are the reductions of the multiple �bres (with multiplic-ities mi). So always K2S = 0 and c2 = K2S + c2 = 12�(OS) = 12(1 + pg) = 12n.Since n > 0, there are always singular �bres.If S has a section, then there are no multiple �bres. In case S has no multiple�bres, S will be deformation equivalent to an elliptic surface with a section [24,page 81]. Such a surface S is characterised, up to deformation equivalence, by itsgeometric genus pg(S) = n� 1. We denote by Sn the unique, up to deformation,



3.2. SIMPLY CONNECTED ELLIPTIC SURFACES 37relatively minimal elliptic surface with b1 = 0, no multiple �bres and pg(Sn) =n� 1.Doing the connected sum along any �bre, as explained in section 2.1 (seealso [24, page 162]), we have that Sn#FSm = Sn+m, as di�erentiable manifolds(where the identi�cation is taken to be the preferred identi�cation as explainedin section 2.2). This is true by proposition 2.9 since Sn+m can be deformed to avariety with a normal crossing Sn [F Sm. The well known K3 surface is S2.If we allow multiple �bres, still b1 = 0. The fundamental group is �nite when-ever there are two multiple �bres, of multiplicitiesm1 and m2. When there is onlyone multiple �bre, we set m1 = 1 since a �bre of multiplicity 1 is a non-multiple�bre. Analogously, if there are no multiple �bres, we put m1 = m2 = 1. So wecan suppose 1 � m1 � m2. The fundamental group of S is Z=dZwhere d is thegreatest common divisor of m1 and m2. So for S to be simply connected, m1and m2 have to be coprime. S is always deformation equivalent to an ellipticsurface whose multiple �bres are smooth elliptic curves [24, page 113]. Further-more, there is a process for creating multiple �bres, called logarithmic transform.This process can be carried out in the analytical setting (see [32, page 564] [1,page 164]), and so the resulting manifold is in a natural way a complex variety(in the general case it is not a projective variety anymore). The di�erentiableanalogue of the logarithmic transform is to remove a tubular neighbourhood of anon-multiple �bre in S, say A = T2�D2, a 2-torus times a disc, and to replace itby another Am = T2�D2 with a twisting. This twisting is given by an orientationpreserving di�eomorphism � : @Am �! @(S �A)which depends, up to isotopy, only on its e�ect on the �rst homology groups(see subsection 2.1.2). There are di�erent possibilities for � giving the same 4-manifold. The di�erent � producing the same result (see [24, pages 143-145])have �� : H1(@Am;Z)! H1(@(S �A);Z) with matrix0BB@ � � �a� � �b� � m 1CCAwhere g.c.d.(m;a; b) = 1. In fact, Gompf [28] has shown that whenever there isa cusp �bre (and we always can suppose this since S is deformation equivalentto an elliptic surface with a cusp �bre, as long as n > 0), one can choose any



38 CHAPTER 3. COMPLEX MANIFOLDSdi�eomorphism � : @Am �! @(S�A) such that ��� : pt�S1! �(@(S�A)) = S1has winding number �m, and the resulting manifold is the same. This meansthat the bottom right entry of the matrix above has to have absolute value m.We denote by Sn(m1;m2) the result of performing two logarithmic transformsof multiplicities m1 and m2 in two di�erent �bres of Sn. There are di�erentchoices for the logarithmic transform but all of them produce elliptic surfaceswhich are deformation equivalent since c2 > 0, and deformation equivalent to analgebraic elliptic surface (see [24, section 1.7]). So Sn(m1;m2) is unique up todi�eomorphism. We can drop the mi that are equal to 1, as a log-transform ofmultiplicity 1 does not change the elliptic surface. The surface S is irrationalunless pg(S) = 0 and m1 = 1 and in this latter case S is di�eomorphic toS1 = CP2#9CP2. The canonical divisor of Sn(m1;m2) isKS = (n� 2)F + (m1 � 1)F1 + (m2 � 1)F2;where Fi denotes the reduction of the multiple �bre of multiplicity mi. So it isFi = 1miF in H2(S).In Sn we can always �nd a section � = �Sn such that �2 = �(1 + pg) = �n.Indeed, thinking of S1 as the blow-up of CP2 at the nine points of intersection oftwo generic cubic curves, we have that any of the nine exceptional divisors is asection of the �bration with self-intersection �1. ForSn = S1#f : : :#fS1| {z }nwe can obtain � by smoothly gluing sections of the above form in each of theS1's. In particular, there is a section � in S2 = K3 with �2 = �2.For elliptic surfaces we are going to de�ne suitable metrics following Fried-man [22].De�nition 3.3 Let S be an elliptic surface and let F be the cohomology classcorresponding to the �bre. Let w 2 H2(S;Z) and p1 � w2 (mod 4) a negativeinteger, and suppose w � F � 1 (mod 2). Then we say that a Hodge metric issuitable (or that the corresponding polarisation is suitable) for (w; p1) when itbelongs to the chamber (associated to (w; p1)) containing F in its closure (seeremark 1.10).Remark 3.4 Roughly stated, a suitable metric is one which assigns small volumeto the �bre F in comparison to a section. This is so since a suitable polarisation



3.3. ALGEBRAIC GENUS 2 FIBRATIONS 39is obtained by taking an ample line bundle H0 and considering H = H0 + nF ,for big n (see [22]). Then for a section �, Vol(�) = � � H is much bigger thanVol(F ) = F �H.When we split an elliptic surface as S = �X1#F �X2 = X1 [F�S1 X2, suitablemetrics for S correspond to metrics giving a long neck, in the sense that theyde�ne the same chambers (at least for appropriate metrics on Y = F �S1, seeremark 1.10) and hence give the same invariants.3.3 Algebraic genus 2 �brationsAn algebraic genus 2 �bration is an algebraic surface S together with a holomor-phic map S ! C onto a complex curve with �bres being generically connectedgenus 2 curves. If b1 = 0 then the base curve is C = CP1. They are calledrelatively minimal whenever there are no exceptional curves lying in �bres. Thebest treatise in this subject is [64]. There is not a complete classi�cation butmany examples have been constructed, mostly by Xiao [64] and Persson [49]. Wewill say very little about them. We will just remark that very often they areminimal general type surfaces and that there are two ways of constructing them,for whose exposition we refer to [50].1. The canonical system (if necessary twisted by �bres) gives a rational mapof degree two which image is a ruled surface. So we can construct algebraicgenus 2 �brations by taking the minimal model of the resolution of thesingularities of the double cover of a ruled surface branched along a sixsection.2. A genus two �bration X ! C can be considered as a rational map C !M2, the space parametrising genus two curves. There is a surface in M2consisting of the double elliptic curves, i.e. those genus 2 curves which aredouble covers of elliptic curves. When the image of C lies in this surface, Xis called doubly elliptic. In practice, such X appears as the minimal modelof the resolution of the singularities of the double cover of an elliptic surfacebranched along a bisection.



40 CHAPTER 3. COMPLEX MANIFOLDS3.4 Wall-crossing formulaeIn this section we want to compute some wall-crossing formulae for algebraicsurfaces. We will follow mainly [26]. In that paper, Friedman and Qin obtainsome wall-crossing formulae for algebraic surfaces S with �KS being e�ectiveand the irregularity q = 0 (equivalently, b1 = 0). We want to adapt their resultsto the case q > 0 modifying their arguments where necessary. We will supposethat pg = 0 and �KS is e�ective throughout.We introduce some notation. Fix w 2 H2(S;Z) and p1 2 Zwith w2 �p1 (mod 4). Put d = �p1 � 32(1� b1 + b+) = �p1 � 3(1� q). Let � de�ne a wallof type (w; p1). We recall that by de�nition 1.9 this means � � w (mod 2) andp1 � �2 < 0. We de�ned the wall corresponding to � as W� = fx 2 H =x � � = 0g.The walls of type (w; p1) divide H into a locally �nite collection of chambers(see subsection 1.1.3). In every chamber C of the ample cone we have de�nedthe Donaldson invariant Dw;dS (C) associated to metrics with period point in thatchamber (see remark 1.10). If two chambers C+ and C� are separated by a singlewall W� (although there may be more than one class � of type (w; p1) de�ningW�), there is a wall-crossing di�erence term�w;dS (C+; C�) = Dw;dS (C+)�Dw;dS (C�):For an algebraic surface S with a Hodge metric g de�ned by the polarisationH, we �x the Chern classes c1, c2 and the determinant bundle O(L). Let w = c1and p1 = c21 � 4c2. For any chamber C (of the ample cone) of type (w; p1), weshall use MH(c1; c2) with H 2 C, to compute the invariant Dw;dS (C). It turnsout that when C+ and C� are adjacent chambers and H� 2 C�, one can obtainMH+(c1; c2) from MH�(c1; c2) by a sequence of blow-ups and blow-downs (whatis usually called a ip [61]).Suppose from now on that C� and C+ are two adjacent chambers separatedby a single wall W� of type (w; p1). For simplicity, we will assume that the wallW� is only represented by the pair �� since in the general case we only need toadd up the contributions for every pair representing the wall. Setl� = (�2 � p1)=4 2Z:Let � de�ne the wall separating C� from C+ and put, as in [26, section 2],En1;n2� to be the set of all isomorphism classes of non-split extensions of the form0! O(F )
 IZ1 ! V !O(L � F )
 IZ2 ! 0;



3.4. WALL-CROSSING FORMULAE 41where F is a divisor such that 2F � L is homologically equivalent to �, andZ1 and Z2 are two zero-dimensional subschemes of S with l(Zi) = ni and suchthat n1 + n2 = l�. Let us construct En1;n2� explicitly. Consider Hi = Hilbni(S),J = JacF (S) the Jacobian parametrising divisors homologically equivalent to F ,Zi � S �Hi the universal codimension 2 scheme, and F � S � J the universaldivisor. Then we de�ne En1;n2� ! J �H1 �H2 to beE = En1;n2� = Ext1�2(OS�(J�H1�H2)(��1L�F)
 IZ2;OS�(J�H1�H2)(F)
 IZ1);for �1 : S � (J � H1 � H2) ! S, �2 : S � (J � H1 � H2) ! J � H1 � H2,the projections (we do not denote all pull-backs of sheaves explicitly). This is avector bundle of rankrk(E) = l� + h1(OS(2F � L)) = l� + h(�) + q;where h(�) = ��KS2 � �22 �1, by Riemann-Roch [26, lemma 2.6]. Put N� = rk(E)�1.Then En1;n2� = P((En1;n2� )_) which2 is of dimension q+ 2l� + (l� + h(�) + q). AlsoN� +N�� + q + 2l� = d� 1. We will have to treat the case rk(E) = 0 (i.e. l� = 0and h(�) + q = 0) separately.We can modify the arguments in sections 3 and 4 of [26] to get intermediatemoduli spaces M(k)0 together with embeddings El��k;k� ,! M(k)0 and Ek;l��k�� ,!M(k�1)0 , �tting in the following diagramfM(l�)0 � � � fM(0)0. & . & . &M(l�)0 M(l��1)0 M(0)0 M(�1)0k kM� M+where fM(k)0 !M(k)0 is the blow-up of M(k)0 at El��k;k� and fM(k)0 !M(k�1)0 is theblow-up of M(k�1)0 at Ek;l��k�� . This is what is called a ip. Basically, the spaceE� = tEl��k;k� parametrises H�-stable sheaves which are H+-unstable. Analo-gously, E�� = tEk;l��k�� parametrises H+-stable sheaves which are H�-unstable.Hence one could say that M+ is obtained from M� by removing E� and thenattaching E��. The picture above is a nice description of this fact and allowsus the �nd the universal sheaf for M+ out of the universal sheaf for M� by asequence of elementary transforms.2We follow the convention P(E) = Proj(�iSi(E)).



42 CHAPTER 3. COMPLEX MANIFOLDSThe point is that whenever �KS is e�ective (which is a condition quite re-strictive for S), we have an embedding E0;l�� ! M� (the part of E� consistingof bundles) and rational maps Ek;l��k� 9 9 KM�, k > 0, but if we blow-up M� atE0;l�� , we have already an embedding from E1;l��1� to this latter space. Now wecan proceed inductively for k = 0; : : : ; l�. Analogously, we can have started fromM+ blowing-up Ek;l��k�� one by one. The diagram above says that we can performthese blow-ups and blow-downs alternatively, instead of �rst blowing-up l� + 1times and then blowing-down l� + 1 times. We see that the exceptional divisorin fM(k)0 is a PN� �PN��-bundle over J �Hl��k �Hk.When addapting the arguments of [26, sections 3 and 4], the only place re-quiring serious changes is proposition 3.7 in order to prove proposition 3.6.Proposition 3.5 ([26, proposition 3.6]) The map El��k;k� ! Ml��k;k0 is animmersion. The normal bundle N l��k;k� to El��k;k� in Ml��k;k0 is exactly ��E l��k;k� 
OEl��k;k� (�1), where � : El��k;k� ! J �Hl��k �Hk is the projection.The analogue of [26, proposition 3.7] that we need to prove isProposition 3.6 For all nonzero � 2 Ext1 = Ext1(O(L�F )
 IZ2;O(F )
 IZ1),the natural map from a neighbourhood of � in El��k;k� to M(�;k)0 is an immersionat �. The image of T�El��k;k� in Ext0(V; V ) (the tanget space to M(�;k)0 at �,where V is the sheaf corresponding to �) is exactly the kernel of the natural mapExt0(V; V )! Ext1(O(F )
 IZ1;O(L�F )
 IZ2), and the normal space to El��k;k�at � in M(�;k)0 may be canonically identi�ed with Ext1(O(F )
IZ1;O(L�F )
IZ2).Proof. We have that Ext1(IZ; IZ) parametrises in�nitesimal deformations of IZas a sheaf. These are of the form IZ0 
 O(D) for D � 0. The universal spaceparametrising these sheaves is Hilbr(S) � Jac0(S), where r is the length of Z.There is an exact sequence0! H0(Ext1(IZ; IZ))! Ext1(IZ; IZ)! H1(Hom(IZ; IZ))! 0;whereH0(Ext1(IZ; IZ)) = H0(Hom(IZ;OZ)) = Hom(IZ;OZ) is the tangent spaceto Hilbr(S) and H1(Hom(IZ; IZ)) = H1(O) is the tangent space to the Jaco-bian. Analogously, Ext1(V; V ) is the space of in�nitesimal deformations of V(but the determinant is not preserved). The in�nitesimal deformations preserv-ing the determinant are given by the kernel Ext10(V; V ) of a map Ext1(V; V ) !



3.4. WALL-CROSSING FORMULAE 43H1(Hom(V; V )) ! H1(O). Now E = El��k;k� sits inside the bigger space ~E =~El��k;k� given asP(Ext1�2(OS�(J1�H1�J2�H2)(��1L�F2)
 IZ2;OS�(J1�H1�J2�H2)(F1)
 IZ1)_);for J1 = J2 = J , Fi � S � Ji the universal divisor, and Hi the Hilbert schemeparametrising Zi. The arguments in [26, proposition 3.7] go through to provethat for every non-zero � 2 Ext1 = Ext1(O(L � F ) 
 IZ2;O(F ) 
 IZ1) we havethe following commutative diagram with exact rows and columnsT�E ���! Ext10(V; V ) ���! Ext1(O(F )
 IZ1;O(L� F )
 IZ2)???y ???y T� ~E ���! Ext1(V; V ) ���! Ext1(O(F )
 IZ1;O(L� F )
 IZ2)???y ???yH1(O) H1(O)So the natural map from a neighbourhood of � in E toM(�;k)0 is an immersion at �and the normal space may be canonically identi�ed with Ext1(O(F )
IZ1;O(L�F )
 IZ2). �Therefore proposition 3.5 is true for q > 0. The set up is now in all waysanalogous to that of [26]. We �x some notations [26, section 5]:Notation 3.7 Let � de�ne a wall of type (w; p1).� �k is the tautological line bundle over En1;n2� = P((En1;n2� )_). �k will also beused to denote its �rst Chern class.� �k : S �El��k;k� ! S � (J �Hl��k �Hk) is the natural projection.� pk : fM(k)0 !M(k)0 is the blow-up of M(k)0 at El��k;k� .� qk�1 : fM(k)0 !M(k�1)0 is the contraction of fM(k)0 to M(k�1)0 .� The normal bundle of El��k;k� in M(k)0 is Nk = ��kEk;l��k�� 
 ��1k .� Dk = P(N_k ) is the exceptional divisor in fM(k)0 .� �k = O eM(k)0 (�Dk)jDk is the tautological line bundle on Dk.� �(k)(�) = �14p1(gU(k))=�, for � 2 H2(S;Z) and U (k) a universal sheaf overS �M(k)0 . Let �(l�)(�) = ��(�) and �(�1)(�) = �+(�).



44 CHAPTER 3. COMPLEX MANIFOLDSWe have already mentioned that although U (k) might not exist, there is alwaysa well-de�ned element p1(gU(k)). The analogues of lemma 5.2, lemma 5.3 andtheorem 5.4 of [26] areLemma 3.8 Let � 2 H2(S;Z) and put a = (� � �)=2. Let �0, �1 and �2 be theprojections of El��k;k� to J , Hl��k and Hk respectively. Then(Id� pk)�c1(U (k))j(S�Dk) = ��1L+ (pkjDk)��kp�k�(k)(�)jDk = (pkjDk)� h� �1 ([Zl��k]=�) + � �2 ([Zk]=�) � a�k � � �0 (c1(F)2=�)iLemma 3.9 For � 2 H2(S;Z) we have q�k�1�(k�1)(�) = p�k�(k)(�)� aDk.Theorem 3.10 Let � de�ne a wall of type (w; p1) and d = �p1�3(1�q). Supposel� + h(�) + q > 0. For � 2 H2(S;Z), put a = (� ��)=2. Then [�+(�)]d � [��(�)]dis equal toX0 � j � 2l�0 � b � q0 � k � l� (�1)h(�)+l�+j d!j!b!(d� j � b)!ad�j�b([Zl��k]=�+ [Zk]=�)j ��(c1(F)2=�)b � s2l��j+q�b(E l��k;k� � (Ek;l��k�� )_);where si(�) stands for the Segre class.We warn the reader to be very careful with signs when checking the formulain theorem 3.10.Remark 3.11 If l� + h(�) + q = 0 i.e. l� = 0 and h(�) + q = 0, then M+ isM� with an additional connected component E0;0�� which is a Pd�q-bundle over J ,since E0;0� = ;. The universal bundle over E0;0�� is given by an extension0! ��OS�J (��1L�F)
 p��! U ! ��OS�J (F)! 0;where � : S �E0;0�� ! S � J and p : S �E0;0�� ! E0;0�� are projections and � is thetautological line bundle. From this p1(gU)=� = �4a�+4c1(F)2=� (with notationsas in theorem 3.10), so �+(�) = ��(�) � 14p1(gU )=� = ��(�) + a� � c1(F)2=�.Therefore�+(�)d � ��(�)d = X0�b�q(�1)b db!ad�b(c1(F)2=�)b � sq�b(E��):



3.4. WALL-CROSSING FORMULAE 45We see that it is important to understand e� = c1(F)2=�, for � 2 H2(S;Z),and eS = c1(F)4=[S]. Write c1(F) = c1(F )+P�i
�#i , �i 2 H1(S), �#i 2 H1(J),the K�unneth decomposition of c1(F) 2 H2(S � J). Soe� = �2Xi<j < �i ^ �j; � > 
�#i ^ �#j 2 H2(J)eS = Xi;j;k;l < �i ^ �j ^ �k ^ �l; [S] > 
�#i ^ �#j ^ �#k ^ �#l 2 H4(J):Lemma 3.12 Let S be a manifold with b+ = 1. Then there is a (rational)cohomology class � 2 H2(S) such that the image of ^ : H1(S)
H1(S)! H2(S)is Q[�]. Also eS = 0.Proof. Let 1; 2; 3; 4 2 H1(S). If 1 ^ 2 ^ 3 ^ 4 6= 0 then the image of^ : H1(S)
H1(S)! H2(S) contains the subspace V generated by i^j , whichhas dimension 6, with b+ = 3 and b� = 3. This is absurd, so 1^2 ^3^4 = 0.Then eS = 0.Now let �1 = 1^2, �2 = 3^4 2 H2(S). Then �21 = �22 = 0 together withthe fact that b+ = 1 imply that �1 � �2 6= 0 unless �1 and �2 are proportional.Since �1 � �2 = 0 by the above, this has to be the case. �Now write 1; : : : ; n for a basis of H1(S) and �x a generator � of the imageof ^ : H1(S) 
 H1(S) ! H2(S). Put i ^ j = aij�. The Jacobian of S isJ = H1(S;R)=H1(S;Z), so naturally H1(J) �! H1(S)�. For the universal bundleL ! S � J parametrising divisors homologically equivalent to zero, c1(L) =P i 
 #i , so e� = �2Xi<j aij(� � �) 
 #i ^ #j = �2(� � �)!;where we write ! = Pi<j aij(#i ^#j ) 2 H2(J), which is an element independentof the chosen basis.The case l� = 0Now E� = E0;0� = R1��(OS�J(2F � ��1L)), for � : S � J ! J the projection.We note that H0(OS(2F � L)) = 0 and H0(OS(�2F + L) 
K) = 0, as �K ise�ective, so R0�� and R2�� vanish.ch E� = �ch �!(OS�J (2F � ��1L)) = ���(chOS�J (2F � ��1L) � Todd TS) =



46 CHAPTER 3. COMPLEX MANIFOLDS= �(�22 � � �K2 + 1 � q) + eK�2� � 23eS = rk(E�) + eK�2�;since eS = 0. A fortiori ch E_�� = �( �22 + ��K2 + 1� q)� eK+2� andch (E� � E_��) = (��2 + 2q � 2)� 4e�:Remark 3.13 The Segre classes of F are given by st(F) = ct(F)�1. For therelationship between the Chern classes of F and its Chern character, write ai fori! times the i-th component of ch F . Thencn(F) = 1n! ��������������� a1 n� 1 0 � � � 0a2 a1 n� 2 � � � 0... . . . ...... . . . 1an an�1 an�2 � � � a1 ���������������From this remark, si(E� � E_��) = 4ii! ei�. This together with theorem 3.10,and recalling that [�+(�)]d � [��(�)]d di�ers from �w;dS (�) by a factor �S(w) =(�1)w2+KS �w2 , gives�w;dS (�) = �S(w) X0�b�q(�1)h(�) db!ad�beb� � sq�b(E� � E_��) == �S(w) X0�b�q(�1)h(�) db!ad�beb� � 4q�b(q � b)!eq�b� == �S(w) X0�b�q(�1)h(�)+q 23q�b�d(q � b)! db!(� � �)d�b(� � �)b(� � �)q�b!q:Corollary 3.14 Let S = CP1�T2, � = CP1 � S, � de�ning a wall, d = ��2,� 2 H2(S). Suppose that l� + h(�) + q > 0. Then�w;dS (�) = �S(w)(�1)h(�)+1 �23�d(� � �)d(� � �) + 22�d d(� � �)d�1(� � �)� :Corollary 3.15 Let S = CP1�T2, � = CP1 � S, � de�ning a wall, d = ��2,� 2 H2(S). Suppose that l� + h(�) + q = 0. Then from remark 3.11�w;dS (�) = �S(w) �21�d(� � �)d((K + 2�) � �) + 22�dd(� � �)d�1(� � �)� :



3.4. WALL-CROSSING FORMULAE 47Case l� = 1We do not want to enter into the detailed computations of the wall-crossingformulae, but just to remark that the pattern laid in [26] can be used here toobtain many of them. For instance, if we writeSj;b =Xk ([Zl��k]=�+ [Zk]=�)j � eb� � s2l��j+q�b(E l��k;k� � (Ek;l��k�� )_);we can give some of the wall-crossing formulae (without proof). For obtainingall of them we would need a better understanding of the Hilbert scheme, notavailable at the moment.S2l�;q = (2l�)!l�! (�2)l�eq�S2l��1;q = (�4)(2l�)!l�! (�2)l��1 � a � eq�S2l�;q�1 = 4(2l�)!l�! (�2)l�eq�1� e�where a = (� � �)=2. Also in the case l� = 1,S0;q = (6�2 + 2K2X )eq�S1;q�1 = �32 a eq�1� e� + 8 eq�S2;q�2 = 16�2 eq�2� e2�Conjectures and speculationsFrom all the cases we have studied it is natural to give the following conjecture,which is a generalisation of the conjecture about the wall-crossing terms in thecase b1 = 0 (see [35]).Conjecture 3.16 Let X be an oriented compact four-manifold with b+ = 1 andb1 = 2q even. Let w 2 H2(X;Z). Choose � 2 H2(X) generating the image of^ : H1(X)
H1(X)! H2(X). De�ne ! 2 H2(J) such that e� = �2(� ��)! andput a = RJ !nn! . If � de�nes a wall, then the di�erence term �w;dX (�) only dependson w, d, b1, b2, �2, QX , (� ��) and a(� ��)i(� � �)q�i, 0 � i � q. The coe�cientsare universal on X.This is quite a strong conjecture and one can obviously write down weakerversions. It would allow one to carry out similar arguments to those in [31] and



48 CHAPTER 3. COMPLEX MANIFOLDStherefore to �nd out the general shape of the wall-crossing formulae for arbitraryX. This would involve modular forms.



Chapter 4Connected sums along a torusIn this chapter we are interested in applying all the techniques of gluing theoryto the case of connected sum of two manifolds along an embedded two-torus. Aswe have seen in subsection 2.1.2, we need to apply the gluing theory for the caseof Y = ��S1 where � is a Riemann surface of genus 1, i.e. a two-torus T2. Wewant to point out that results of this kind can be obtained by gluing along circlebundles of degree 1 over a torus [56].Our �rst main goal is to recast the results of Friedman in [22] about invariantsof elliptic surfaces into a much simpler and tractable form. Instead of usingmoduli spaces of stable bundles to compute the invariants as in [22], we willuse topological methods and the gluing theory from section 1.2. A very similarapproach have been carried out in [43]. There, Morgan and Mrowka computesome SU(2) and SO(3) invariants of the elliptic surfaces X = Sn(m1;m2) (seesection 3.2 for notation) by using the same procedure of splitting X = X1 [Y X2along a three-torus Y = T3. They decompose X into elementary pieces whichare elliptic surfaces of geometric genus pg = 1 or pg = 2 and compute someof the invariants inductively using known information about these elementarypieces. In our approach, we use instead only information about the K3 surfaceand some invariants of S = T2 � CP1, computed in section 4.3. They can notuse the Fukaya-Floer groups as in their case PY is trivial, and so they have todeal with the presence of reducibles. There are some technicalities, as they needto use the character variety �(T3) of the three-torus for the possible at limitsof connections along the cylindrical end as X is pulled apart (in our case, thepossible limits are only one point, proposition 4.1). This allows them to considerthe case of w � T � 0 (mod 2), and therefore elliptic surfaces with multiple49



50 CHAPTER 4. CONNECTED SUMS ALONG A TORUS�bres of even multiplicities. On the other hand, their argument is restricted asto which classes they can evaluate the polynomial invariant on (they again useclasses going across Y , but they are constrained on the number of them across Ythey can use). So if we writeDX(�d) = mXi=0 �(n; i) (� � �X)d�2i(�2)ifor the SU(2) Donaldson invariant of X = Sn(m1;m2), �X = F=m1m2, F denot-ing the �bre, m = (d � n+ 2)=2, then they are able to compute the two leadingterms �(n;m) and �(n;m� 1) and conclude from that a di�erentiable classi�ca-tion of simply connected elliptic surfaces with b+ > 1. Instead, we compute allthe terms, but only for the low dimensional invariants (and with the conditionw � � � 1 (mod 2)).Later, in section 4.4, we will have a full computation of the invariants forelliptic surfaces, superseding the proof that we include of theorem 4.2. Nonethe-less, we chose to keep this earlier computation because it does not use at all anyof the deep results of [38] about basic classes and their properties.The second goal is to relate the basic classes of the manifold obtained asconnected sum along a torus of two manifolds with b+ � 1. Applying this to thecase of elliptic surfaces and with a little bit more input, we get all their invariantsof elliptic surfaces with multiple �bres. This was conjectured by Kronheimer andMrowka in [37] and proved by Fintushel and Stern [17]. The point of carryingout again these results is to generalise the computations for basic classes whenthe connected sum along a torus of two elliptic surfaces is not performed in thealgebraic setting (see section 2.2). We will see that in this fashion we can alsounderstand the earlier results of Gompf and Mrowka [30] in a very straightforwardway.4.1 Splittings along a three-torusWe will use the following proposition which is an application of the gluing theoryfrom section 1.2. We recall that (w;T ) is an allowable pair for a glued manifoldX = X1[Y X2 when w 2 H2(X;Z) with wjY odd in H2(Y ;Z) and T 2 H2(X;Z)is any class whose Poincar�e dual lies in H2(Y ;Z) and with w � T � 1 (mod 2).Proposition 4.1 There exists a vector space V of dimension 1 with the followingproperties



4.1. SPLITTINGS ALONG A THREE-TORUS 511. Let X be an open manifold with boundary Y = @X = T2 � S1 and withb+(X) > 0. Let D 2 HR2 (X; @X) and w 2 H2(X;Z) with wjY odd inH2(Y ;Z). Then we have de�ned a sequence �i = �wi (X;D) 2 V , i = 0; 1; : : :2. Let X be a closed manifold with b+ � 1 which can be written as X =X1 [Y X2, and let D 2 H2(X) and (w;T ) an allowable pair. Then writingD = D1 +D2, Di 2 HR2 (Xi; @Xi), and w = w1 + w2, wi 2 H2(Xi;Z), wehave D(w;T )X (Dm) = �Xi �mi ��w1i (X1;D1) � �w2i (X2;D2):Proof. The space V is the Floer homology of the three-torus Y . This is onedimensional because there is only one at SO(3)-connection on Y with w2 �w (mod 2), and furthermore this connection is generic. Indeed, as explainedin [9], there are two at U(2)-connections with the appropriate w (one withholonomy 1 around the S1-factor, and the other with holonomy �1), but theyare interchanged by the involution shifting degrees by 4. So when we reduce theFloer groups mod 4 there is only one generator. We recall that the grading isnot well-de�ned and that we have a pairing � : HF�(Y ) 
HF��(Y ) ! Z. Theimportant point is to note that for the generator a, � : a
a 7! �1. For checkingthis take Z = D2 � T2 and A the (only) at connection on Z (with limit theonly at connection on Y ). Glue them together to get the at connection onX = Z [Y Z = CP1�T2. This connection contributes with a �1, as the modulispace of at connections for X is generic, zero-dimensional and consisting of onepoint. This point is a +1 for the complex orientation of the moduli space andhence it contributes as (�1)w2+w�K2 = �1, since w is an odd multiple of [CP1] (seetheorem 4.3). �We remark that we do not need Atiyah-Floer conjecture for the result above.We recall that for de�ning the invariants �wi (X;D) we had to orient the modulispaces (see section 1.2). We can choose Z and A as above and then for everyopen manifold X with boundary Y , we have to choose a homology orientation of�X = X[Y Z. When �X is an algebraic surface, the homology orientation is alwaysthe one given by the Hodge form ! as in section 3.1. It is important to notice thatwhenever �X1, �X2 are algebraic manifolds with F a complex torus and F ,! �Xiembeddings (with image Fi of self-intersection zero) such that X = X1#FX2is also an algebraic manifold, the homology orientations agree (by an excisionargument).



52 CHAPTER 4. CONNECTED SUMS ALONG A TORUSFriedman's result [22] (at least the part of it corresponding to odd multiple�bres) is:Theorem 4.2 Let X be a simply connected elliptic surface. Let pg denote itsgeometric genus and 1 � m1 � m2 be the multiplicities of the (possibly) multiple�bres. Suppose they are both odd. Let F be the cohomology class corresponding tothe �bre of the �bration and let w 2 H2(X;Z) such that d0 = �w2� 32(1 + b+) �0 (mod 4) and w � F � 1 (mod 2). So w2 � n = 1 + pg (mod 4). Write�(w) = (�1)w2+KX �w2 , so �(w + F ) = ��(w). Then for � 2 H2(X) we have1. DwX(�0) = �(w)2. Dw+FX (�2) = �(w + F )(�2 + C1(F � �)2)3. DwX(�4) = �(w)(3(�2)2 + 6C1�2(F � �)2 + (3C21 � 2C2)(F � �)4), whereC1 = pg + 1� 1m21 � 1m22C2 = pg + 1� 1m41 � 1m42In the case pg = 0, D(w;F )X (�m) is computed in the chamber de�ned by the �bre F(i.e. with respect to a suitable metric).Recall (section 3.1) that the complex orientation of the moduli space andits natural orientation di�er by �(w) = (�1)w2+K�w2 , and so the di�erence in oursigns. The proof of this theorem proceeds in two stages. The �rst main goal isto reduce it to a very particular non-simply connected case, which is:Theorem 4.3 For the non-simply connected elliptic surface S = T2� CP1, w =[CP1] 2 H2(S;Z) and D = [CP1] 2 H2(S) a horizontal section, we have, withrespect to a suitable metric: DwS (D0) = �1Dw+[T2]S (D2) = �2DwS (D4) = �16The second stage is to prove theorem 4.3 through explicit calculations in themoduli spaces of stable vector bundles over S with the appropriate Chern classes.Here we must point out that the proof of Dw+[T2]S (D2) = �2 has already beencarried out by Donaldson in [9].



4.2. PROOF OF THEOREM 4.2 534.2 Proof of theorem 4.2The proof of theorem 4.2 is very simple, but it gets rather messy because we haveto be very careful in keeping track of the signs for di�erent w's.Recall that Sn(m1;m2) denotes the elliptic surface with pg = n�1 and multiple�bres of (coprime) multiplicitiesm1 and m2. We introduce the following notation:� Am will be a tubular neighbourhood of a multiple �bre of multiplicity m.This is always di�eomorphic to A = T2�D2.� Bn = Sn� int(A1) is the closure of the complement of a tubular neighbour-hood of a non-singular �bre in Sn.� Bn(m) = Sn(m)� int(A1).We have Sn(m) = Bn [Y Am and Sn(m1;m2) = Bn(m1) [Y Am2. Each of thepieces Am, Bn, etc. has a natural elliptic �bration and all the unions preservethe elliptic �bration. We have the following facts:1. Any 2-homology class D 2 H2(X) can be decomposed as D = D1+D2 withDi 2 HR2 (Xi; @Xi) (recall subsection 2.3.2). We also have D2 = D21 +D22.2. From remark 2.18, HR2 (A; @A) contains a subgroup Q[F ] � Q[�]. WhenX2 = Am, adding a multiple of [F ] to D1 and arranging things convenientlywe can suppose that D2 is a multiple of [�]. Then �wi (Am;D2) only dependson w 2 H2(Am;Z) �= Z[�] and F �D2. Also note that D22 = 0, D21 = D2and F �D1 = F �D2 = F �D.3. Let X = S2 be the K3-surface and w 2 H2(X;Z). One has d0 = �w2�6 �0 (mod 2). For D 2 H2(X;Z) and x the class of the point, we haveDwX(D2ixj) = (�1)w2=2 2j (2i)!2ii! (D2)iwhen 2i+2j � �w2�6 (mod 4) and zero otherwise. This was �rst provedby O'Grady [46] in the case of w = 0 and j = 0. There is a completecalculation in [38], but it was well-known before that. If w �F � 1 (mod 2)(see subsection 1.1.4) thenD(w;F )X (D2i) = (�1)i+1 (2i)!2ii! (D2)i:



54 CHAPTER 4. CONNECTED SUMS ALONG A TORUS4. For the rational surface X = S1 we have the following easy fact. Let Vbe a stable bundle. Then V is simple [24, page 323], so H0(End0(V )) = 0.Since �KX is e�ective, H2(End0(V )) = H0(End0(V ) 
 KX) = 0. So themoduli spaces of stable bundles for X are always generic. In particular, thezero-dimensional moduli space is a collection of points counting positivelyfor the natural complex orientation. So the invariant DwX(D0) is of sign�(w).Stage 1 For the K3-surface, put X = S2 = B1 [Y B1 and �x w 2 H2(X2;Z)being symmetrical (the restriction to both pieces B1 are the same) and w � F �1 (mod 2). Write �ji = �wji (B1;Dj) with D = D1 + D2. Then with T = F ,proposition 4.1 gives1 = �D(w;T )X (D0) = �10 � �20�D2 = �D(w;T )X (D2) = �10 � �22 + �12 � �203 (D2)2 = �D(w;T )X (D4) = �10 � �24 + 6�12 � �22 + �14 � �20From where either �j0 = 1, �j2 = �D2j and �j4 = 3 (D2j )2 or the opposite signs.Fixing a choice of signs is equivalent to �xing an orientation of the generator ofFloer homology. We choose the signs as above.For A, write �i = �[�]i (A; [�]). Then S = T2�CP1 = A[Y A and theorem 4.3implies 1 = �D[CP1]S ([CP1]0) = �0 � �02 = �D[CP1]+[T2]S ([CP1]2) = �0 � �2 + �2 � �016 = �D[CP1]S ([CP1]4) = �0 � �4 + 6�2 � �2 + �4 � �0from where either �0 = 1, �2 = 1 and �4 = 5 or �0 = �1, �2 = �1 and �4 = �5.We have the same invariants for �(2a+1)[�]i (A; [�]) (but the sign actually mightdepend on a).Now for the rational elliptic surface X = S1 = B1 [Y A1, with w = w1 +(2a + 1)� and D = D1 + (F �D)�, we have for w2 � 1 (mod 4) the invariantD(w;T )X (D0) = �(w) = (�1)a. This forces the invariants �(2a+1)[�]i (A; [�]) to be ofsign (�1)a�1. So �nally we getD(w;T )X (D0) = �(w)D(w;T )X (D2) = �(w + F )(D2 � (F �D)2)D(w;T )X (D4) = �(w)(5(F �D)4 � 6(F �D)2D2 + 3(D2)2)



4.2. PROOF OF THEOREM 4.2 55Stage 2 Now we pass on to prove, by induction on n, that for general Bn and wwith wjY = S1 we have, for D 2 HR2 (Bn; @Bn) with @D a multiple of S1,�0(n) = �w0 (Bn;D) = �Sn(w)�2(n) = �w2 (Bn;D) = �Sn(w + F )(D2 + (n� 1)(F �D)2)�4(n) = �w4 (Bn;D) = �Sn(w)(3(D2)2 + 6(n � 1)D2(F �D)2 ++(3n2 � 8n+ 5)(F �D)4)where w 2 H2(Sn;Z) is any element restricting to the given w 2 H2(Bn;Z) forSn = Bn [A1, and w2 � n (mod 4). From this we get that the invariants for Snare of the desired form.First, the assertion is true for B1 as noted in stage 1. For the induction step,note that Bn [Bn0 = Bn+n0 [A1, so obviously �0(n) = (�1)n�1 = �Sn(w) for alln. Now(�1)n0�1�2(n) + (�1)n�1�2(n0) = ��2(n+ n0)� (�1)n+n0�1(F �D)2(�1)n0�1�4(n) + 6�2(n) � �2(n0) + (�1)n�1�4(n0) == ��4(n+ n0)� 6�2(n + n0) � (F �D)2 � (�1)n+n0�15 (F �D)4So suppose the result true for some n. Then�2(n + 1) = ��2(n)� (�1)n(D22 + (F �D)2)= �(�1)n(D2 + n(F �D)2)�4(n + 1) = (�1)n(3(D21)2 + 6(n � 1)D21(F �D)2 + (3n2 � 8n + 5)(F �D)4 ++6 (D21 + (n� 1)(F �D)2)D22 + 3(D22)2 ++6 (D2 + n(F �D)2)(F �D)2 � 5(F �D)4) == (�1)n(3(D2)2 + 6nD2(F �D)2 ++(3(n+ 1)2 � 8(n + 1) + 5)(F �D)4)as required. The invariants of Sn will beD(w;T )Sn (D0) = �(w)D(w;T )Sn (D2) = �(w+ F )(D2 + (n � 2)(F �D)2)D(w;T )Sn (D4) = �(w)(3(D2)2 + 6(n � 2)D2(F �D)2 + (3n2 � 14n + 16)(F �D)4)Now for general w 2 H2(Bn;Z) with w � F = 1 (mod 2) (but maybe notwjY = S1) and general D 2 HR2 (Bn; @Bn), we use Bn [ B1 = Sn+1. From the



56 CHAPTER 4. CONNECTED SUMS ALONG A TORUSinvariants of Sn+1, which we have already computed, and those of B1, we get that�w0 (Bn;D) = ��Sn+1(w)�w2 (Bn;D) = ��Sn+1(w + F )(D2 + (n� 1)(F �D)2)�w4 (Bn;D) = ��Sn+1(w)(3(D2)2 + 6(n � 1)D2(F �D)2 ++(3n2 � 8n + 5)(F �D)4)where w 2 H2(Sn+1;Z) is any element restricting to the given w 2 H2(Bn;Z)with w2 � n + 1 (mod 4).The case of F � w = 2a + 1 is in everything analogous to this one and weget an extra factor (�1)a for �i(n) (the invariants for Sn and hence the last setof formulae remain unchanged). Also note that (�1)a�Sn(w) = ��Sn+1(w) =(�1)(n�1)(a+1).Stage 3 Now for introducing multiple �bres, one has that Sn(m) = Bn [Y Am,with Am in fact di�eomorphic to T2 � D2. As seen in section 3.2, the gluingbetween the boundaries is di�erent for di�erent m, but it always preserves theelliptic �bration. Therefore, the class F 2 H2(Bn) is equivalent, as an elementof H2(Sn(m)) to the class m[T2] 2 H2(Am) = H2(T2). Call f 2 H2(Sn(m)) thehomology class corresponding to [T2] 2 H2(Am). Now choose w 2 H2(Sn(m))with f �w = 1 and D 2 H2(Sn(m)) decomposed as D = D1+� for the horizontalclass � 2 HR2 (Am; @Am). Then m odd implies w1 � F = m = 2a+ 1.D(w;T )Sn(m)(D0) = ��w10 (Bn;D1) � �[�]0 (Am;�) = (�1)(n�1)(a+1) = �(w)D(w;T )Sn(m)(D2) = �w12 (Bn;D1)� (�1)(n�1)(a+1)�[�]2 (Am;�) == �(�1)(n�1)(a+1)(D2 + (n� 1)(F �D)2 � 1m2 (F �D)2)= ��(w)(D2 + (pg � 1m2 )(F �D)2)D(w;T )Sn(m)(D4) = �(w)( 3 (D2)2 + 6 (pg � 1m2 )D2 (F �D)2 ++(3 p2g � 2 pg � 6 pg 1m2 + 5m4 )(F �D)4)If f �w 6= 1 but it is still odd, we can work out the same expression. Now puttingSn(m) = A1 [Bn(m), we can calculate�w0 (Bn(m);D) = ��Sn+1(m)(w)



4.3. PROOF OF THEOREM 4.3 57�w2 (Bn(m);D) = ��Sn+1(m)(w + F )(D2 + (pg � 1m2 + 1)(F �D)2)�w4 (Bn(m);D) = ��Sn+1(m)(w)(3(D21)2 + 6 (pg + 1� 1m2 )D21 (F �D)2 ++(3 p2g + 4 pg + 1 � 6 (pg + 1) 1m2 + 5m4 )(F �D)2)where f � w = 1, w 2 H2(Sn+1(m);Z) extends w 2 H2(Bn(m);Z) and hasw2 � n+1 (mod 4). If f �w = 1+ 2a we have to multiply the above expressionsby a factor (�1)a. In the general case, Sn(m1;m2) = Am2 [Bn(m1), m1 and m2both odd and w � F = 2a+ 1. We obtainD(w;T )Sn(m1;m2)(D0) = �(w)D(w;T )Sn(m1;m2)(D2) = �(w + F )(D2 + (pg + 1� 1m21 � 1m22 )(F �D)2) == �(w + F )(D2 + C1(F �D)2)D(w;T )Sn(m1;m2)(D4) = �(w)(3(D2)2 + 6 (pg + 1 � 1m21 � 1m22 )D2(F �D)2 ++(3 p2g + 4 pg + 1� 6 (pg + 1)( 1m21 + 1m22 ) ++ 5m41 + 5m42 + 6m41m42 )(F �D)4) == �(w)(3(D2)2 + 6C1D2(F �D)2 + (3C21 � 2C2)(F �D)4)as required. �We tried to push these arguments to handle the case of multiple �bres of evenmultiplicity, but at some stage we needed the invariants for Sn when w � F �0 (mod 2). One would need to use the deep results of [38] relating the invariantsfor di�erent w 2 H2(X;Z).4.3 Proof of theorem 4.3For proving theorem 4.3 we need to study the moduli spaces of dimensions 0, 4 and8 of ASD connections for S = CP1�T2. This manifold has Betti numbers b1 = 2,b2 = 2, b+ = 1 and therefore we have a chamber structure. We �x some notation.F = [T2] 2 H2(S) will stand for the homology class representing the �bre andD = [CP1] 2 H2(S) for the horizontal section. The invariants that we want tocalculate are with respect to a suitable metric, i.e. metrics having its period pointin the chamber containing � = T2 in its closure (see de�nition 3.3). We take h1,



58 CHAPTER 4. CONNECTED SUMS ALONG A TORUSh2 �xed K�ahler metrics in CP1 and T2 respectively such that the volumes withrespect to these metrics are normalised, that is, have value 1. Then we considerK�ahler metrics of the kind h = �h1 + �h2, whose real part is a Hodge metric g,representative of a conformal class with period point [!g] = [�D+�F ] 2 H . Thenh corresponds to the polarisation H = �D + �F (strictly speaking, we shouldonly allow �=� be rational, since only in this case can a multiple of H be a truedivisor on S). Recall from de�nition 1.9 that once (w; p1) are �xed, the chambersassociated to (w; p1) are labelled by pairs �e 2 H2(S;Z) with p1 � e2 < 0 ande � w (mod 2).Since S is an algebraic manifold we use proposition 3.1 and study MH(c1; c2)for a suitable polarisation H. One can study directly the moduli spaceMH(c1; c2)to carry out the computations of the invariants. Although more natural, it is notvery enlightening and very prone to error. Alternatively, and this is the way wehave chosen to develop here, we can use the wall-crossing formulae of section 3.4.This o�ers the perfect excuse to include that section and produces much cleanerarguments. Fixw = [CP1] 2 H2(S;Z). The formal dimension of the moduli spaceis 2d = 8��3(1�b1+b+) = 8� = �2p1, with � = c2� 14c21. Note that the modulispaces MH(c1; c2) we will be encountering have natural complex orientationsdi�ering from the orientations of Mc1� by a factor �(c1) = (�1)KS �c1+c212 . We havethe following cases:1. � = 0, c1 = w, c2 = 0, d = 0 and p1 = 0. The moduli space is of dimensionzero. There are no walls, since p1 = 0. The moduli space Mw� consists ofone point, as there is just one at connection, which is irreducible, on S forc1 = w. Algebro-geometrically we consider the moduli space MH(c1; c2) ofstable bundles with c1 = w and c2 = 0. It's easily seen that this modulispace consists of one point V0!O ! V ! O(L)! 0(recall that L is the determinant).FurthermoreH1(End0(V )) = H2(End0(V )) = 0, so this point is generic andisolated and counts as +1 for the invariant of the 0-dimensional manifoldwith the complex orientation. Keeping in mind that this orientation di�ersfrom the usual one by a factor of �(w) = �1, we have the Donaldsoninvariant DwS (D0) = �1:



4.3. PROOF OF THEOREM 4.3 592. � = 12 , c1 = w + F , c2 = 1, d = 2 and p1 = �2. The moduli space is ofdimension four. There is one wall of type (w; p1) given by � = D � F . Wedenote by C0 the chamber associated to polarisations H = �D + �F withH � � < 0 i.e. with � small (say �=� < 1), and by CF the other chamber,the one consisting of (period points of) suitable metrics.Since S = CP1 �T2 is a ruled surface we can apply proposition 2.3 of [54](with obvious modi�cations) to conclude that for polarisations H 2 C0 themoduli space MH(c1; c2) of H-stable bundles on S is empty. Therefore forH 2 CF we have Dw+FS (D2) = �w+F;2S (CF ; C0):By corollary 3.15 with � = D, � = D, KS = �2F , � �KS = �2, �2 = �2,� � � = �1, �(w + F ) = 1, this term is �2.3. � = 1, c1 = w, c2 = 1, d = 4 and p1 = �4. The moduli space is of dimensioneight. There is one wall of type (w; p1) given by � = D � 2F . We denoteagain by C0 the chamber associated to polarisations H = �D + �F withH � � < 0 i.e. with �=� < 2, and by CF the chamber consisting of suitablemetrics. In this case, unlike the others, the moduli spaceMw1 is not compactand has a natural Uhlenbeck compacti�cation Mw1 � Mw1 t (Mw0 � S) asexplained in subsection 1.1.1. Let us study the moduli space MH(c1; c2) indetail.Theorem 4.4 Fix H 2 C0 and the determinant � = O(L) (for a divisorL = p0 � CP1 ,! S. Then the Gieseker-Maruyama compacti�cation of themoduli space MH(c1; c2) is given by the set of non-split extensions0!M�1 ! V ! �
M 
 Ip ! 0 (4.1)with p a point in S and M a line bundle of degree zero (and hence of theform O(D � L) for some D = pt � CP1 ,! S). All such extensions arestable. There is a space M parametrising all extensions like (4.1) which isa compacti�cation of a (generically) double cover of MH(c1; c2).Proof. First, let V be an H-stable bundle. By Riemann-Roch [1, page 21],we have�(V 
O(F )) = 12((L+ 2F )2 � 2 � 2) + 12(L+ 2F ) � 2F + 0 = 1



60 CHAPTER 4. CONNECTED SUMS ALONG A TORUSBut, because of the stability, there is no nontrivial morphismO(L+3F )!V , and so h2(V 
O(F )) = h0(V _
O(�F�2F )) = h0(V
O(�L�3F )) = 0.So h0(V 
 O(F )) > 0 and thus there is a monomorphism O(�F ) ! V .Then there is a divisor C � 0 such that the morphism above factors throughO(C � F ) ! V with a torsion free cokernel. The H-stability of V leavesus only with three cases:0!O(�F )! V ! �
O(F )
 IZ ! 00!O ! V ! �
 Ip ! 00!O(D � F )! V ! �
O(F �D)! 0where IZ is the ideal de�ning a 0-dimensional subscheme Z of length 2, Ip isthe maximal ideal of some point p 2 S and D = pt�CP1 ,! S. In the �rstcase there is a divisorM = O(D�L) of degree zero such that Z is containedin the divisor that M 
 �
O(F ) de�nes1. Therefore h0(V 
M) > 0 andhence we can suppose that we are always in one of the cases0!M�1 ! V ! �
M 
 Ip ! 00!M�1 
�
O(�F )! V !M 
O(F )! 0In the second case h0(V 
M�1) = 2 so it gets reduced to the �rst.For dealing with the issue of uniqueness, we check that whenever h0(V 
M 0) > 0 then either (M 0)�1 factors through M�1 ! V (and therefore pand the extension class are uniquely determined) or p belongs to the divisorde�ned by � 
M 
M 0. This second case happens for a unique M 0. Sothe space parametrising these extensions M looks like a (rami�ed) doublecover of MH(c1; c2). O� the rami�cation locus (i.e. when p is not in thedivisor de�ned by � 
M2), h0(V 
M) = 1 and hence M is properly adouble cover of MH(c1; c2). In the rami�cation locus it might happen (andactually does) that h0(V 
M) = 2, so the map M ! MH(c1; c2) sendssome lines to points.We also want to check that all the extensions are stable. Suppose thath0(V 
 N�1) > 0 for some line bundle N . Then either N � M�1 of p is1If Z consists of two points, consider one in F and the other in D. If Z is supported in onepoint, consider D + F with D and F intersecting in the supporting point of Z. In any caseO(�D � F ) � IZ .



4.3. PROOF OF THEOREM 4.3 61contained in an e�ective divisor de�ned by � 
M 
N�1. If the �rst caseN is of negative degree. In the second, either � 
M 
 N�1 = O(D) or� 
 M 
 N�1 = O(F ), i.e. N is homologically trivial or homologicallyL� F . This proves the stability of V .Now we want to construct a space M parametrising the extensions. Firstwe have0! H1(��1 
M�2)! Ext1(M 
 �
 Ip;M�1)! Op = C ! 0So Ext1 �= C 2 and we get a �bration CP1 ! M �! J � S, where J is theJacobian of S (of divisors homologically equivalent to zero) and M = P(E)for E = Ext1�J�S (M 
 ��S� 
 I�;M�1), �S : (J � S) � S ! S, �J�S :(J � S) � S ! J � S the projections, M ! J � S the universal sheaf,� � S � S the diagonal. M is obviously of dimension 4 and in every �brethere is exactly one extension which is not a bundle (the one correspondingto the extension in H1(��1 
M�2), not giving a unit in Op). Such V liesin a diagram with V __ 2MH(c1; 0) = pt,M�1 ���! V ���! M 
 �
 Ip ???y ???yM�1 ���! V __ ���! M 
 �???y ???yOp OpSo M is a compacti�cation of (a double cover of) MH(c1; c2). The comple-ment is a divisor U �= J�S. Projection onto the second factor gives a mapU ! S =Mw0 � S relating the two compacti�cations of MH(c1; c2).The moduli space M is generic since for all V 2 M, V is simple as it isstable. So H0(End0(V )) = 0 and hence H2(End0(V )) = H0(End0(V ) 
KS) = 0 as �KS is e�ective. �Let V be a extension like (4.1) and let D = pt�CP1 � S. Then restrictingthe exact sequence to D we have that0! OD ! V jD !OD ! 0 if p =2 D0! OD(1)! V jD ! OD(�1)! 0 if p 2 D



62 CHAPTER 4. CONNECTED SUMS ALONG A TORUSSo Zc1;c2(D;OD(�1)) = fV=h0(V 
 OD(�1)) 6= 0g = fV=p 2 Dg. There-fore �([D])2 = 0 and �([D])4 = 0. So �nally for H 2 CF we haveDwS (D4) = �w;4S (CF ; C0):By corollary 3.14 with � = D, � = D, KS = �2F , � �KS = �2, �2 = �4,� � � = �2, �(w) = �1, we have that this term is �16.4.4 Basic classes for elliptic surfacesHere we will use the gluing formulae for a quicker computation of the invariantsof elliptic surfaces. This is by now widely known, but it will be added becauseof the simplicity of our argument. Furthermore, in section 4.5 we will extendthe results to cases in which the resulting manifold is not an elliptic surface (noteven a complex manifold), we will allow log-transforms of even multiplicity andextend the results of [17], since we do not suppose the existence of cusp �bres.The tool we use is the following proposition from section 1.2.Proposition 4.5 There exists a vector space V of dimension 1 with the followingproperties1. Let X be an open manifold with boundary Y = @X = T2 � S1 and withb+(X) > 0. Let D 2 HR2 (X;Y ) and w 2 H2(X;Z) with wjY odd inH2(Y ;Z). Then we have de�ned an element �w(X;D) = �w(X; etD) 2V [[t]].2. Let X be a closed manifold with b+ � 1 which can be written as X = X1[YX2, and let D 2 H2(X) and (w;T ) an allowable pair. Write D = D1+D2,Di 2 HR2 (Xi; Y ), and w = w1 + w2, wi 2 H2(Xi;Z), then we haveD(w;T )X (etD) = ��w1(X1;D1) � �w2(X2;D2):Proof. Recall proposition 4.1. Then we put�w(X;D) =Xi�0 �wi (X;D)i! tifor an open manifold X. In the notation of subsection 1.2.2, we have that Vi =V = HF�(Y ), for all i. When X is closed we haveD(w;T )X (etD) =Xi�0 D(w;T )X (Di)i! ti:



4.4. BASIC CLASSES FOR ELLIPTIC SURFACES 63So the result is equivalent to proposition 4.1. �The K3-surface has series D wX = (�1)w2=2 eQ=2. Therefore proposition 1.11yields D(w;T )X (etD) = �e�Q(tD)=2;for any allowable pair (w;T ). We want to proveTheorem 4.6 ([37][18][17]) Let X = Sn(m1; : : : ;mr) be an elliptic surface withb1 = 0, pg = n � 1 > 0 and multiple �bres of multiplicities 1 � m1 � � � � � mr(we do not suppose them odd or coprime). Let F be the class of the �bre and� 2 H2(X). ThenDX (�) = eQ(�)=2 sinhn(F � �)sinh( 1m1F � �) sinh( 1m2F � �) : (4.2)For the sake of simplicity, we will prove theorem 4.6 when r = 2 (i.e. thereare at most 2 multiple �bres). An application of proposition 1.11 produces thefollowingProposition 4.7 Let X = Sn(m1;m2) be an elliptic surface with b1 = 0, pg =n � 1 > 0 and multiple �bres of multiplicities 1 � m1 � m2. Let F be the classof the �bre and � 2 H2(X). Then the statement of theorem 4.6 is equivalent toeither of the following:� If w � F � 1 (mod 2) (in particular m1, m2 are both odd) thenD(w;T )X (e�) = i3(K�w+n) e�Q(�)=2 cosn(F � �)cos( 1m1F � �) cos( 1m2F � �) :� If both w � 1miF � 1 (mod 2) and mi are even, thenD(w;T )X (e�) = i3(K�w+n)+n e�Q(�)=2 sinn(F � �)cos( 1m1F � �) cos( 1m2F � �) :� If w � 1m1F � 1 (mod 2), w � 1m2F � 0 (mod 2) (note that m1 is even), thenD(w;T )X (e�) = i3(K�w+n)+n�1 e�Q(�)=2 sinn(F � �)cos( 1m1F � �) sin( 1m2F � �) :



64 CHAPTER 4. CONNECTED SUMS ALONG A TORUS� If both w � 1miF � 0 (mod 2), thenD(w;T )X (e�) = i3(K�w+n)+n�2 e�Q(�)=2 sinn(F � �)sin( 1m1F � �) sin( 1m2F � �) ;where K stands for the canonical class.Proof of theorem 4.6. First we have S2 = B1 [Y B1. Choose any allowable pair(w;T ) with w1 = w2 2 H2(B1;Z) (i.e. w is symmetrical), and D 2 H2(S2) alsosymmetrical (i.e. D = D1 +D2, with D1 = D2 2 HR2 (B1; @B1)). ThenD(w;T )S2 (etD) = ��w1(B1;D1) � �w2(B1;D2) = �e�Q(tD)=2 = �e�Q(tD1)=2e�Q(tD2)=2implies �w1(B1;D1) = e�Q(tD1)=2 (as there is an indeterminacy on signs, we �xthem in such a way that we get a plus here). Now we have to compute D S3 . Weknow by section 3.2 that S3 has an embedded sphere � of self-intersection �3which intersects the torus T representing the �bre F = [T ], in one positive point.Therefore the class [�]+2F can be represented by a genus 2 embedded surface �of self-intersection 1. The canonical class is KS3 = F and so w2 �� � 1 (mod 2).By [23], S3 has big monodromy with respect to KS3 (being a minimal simplyconnected elliptic surface). So the invariants can be written as polynomials onQ and K and therefore the basic classes have to be multiples of K. Now byproposition 1.6, every basic class Ki is a lift to integral coe�cients of w2 and soKi = rF with r odd. Also 2 = 2g � 2 � �2 + jKi � �j = 1 + jrj so r = �1 andthe basic classes are �F . We conclude D S3 = c eQ=2 sinhF (sinh since d0 is odd)for some constant c, i.e. D(w;T )S3 = c e�Q=2 cosF (for w � F � 1 (mod 4)). Fromthe computations in section 4.2 we have c = 1. SoD S3 = eQ=2 sinhF:We use S3 = B1 [Y B2, with (w;T ) an allowable pair and D 2 H2(S3). Thenusing proposition 4.7 we get� If w � F � 1 (mod 2)D(w;T )S3 (etD) = ��w1(B1;D1) � �w2(B2;D2) = i3(F �w+3) e�Q(tD)=2 cos(F � tD)and �w2(B2;D2) = i3F �w2�1 e�Q(tD2)=2 cos(F � tD2).



4.4. BASIC CLASSES FOR ELLIPTIC SURFACES 65� If w � F � 0 (mod 2)D(w;T )S3 (etD) = ��w1(B1;D1) � �w2(B2;D2) = i3(F �w+3)+1 e�Q(tD)=2 sin(F � tD)and �w2(B2;D2) = i3F �w2 e�Q(tD2)=2 sin(F � tD2).But now S2 = B2 [Y A1, from where we get, using w = P.D.[�] 2 H2(A1;Z)and D 2 HR2 (A1; @A1),�w(A1;D) = �e�Q(tD)=2 1cos(F � tD) : (4.3)Analogously �(2a+1)[�](A1;D) = �(�1)a e�Q(tD)=2 1cos(F � tD) :Theorem 4.8 The manifold S = CP1�T2 = A1 [Y A1 has seriesD(�;T2)S (etD) = �e�Q(tD)=2 1cos2(F � tD) :Recall that the invariants are computed for suitable metrics (those giving big vol-ume to CP1).For the case Sn = Bn [ A1 = Bn�1 [ B1, one proves by induction that, forw 2 H2(Bn;Z) with wjY = S1,�w(Bn; etD) = (�1)n�1 e�Q(tD)=2 cosn�1(F � tD);so for w 2 H2(Sn;Z) with w � F = 1,D(w;T )Sn (etD) = (�1)n�1 e�Q(tD)=2 cosn�2(F � tD):Also for the rational surface S1 = A1 [B1,D(w;T )S1 (etD) = e�Q(tD)=2 1cos(F � tD) :Using proposition 4.7, we have proved so far that the statement of theorem 4.6is true for all elliptic surfaces Sn, n � 2. Using proposition 4.7 again, we know theshape of all invariants for Sn, n � 2 and all w 2 H2(Sn;Z). Now for introducingmultiple �bres, one has that X = Sn(m) = Bn[Y Am, with Am in fact di�eomor-phic to D2 �T2. We have a class F 2 H2(Bn) which is equivalent, as an elementof H2(Sn(m)), to the class m[T2] 2 H2(Am) = H2(T2). Call f 2 H2(Sn(m))the class corresponding to [T2] 2 H2(Am). Now choose w 2 H2(Sn(m)) withf � w = 1 and D 2 H2(Sn(m)) decomposed as D = D1 + � for the horizontalclass � 2 HR2 (Am). Then there are two cases:



66 CHAPTER 4. CONNECTED SUMS ALONG A TORUS� If m is odd, we have �w1(Bn;D1) = �i3(KSn+1 �w+n+1) e�Q(tD1)=2 cosn�1(F �tD1) (use Sn+1 = Bn [ B1 and knowledge about Sn+1). Now KSn+1 � w =(n� 1)m and KX � w = (n� 2)m+m� 1,D(w;T )X (e�) = i3(KX�w+n) e�Q(�)=2cosn�1(F � �)cos( 1mF � �) :� If m is even, then �w1(Bn;D1) = �i3(KSn+1 �w+n+1)+n�1 e�Q(tD1)=2 sinn�1(F �tD1). Now KSn+1 � w = (n� 1)m and KX � w = (n� 2)m+m� 1,D(w;T )X (e�) = i3(KX�w+n)+n�1 e�Q(�)=2sinn�1(F � �)cos( 1mF � �) ;and theorem 4.6 is true for all Sn(m), n � 2. Analogously we get (for instancefor m1 and m2 both odd and w � F � 1 (mod 2))D(w;T )Sn(m1;m2)(etD) = (�1)3(K�w+n) e�Q(tD)=2 cosn(F � tD)cos( 1m1 � tD) cos( 1m2 � tD) :�Remark 4.9 The proof above also works for n = 1 and w � F � 1 (mod 2). Sothe expression in the �rst item of proposition 4.7 is true when n = 1 (the metricsare always suitable in this case).Remark 4.10 The �rst three terms of the power series of the �rst item in propo-sition 4.7 are the equalities of theorem 4.2. So this proof is a generalisation ofthat former proof.4.5 Fundamental resultsIn this section we try to gather together the most fundamental results on invari-ants of connected sums along a torus T2. They are indeed proved in the samefashion as the proofs of last section. The �rst one establishes that the manifoldswe are dealing with are always of simple type. The second allows us to computethe basic classes of the connected sum along a torus. Finally, the third givesthe invariants of a manifold in which we have performed a logarithmic transform(this was carried out by Fintushel and Stern [17] but only under the assumptionof the existence of a cusp �bre).



4.5. FUNDAMENTAL RESULTS 67Theorem 4.11 Let X be a manifold with b+ > 1 and b1 = 0 containing an em-bedded torus T2 � X representing an odd homology class and of self-intersectionzero. Then X is of simple type. When b+ = 1, X is of w-simple type with re-spect to the invariants de�ned by [T2], i.e. DwX;[T2], for any w 2 H2(X;Z) withw �T2 � 1 (mod 2).Proof. Put A for a tubular neighbourhood of F = T2. Decompose X = Xo [YA. Then for any D 2 H2(X) we put D = D1 + a�, with a = F � D. Nowproposition 4.5 and equation (4.3) yieldD(w;F )X;[F ] (etD) = �w(X1;D1) � 1cos(tF �D) ;D(w;F )X;[F ] ((x2 � 4)etD) = ��w(X1;D1)�w(A; (x2 � 4)et a�):We have examples of simple type ful�lling the conditions of the statement (forinstance the K3 surface) with non-trivial invariants. This forces �w(A; (x2 �4)et a�) = 0, whence the result. �Theorem 4.12 Let �X1 and �X2 be two four-manifolds with b+ � 1 and containingembedded tori Fi � �Xi representing odd homology classes and of self-intersectionzero . Let X = �X1#F �X2 be their connected sum along F and call Fi 2 H2(X) theclass induced by Fi 2 H2( �Xi). Consider w 2 H2(X;Z) with F � w � 1 (mod 2).Then for D 2 H2(X) with DjY = aS1 2 H1(Y ), we put D = D1 + D2 and�Di = Di + a�, so we haveD(w;F )X;[F ] (etD) = �D(w;F )�X1;[F1](et �D1) �D(w;F )�X2;[F2](et �D2) � cos(tF1 � �D1) cos(tF2 � �D2):Proof. From proposition 4.5 and equation (4.3) we haveD(w;F )�X1;[F1](et �D1) = �w(X1;D1) � 1cos(tF1 � �D1)and analogously for �X2. The result is immediate from proposition 4.5 (recall fromsubsection 2.1.3 that b+(X) � 1). �Theorem 4.13 Let �X1 and �X2 be two four-manifolds with b+ > 1 and b1 = 0and containing embedded tori Fi � �Xi representing odd homology classes and ofself-intersection zero. By theorem 4.11, they are of simple type. Let D �X1 and



68 CHAPTER 4. CONNECTED SUMS ALONG A TORUSD �X2 be their invariants, respectively. Then X = �X1#F �X2 is of simple type andcalling Fi 2 H2(X) the class induced by Fi 2 H2( �Xi), one has for D 2 H2(X)with DjY = aS1 2 H1(Y ) (put D = D1 +D2 and �Di = Di + a�),DX (tD) = D �X1 (t �D1) � D �X2 (t �D2)� sinh(tF1 � �D1) sinh(tF2 � �D2):Proof. Note �rst that b1(X) = 0, b+(X) > 1 from section 2.3. This is a for-mal consequence of the previous theorem. We write D �X1 = eQ=2P aieKi, soD(w;F )�X1 = i�d0( �X1)e�Q=2P(�1)Ki�w+w22 aieiKi, and analogously for �X2 with D �X2 =eQ=2P bjeLj . From the formula in the previous theoremDX (tD) = eQ(tD)=2X �ij 14aibjet(Ki+Lj�F1�F2)�Dwith �ij = �id0(X)�d0( �X1)�d0( �X2)(�1)Ki�w1+w212 +Lj �w2+w222 � (Ki+Lj�F1�F2)�w+w22which is �(�1) (�F1�F2)�w2 , since w21 + w22 � w2 (mod 2) and �32(1 + b+) be-haves additively for connected sums along tori. (In the expression of DX theremight be in principle di�erent basic classes corresponding to the same exponentialet(Ki+Lj�F1�F2)�D, but all of them contribute with the same sign to �ij). �If we want to deal with other homology classesD 2 H2(X), we should considerclosings of Xi with B1 instead of A.Theorem 4.14 Let �X1 and �X2 be two four-manifolds with b+ � 1 and b1 = 0 andcontaining embedded tori Fi � �Xi representing odd homology classes and of self-intersection zero. Let �X(1)i = �Xi#FiS1 and let D �X(1)1 and D �X(1)2 be their invariants,respectively. Then X = �X1#F �X2 is of simple type and, calling Fi 2 H2(X) theclass induced by Fi 2 H2( �Xi), one has for D 2 H2(X) (put D = D1 + D2 and�Di 2 H2( �X(1)i ) restricting to Di in Xi with �D2i = D2i ),DX (tD) = D �X(1)1 (t �D1) � D �X(1)2 (t �D2):Proof. Note that X and both �X(1)i have b1 = 0, b+ > 1 and are of simple type.We want to get D(w;F )X (etD) = �D(w;F )�X(1)1 (et �D1) �D(w;F )�X(1)2 (et �D2)



4.5. FUNDAMENTAL RESULTS 69and work then as in theorem 4.13. This is analogous to theorem 4.12 but nowD(w;F )�X(1)1 (et �D1) = ��w(X1;D1):�Theorem 4.15 Let X be a manifold with b+ > 1 and b1 = 0 containing anembedded torus T2 ,!X representing an odd homology class F of self-intersectionzero. Perform a logarithmic transform of degree p on F and call X(p) the resultingmanifold. Suppose b1(X(p)) = 0. Then for D 2 H2(X(p)) and �D 2 H2(X(1))agreeing on Xo, and with D2 = �D2,DX(p)(tD) = DX(1) (t �D) � 1sinh(tD � 1pF ) ;where F 2 H2(X(p);Z) denotes the class induced by F 2 H2(X;Z) on X(p).Proof. Straightforward. �Application to prove a result of [30]Consider a Dolgachev surface �X1 with one multiple �bre of (odd) multiplicityp1, i.e. �X1 = S1(p1), which is di�eomorphic to the rational surface S1. Let Fbe the homology class of the �bre, which is an odd class. Consider �X2 anotherDolgachev surface with one multiple �bre of (odd) multiplicity p2, and let Fbe the homology class of the �bre. Then we can consider the connected sum�X1#F �X2, under di�erent identi�cations. We have, for ( 1piF ) � w = 2a+ 1,D(w;T )�Xi (e�) = (�1)a e�Q(�)=2 1cos( 1piF � �) :1. We glue with the preferred holomorphic identi�cation of proposition 2.9 andthe discussion preceding it. Then the classes F from both pieces correspondcanonically and give the class of the �bre of the natural �bration for X =�X1#F �X2 = S2(p1; p2), which is the elliptic surface with pg = 1 and twomultiple �bres of multiplicities p1 and p2. The invariants for X are givenby (for F �w � 1 (mod 2))D(w;T )X (e�) = (�1) p1+p22 e�Q(�)=2 cos2(F � �)cos( 1p1F � �) cos( 1p2F � �) :



70 CHAPTER 4. CONNECTED SUMS ALONG A TORUS2. We glue with the identi�cation which is the preferred identi�cation com-posed with a twist in the S1 factor. More explicitly, if we identify F �D2with the tubular neighbourhood of the �bre F which we are using for gluing,in such a way that the holomorphic projection is the projection in the secondfactor, then the gluing that we will use is � : @(F�D2)! @( �X2 � F �D2),inducing �� in H1(F �S1) with matrix0BB@ 1 0 00 1 00 1 1 1CCAThis gluing is considered in [29] and [30]. Consider �; � 2 H1(F ;Z) somebasis such that � �� = 1, ��(�) = � and ��(�) = �+[S1]. Then the class Fin �X1 corresponds to the class F�T� in �X2, with T� = �
[S1] 2 H2(F�S1).Call X 0 = X1 [� X2, and let Fi 2 H2(X 0) be the class induced by the classF in �Xi, for i = 1; 2. Then (for F � w � 1 (mod 2))D(w;T )X (e�) = (�1) p1+p22 e�Q(�)=2 cos(F1 � �) cos(F2 � �)cos( 1p1F1 � �) cos( 1p2F2 � �) :In the �rst case all the basic classes span a one-dimensional subspace ofH2(X)and in the second they span a two-dimensional subspace. Therefore the manifoldsX and X 0 cannot be di�eomorphic (although they are homeomorphic) which isthe main result of [30]. X 0 is a homotopy K3-surface and by proposition 2.12, itis a symplectic manifold.



Chapter 5Connected sums along Riemannsurfaces of genus 25.1 IntroductionIn this chapter we carry on studying the behaviour of the Donaldson invariantsunder connected sums along Riemann surfaces in the next natural case, i.e. whenthe genus of the surface is 2. For this case, the computations can then be carriedout quite explicitly.We recall �rst the Floer homology of Y = � � S1 when g = 2 from sec-tion 1.2 (see proposition 1.19). Let PY be an U(2)-bundle whose associatedSO(3)-bundle has w2 2 H2(Y ;Z2) dual to the class [S1]. Then there is the iso-morphism HF �(� �S1) �! QH�(Modd� ) with the quantum cohomology of Modd� ,the moduli space of rank-2 stable bundles over � with odd determinant. As usual,the universal bundle yields a map ~� : H�(�) ! H4��(Modd� ) given by slantingwith �14 times the �rst Pontrjagin class. In this chapter it will be necessary tomake use of Conjecture 1.22 which states that this corresponds with the � mapin Floer homology for [�] 2 H2(�) and elements � 2 H1(�), but there will be acorrection term for x 2 H0(�) (see remark 5.3). Nonetheless some of the resultscan be proved independently of the aforementioned conjecture, and we will givean alternative proof in such cases.The quantum cohomology of Modd� in the case of � of genus 2 was �rst com-puted by Donaldson [9]. He uses the fact that for � hyperelliptic there is anexplicit description of Modd� as an algebraic manifold [4], which, in the case ofgenus 2, gives that Modd� is the intersection of two quadrics in CP5 [45]. From71



72 CHAPTER 5. CONNECTED SUMS FOR GENUS 2this description one can compute the space of lines (rational curves of degree 1)in Modd� . This turns out to be the only necessary data for �nding the quantumproduct. Modd� has (real) dimension 6 and has (integral) cohomology equal to Zin degrees 0, 2, 4 and 6. The generators are 1, h, l and p which correspond, inthe description of Modd� as the intersection of two quadrics in CP5, to the fun-damental class, a plane, a line and a point. The map � gives an isomorphism� : H1(�) ! H3(Modd� ), describing the other non-zero bit of the cohomology ofModd� . So far the description of QH�(Modd� ) as abelian group. Regarding themultiplicative structure, we have the following (see [9])h � h = 4l + 4h � h � h = 4p + 12hh � h � h � h = 16h � h�(�) � �(�) = (� � �)(14h � h � h� 4h) (5.1)In general, we will drop the � symbol for denoting the quantum product.QH�(Modd� ) has a natural Z=4-grading given by reducing the Z-grading above.The standard basis is given by ei = hi, 0 � i � 3, and elements �(�j), wheref�jg is a basis of H1(�;Z). Note that the matrix < ei; ej > is40BBBBB@ 0 0 0 10 0 1 00 1 0 161 0 16 0 1CCCCCAThe pairings < �(�); ei > are all zero, so QH3(Modd� ) is orthogonal to the \even"part of QH�(Modd� ). This is an important remark since it will allow us to ignorethe \odd" part in later computations.We recall our set up. Let �X1 and �X2 be two manifolds with �i � �Xi embeddedsurfaces of the same genus g = 2 and self-intersection zero. Remove a tubularneighbourhood of �i and call the resulting manifoldXi (it has boundary Y = ��S1). The (closure of the) tubular neighbourhood removed is always di�eomorphicto A = ��D2. Consider some identi�cation � for Y (see de�nition 2.5) and letX = X(�) = X1 [� X2 be the connected sum of �X1 and �X2 along �.Our starting hypotheses are that b1 = 0 for both �Xi and that �i are oddin H2( �Xi;Z)=torsion (equivalently, the homology class [�i] is an odd multipleof a non-torsion primitive class). Therefore there exist wi 2 H2( �Xi;Z) with



5.1. INTRODUCTION 73wi � �i � 1 (mod 2). We �x w's in all the manifolds involved ( �X1, �X2 and X)once and for all in a compatible way (i.e. the restriction of w to Xi � X coincideswith the restriction of wi to Xi � �Xi) and such that wi � �i � 1 (mod 2). Wedrop the subindices, so we will not di�erentiate these w's, since the context makesalways clear to which manifold they refer.The series DwX(�) is determined by its action on:1. � = �1 + �2 2 H2(X1) �H2(X2) � H2(X). These elements will be calledclasses of the �rst type.2. elements D 2 H2(X) such that D = D1 + D2 with @D1 = �@D2 beinga multiple of [S1] 2 H1(Y ). These elements will be called classes of thesecond type.3. elements D such that D = D1 +D2 with @D1 = �@D2 de�ning a class0 6=  2 H1(Y ) which is not a multiple of [S1]. These elements will be calledclasses of the third type.For studying the behaviour on classes of the �rst type we will use the Floerhomology groups HF�(Y ) explained in subsection 1.2.1. When the classes are ofthe second and third type we must use the extension of the Floer theory providedby the Fukaya-Floer homology groups HFF�(Y; ), for loops , as explained insubsection 1.2.2.This chapter is a bit long, but it is naturally divided into sections correspond-ing to the study of the invariants on classes of �rst, second and third type. Thefundamental results of each of these sections are theorems 5.6, 5.17 and 5.23, re-spectively. All throughout sections 5.2 and 5.3 we will be using Conjecture 1.22(in section 5.3 we use also an extension of it, Conjecture 5.11), and so the re-sults are in principle dependent on it (except obviously proposition 5.5). Insubsection 5.3.2 we give an alternative way of proving theorem 5.17, completelyindependent of Conjectures 1.22 and 5.11. So theorems 5.17 and 5.6 (which isa consequence of the former) and corollary 5.9 are proved and not conjectural.Also corollary 5.15 is independent of the conjectures. Finally, our proof of the-orem 5.16, about the �nite type condition of the manifolds we are dealing with,does depend on Conjecture 5.11.On the other hand, section 5.4 depends on Conjecture 1.22, since the compu-tation of the Fukaya-Floer homology groups HFF�(Y; ) is based on our descrip-tion of �(), and on Conjecture 5.20, which is another extension of the former



74 CHAPTER 5. CONNECTED SUMS FOR GENUS 2(nonetheless, Conjecture 5.20 could have been avoided with arguments similarto those of subsection 5.3.2). So the main theorem in section 5.4, theorem 5.23,remains as conjectural. We use this theorem to produce some nice explicit resultsabout basic classes, corollaries 5.9, 5.25 and 5.26.Let us remark that the three conjectures we are using in this chapter, Con-jectures 1.22, 5.11 and 5.20, refer to the action of �(�) on HF�(Y ), HFF�(Y;S1)and HFF�(Y; ) (with  representing a homology class not a multiple of [S1]),respectively.We �nalise with a section in which we try to give some ideas for generalisingthese results to the case g > 2.5.2 Classes of the �rst typeHere we suppose g � 2, since the remarks we are going to use now are not speci�cfor genus 2. We deal with the invariants for classes � 2 H2(X1) � H2(X) and� 2 H2(X2) � H2(X). We are going to use Conjecture 1.22 to make explicitcomputations.Fix a set fzlg of elements of the shape zl = �axb1 � � � r 2 A (�), wherex corresponds to the class of a point and i 2 H1(�), with the property thatthe corresponding el = �(�)a�(x)b�(1) � � � �(r) form a basis for HF�(Modd� )(quantum multiplication is understood throughout). Then we have the followingLemma 5.1 �w(A; zl) = el, after possible renormalisation (see proof of theoremfor explanation of this word).Proof. From Conjecture 1.22, �w(A; zl) = el�w(A; 1). It only remains to check�w(A; 1) = 1. Put ea = �w(A; 1). NowD(w;�)CP1��(zl) =< eaelea; 1 >=< e2ael; 1 > :Making zl run through the basis, the left hand side is zero (by dimensionality)except for the element of degree 6g � 6, in which case it is equal to < el; 1 >(since the corresponding moduli space is isomorphic to Modd� ). The conclusion isthat e2a = 1. If ea = 1 we have �nished, if not we have to renormalise de�ning�̂w(X;D) = �w(X; zaD)(obvious meaning for za). This does not modify any of the arguments of thechapter and makes �̂w(A; zl) = el. �



5.2. CLASSES OF THE FIRST TYPE 75For the open manifoldX1 we write �w(X1; z) =P < �w(X1; z); el > e�l , wherefe�l g is the dual basis of felg. Transferring the cycles contained in zl to X1 weget, for z 2 A (X1),�w(X1; z) =Xl < �w(X1; z); �w(A; zl) > e�l ==Xl < �w(X1; zlz); �w(A; 1) > e�l =Xl D(w;�)�X1 (zlz)e�l :Then D(w;�)X (et(�+�)) =< �w(X1; et�); �w(X2; et�) >==Xl;mD(w;�)�X1 (et�zl)D(w;�)�X2 (et�zm) < e�l ; e�m > : (5.2)Therefore the series for X is determined by the series for both sides. We canwork out DX(�+ �) adding the class of the point to either side, and we getD(w;�)X (� + �) =Xl;m D(w;�)�X1 (et�+�xzl)D(w;�)�X2 (et�zm) < e�l ; e�m > :Note that on cycles of the type T =  �S1 � ��S1 the series �w(X1; etT)is constant (since T represents the zero homology class in �Xi). This agreeswith the case when X is of simple type, where tori of self-intersection zero haveintersection zero with all basic classes (and so the series is constant on such tori).Before going further, let us prove a simple lemma.Lemma 5.2 For g = 2 one has �(�) = 12h and �(x) = 14h2 � 2. In particular�(x)2 � 4 = 0.Proof. Take X to be a K3 surface blown-up in two points. Consider a tightsurface S of self-intersection 2 (and therefore of genus 2) in theK3 surface (whoseexistence is guaranteed by [38]). Let E1 and E2 be the exceptional divisors in Xand let � be the proper transform of the tight surface, i.e. � = S�E1�E2. Putw = E1, so w �� = 1 and � has genus 2 and self-intersection zero. X is of simpletype and D wX = �eQ=2 coshE2 sinhE1. So D wX (t�) = � cosh t sinh t. The modulispaces of connections on X are of dimensions 2d � 2d0 � 6 (mod 8). From theseremarks we have DwX(�3+4n) = �22+4nWrite X = X1 [Y A. Then �(�) is a multiple of h, say ah. Now, for n �1 (mod 4),DwX (�n+6) =< �wn (X1;�n); (ah)6 >=< �wn (X1;�n); a6 162h2 >= a4 162DwX(�n+2)



76 CHAPTER 5. CONNECTED SUMS FOR GENUS 2from where a = �12. There is an indeterminacy in the sign coming from choosingan orientation of generators of CF�(��S1). We make choices such that �(�) =12h. For computing �(x), we put �(x) = ah2 + b. From proposition 1.11 andremark 1.12 we haveD(w;�)X (e�) = �eQ(�)=212 sinh((E1 + E2) � �) + e�Q(�)=212 sin((E1 � E2) � �)D(w;�)X (xe�) = �2eQ(�)=212 sinh((E1 + E2) � �)� 2e�Q(�)=212 sin((E1 � E2) � �)Now D(w;�)X (xet�) =< ah2 + b; �w(X1; et�) >= aD(w;�)X (4�2et�) + bD(w;�)X (et�)yields the equation� sinh(2t) = 4a d2dt2 (�12 sinh(2t)) + b(�12 sinh(2t));from where 16a + b = 2. Now put � = �E1 + E2, so � � � = 0 and use thesame argument with � = t� + s�. This yields b = �2, so a = 14. Note that�(x)2 � 4 = (16a2 � 4a)h2 = 0. �Remark 5.3 Note that �(�) = ~�(�) 2 QH2(Modd� ). Instead �(x) = l � 1, so~�(x) = l 2 QH4(Modd� ) and there is a correction term �1 2 QH0(Modd� ) (werecall that l = 14h [ h is the generator of QH4(Modd� )).Corollary 5.4 Let �X1 have b1 = 0, b+ > 1 and an embedded surface � of genus2 and self-intersection zero which represents an odd homology class (as supposedso far). Let w 2 H2( �X1;Z) with w � � � 1 (mod 2). Then Dw�X1(x2z) = 4Dw�X1(z)for every z 2 A (X1) � A ( �X1). The same statement is true for b+ = 1 if we usethe invariants with respect to [�].Proof. Let 2d be the degree of z. Suppose for instance that w � � = 1. If2d 6� 2d0 (mod 8), then both sides vanish. OtherwiseDw�X1(x2z) =< �w1d (X1; z); �w(A;x2) >=< �w1d (X1; z); �(x)2 >= 4Dw�X1(z):�We have a simple result about the simple type condition of some of the man-ifolds we are dealing with from chapter 4.



5.2. CLASSES OF THE FIRST TYPE 77Proposition 5.5 Let �X1, �X2 have H1( �Xi;Z) = 0, b+ > 0 and embedded surfaces�i of genus 2 and self-intersection zero which represent odd homology classes.Then X = �X1#� �X2 is of simple type.Proof. The manifold X has b1 = 0 and b+ > 1. It also contains tori T� 2H2(Y ;Z)� H2(X;Z) of self-intersection zero and representing an odd homologyclass (use remark 2.13 with Li = H1(�;Z)). By theorem 4.11, X is of simpletype. �In theorem 5.16 we �nalise the proof that a manifold �X1 with b1 = 0 andan embedded surface of genus 2 and self-intersection zero representing an oddhomology class is always of �nite type. For the moment, let us suppose that both�Xi have b1 = 0, b+ > 0 and are of simple type. Then we writeD w�X1 (�) = eQ(�)=2X ai;weKi��; D w�X2 (�) = eQ(�)=2X bj;weLj��:Recall that ai;w = (�1)w2+Ki�w2 ai. First note Dw�X1((1 + x2e��a) = eQ(�)=2P ai(Ki ��)a � eKi��. AlsoD(w;�)�X1 (e�) = e�Q(�)=2X ~ai;we ~Ki��; D(w;�)�X2 (e�) = e�Q(�)=2X~bj;we~Lj��:where (~ai;w; ~Ki) = 8<: (ai;w;Ki) if Ki � � � 2 (mod 4)(i�d0ai;w; iKi) if Ki � � � 0 (mod 4)and analogously for (~bj;w; ~Lj). The sign of the exponent is + when Ki � � �2 (mod 4) and � otherwise. Now from formula (5.2), D(w;�)X (e�+�) is equal toe�Q(�)=2�Q(�)=2 Xi;j;l;mr=r0=0 ~ai;w~bj;w e ~Ki��+~Lj��(( ~Ki � �)a(�2)b(~Lj � �)a0(�2)b0 < e�l ; e�m >)(5.3)(recall el = �(�)a�(x)b�(�1) � � � �(�r)). Here a, b and r correspond to l and a0,b0 and r0 correspond to m. It must be r = r0 = 0 since b1 = 0. The �2 are dueto remark 1.12. Using � = t�, � = (1 � t)� we see that Ki � � = Lj � � fornon-zero summands. Moreover, from proposition 1.6, this number is even andless or equal than 2g�2 in absolute value. Suppose now that X is of simple type.Then D wX (e�+�) equalseQ(�+�)=2 Xl;mr = r0 = 0Ki � � = Lj ��cij;w eKi��+Lj��(( ~Ki � �)a(�2)b(~Lj � �)a0(�2)b0 < e�l ; e�m >);



78 CHAPTER 5. CONNECTED SUMS FOR GENUS 2where cij;w = ai;wbj;w if Ki � � � 2 (mod 4). If Ki � � � 0 (mod 4) thencij;w = i�d0( �X1)�d0( �X2)+d0(X)ai;wbj;w.The genus 2 caseWhen the genus is g = 2, Ki � � has to be �2, 0 or 2. The standard basis hasonly elements with b = b0 = 0. Also for the case Ki �� = 0 the coe�cient in (5.3)vanishes, so we have:Theorem 5.6 Let �Xi be as in section 5.1 with b1 = 0, b+ > 1 and of simpletype. Write D w�X1 = eQ=2P ai;weKi and D w�X2 = eQ=2P bj;weLj . Let X = �X1#� �X2(for some identi�cation) and suppose X is of simple type. Then for � 2 H2(X1)and � 2 H2(X2), it isD wX (�+ �) = eQ(�+�)=2(XKi��=Lj ��=232 ai;w bj;w eKi��+Lj �� + XKi��=Lj ��=�2�32 ai;w bj;w eKi��+Lj��):Proof. We use the standard basis feig forQH�(Modd� ) and note that h correspondsto 2� from lemma 5.2. So in the expression (5.3) one has b = b0 = 0 and0 � a; a0 � 3. The matrix < e�l ; e�m > is140BBBBB@ 0 �16 0 1�16 0 1 00 1 0 01 0 0 0 1CCCCCAhence for Ki � � = 2, the coe�cient is computed to be 32 and for Ki � � = �2 itwill be �32. �Remark 5.7 Actually we should say \for an appropriate homology orientationfor X".Remark 5.8 The reason for the di�erent signs is easy to work out. First, w2for X is always congruent (mod 2) with the sum of both of w2 for �Xi. Alsob+(X) = b+( �X1) + b+( �X2) + (2g � 1), so �32(1 + b+(X)) = �32(1 + b+( �X1)) �32(1+b+( �X2))�3(g�1). Recalling that d0 = �w2� 32(1+b+) and g = 2, we haved0(X;w) � d0( �X1; w) + d0( �X2; w) + 1 (mod 2). Now the sign comes from thefact that the coe�cient for the basic class �� is (�1)d0c�, being c� the coe�cientfor the basic class �.



5.3. CLASSES OF THE SECOND TYPE 79Corollary 5.9 Let �Xi have b1 = 0, b+ > 1 and be of simple type. Supposethat there are embedded Riemann surfaces �i � �Xi of genus 2, self-intersectionzero and odd. Put D w�X1 = eQ=2P ai;weKi and D w�X2 = eQ=2P bj;weLj . Performa connected sum X = �X1#� �X2 (with some identi�cation) and suppose it is ofsimple type. Let D wX = eQ=2P c�;we� be its Donaldson series. Then for any pair(K;L) 2 H2(X1;Z)�H2(X2;Z), we haveXf�=�jX1=K;�jX2=Lgc�;w = �32 ( XKijX1=K ai;w) � ( XLjjX2=L bj;w)whenever KjY = LjY = �2P.D.[S1]. Otherwise the sum in the left hand side iszero.5.3 Classes of the second typeLet us now have a homology class D of the second type. Using the extendedhomology groups (see subsection 2.3.2), we can write D = D1 + D2 with Di 2HR2 (Xi; @Xi) and @D1 = �@D2 = S1 � � � S1 (substitute D by a rationalmultiple if necessary).In subsection 5.3.1 we use again Conjecture 1.22 to carry all explicit compu-tations of the invariants of the connected sum along �, for D of second type.This conjecture tells us the action of �(�) on HF�(Y ). We will have to make ananalogous conjecture on the action of �(�) on HFF�(Y;S1), Conjecture 5.11. Insubsection 5.3.2 we will give a short argument to get basically theorem 5.17 (andhence theorem 5.6 and corollary 5.9) and corollary 5.15 avoiding the conjectures.This is very nice from the point of view of having our main results proved, butwe lose all the understanding of the way in which the Fukaya-Floer groups HFF�enter in the arguments.5.3.1 Explicit computationsIn this section we need to work with the Fukaya-Floer homology version of thegluing theory. We recall from subsection 1.2.2 that HFF�(Y;S1) appears as thelimit of a spectral sequence whose E3 term is HF�(Y ) 
 Ĥ�(CP1) and whosedi�erential d3 is multiplication by �(S1). Thus all the di�erentials in the E3term of the spectral sequence are of the form Hodd(Modd� ) ! Heven(Modd� ) andHeven(Modd� ) ! Hodd(Modd� ). Now the boundary cycle is S1 and thus invariant



80 CHAPTER 5. CONNECTED SUMS FOR GENUS 2under the action of the group Di�+(�) on Y = � �S1, so the di�erentials com-mute with the action of Di�+(�). As there are elements � 2 Di�+(�) acting as�1 on H1(�), we have that � acts as �1 on Hodd(Modd� ) and as 1 on Heven(Modd� ).Therefore the di�erentials are zero and the spectral sequence degenerates in thethird term. Hence�w(Xi;D) = (�0; �1; �2; : : :) 2 HF�(Y )
 Ĥ�(CP1);where we can interpret �k = �w(Xi;Dk) 2 QH�(Modd� ). So we have from theo-rem 1.24 D(w;�)X (Dm) =X0@ mi 1A�(�w(X1;Di1); �w(X2;Dm�i2 ));or with the invariants in power series form, theorem 1.25 saysD(w;T )X (etD) = �(�w(X1; etD1); �w(X2; etD2)):Now we can decompose �w(X1; etD1) = �w(X1; etD1)even+�w(X1; etD1)odd in com-ponents lying in HFeven 
 Ĥ�(CP1) and HFodd
 Ĥ�(CP1).Lemma 5.10 Suppose that b1( �X1) = 0 (equivalently, b1(X1) = 0). Then�w(X1; etD1)odd = 0:Proof. Since b1( �X1) = 0, for any  2 H1(�) we have0 = D(w;T )�X1 (etD) =< �w(X1; etD1); �w(A; et�) > :Now  7! �w(A; et�) is Di�(�)-equivariant. So the even part of �w(A; et�) iszero and the odd part is a combination of the shape �1 + �2i!() with �1; �2 2R and i! denoting contraction with the natural symplectic form ! in H1(�)(everything under the identi�cation � : H1(�) �! QH3(Modd� ) = HF 3(� �S1)).If (�1; �2) 6= (0; 0) then the image of �1 + �2i!(),  2 H1(�), is the total spaceH1(�). From this we conclude �w(X1; etD1)odd = 0. We still have to rule out thepossibility (�1; �2) = (0; 0). Suppose it happens, then it would be �w(A; et�) = 0and so D(w;T )CP1��(etD12) =< �w(A; etD11); �w(A; et�2) >= 0:But D(w;T )CP1��(12) =< �(1); �(2) >= !(1; 2) 6= 0 (see equation (5.1)) ingeneral. This �nishes the proof. �



5.3. CLASSES OF THE SECOND TYPE 81Now we use the trick of transferring � from X1 to X2.D(w;�)X (Dm�) =X mi ! < �w(X1;Di1�); �w(X2;Dm�i2 ) >==X mi ! < DwX1(Di); P�DwX2(Dm�i) > :The map P� : HFF�(Y; ) ! HFF�(Y; ) can be de�ned at the level of chainsas P� : CFFi(Y ) ! CFFi�2(Y )�k 7! X�l  ��! < �( �R)����(� � ft0g);M(�k; �l) > �lfor �k 2 CFi�2�, �l 2 CFi�2�2� and � � �. Then @ �P�+P� �@ = 0 and the mapdescends to homology, so we get that, for every open manifold X with boundaryY and D 2 HR2 (X; @X) with @D = ,Ym �wm(X;�Dm) = P�(Ym �w(X;Dm)):We recall that �w(X;Dm) is not a cycle, so the expression �wm(X;�Dm) =P�(�w(X;Dm)) has no meaning. Actually P� can be decomposed regarding atits action in the E3 term of the spectral sequence as an in�nite sum of maps m+ aa !P�;a : HFi(Y )
H2m(CP1)! HFi�2�2a(Y )
H2m+2a(CP1):For a = 0, the map is obviously multiplication by �(�) in Floer homology. Forthe invariants in exponential form, we haveP�(Xm �wm(X;Dm) tmm!) =Xm;a m+ aa !P�;a(�wm(X;Dm)) tm+a(m+ a)! ==Xa taP�;aa! (Xm �wm(X;Dm) tmm!): (5.4)Here we interpret P�;a : HFi(Y )! HFi�2�2a(Y ). There is an exponential oper-ator Q� = esP� : HFF�(Y; )! HFF�(Y; ):We have the following conjecture about the structure of P� which we do not provein the thesis (actually it can be regarded as an extension of Conjecture 1.22). Inthe next subsection we will give an alternative way avoiding it to prove our �nalresult, theorem 5.17 and some evidence towards this conjecture.



82 CHAPTER 5. CONNECTED SUMS FOR GENUS 2Conjecture 5.11 P�;0 is quantum multiplication by �(�). P�;1 is the identity onthe �2-eigenspaces of �(�) and minus the identity on the 0-eigenspace of �(�).P�;a is zero for a � 2.From lemma 5.2 we obtain the following expressiones�(�) = 1 + s2h+ cosh 2s� 116 h2 + sinh 2s� 2s64 h3: (5.5)Corollary 5.12 As a consequence of the above conjecture we get (recall ��D = 1)D(w;�)X (es�+tD) =< �w(X1; etD1es�); �w(X2; etD2) >== e(s�)(tD1) < �w(X1; etD1); es�(�) � �w(X2; etD2)�2 > ++e�(s�)(tD1) < �w(X1; etD1); es�(�) � �w(X2; etD2)0 >;where �w(X2; etD2)�2 and �w(X2; etD2)0 are the components of �w(X2; etD2) in the�2-eigenspaces and 0-eigenspace respectively.So the operator above is (for � �D = 1)esP� = e�ts(1 � 116h2 + s2h � 2s64h3) + ets(cosh 2s16 h2 + sinh 2s64 h3): (5.6)Let us write �w(X1; etD1) = (�0; �1; �2; �3), �w(X2; etD2) = ( 0;  1;  2;  3)and �w(A; et�) = (a0; a1; a2; a3) with respect to the standard basis feig (recallthat � = pt�D2 � ��D2 = A). We do not consider the odd part of the Floerhomology thanks to lemma 5.10. We haveD(w;�)X (es�+tD) = (�0; �1; �2; �3)B0BBBBB@  0 1 2 3 1CCCCCAB(t; s) = 140BBBBB@ 0 �16 0 1�16 0 1 00 1 0 01 0 0 0 1CCCCCA��0BBBBB@ e�ts 12se�ts 116(ets cosh 2s � e�ts) 164(ets sinh 2s� 2se�ts)0 e�ts 14ets sinh 2s 116(ets cosh 2s � e�ts)0 0 ets cosh 2s 14ets sinh 2s0 0 4ets sinh 2s ets cosh 2s 1CCCCCA =



5.3. CLASSES OF THE SECOND TYPE 83= 140BBBBB@ 0 �16e�ts 0 e�ts�16e�ts �8se�ts e�ts 12se�ts0 e�ts 14ets sinh 2s 116(ets cosh 2s� e�ts)e�ts 12se�ts 116(ets cosh 2s � e�ts) 164(ets sinh 2s� 2se�ts) 1CCCCCANow we separate according to coe�cients corresponding to functions on s inthe expression of D(w;�)X (es�+tD).0BBBBB@ coef. of e2setscoef. of e�2setscoef. of e�tscoef. of se�ts 1CCCCCA = A 0BBBBB@ �0�1�2�3 1CCCCCA (5.7)whereA = 140BBBBB@ 0 0 1128(4 3 + 16 2) 1128(4 2 +  3)0 0 1128(4 3 � 16 2) 1128(4 2 �  3) 3 � 16 1  2 � 16 0  1 � 116 3  0 � 116 20 12( 3 � 16 1) 0 12( 1 � 116 3) 1CCCCCATherefore (e2sets; e�2sets; e�ts; se�ts)A = ( 0;  1;  2;  3)B. The matrix Aawill correspond to A = ��D2.Aa = 140BBBBB@ 0 0 1128(4a3 + 16a2) 1128(4a2 + a3)0 0 1128(4a3 � 16a2) 1128(4a2 � a3)a3 � 16a1 a2 � 16a0 a1 � 116a3 a0 � 116a20 12(a3 � 16a1) 0 12(a1 � 116a3) 1CCCCCALemma 5.13 The matrix Aa is invertible.Proof. That the determinant vanishes would imply that either a3 = 4 a2, a3 =�4 a2 or a3 = 16 a1. The �rst two cases give that the �rst or second row ofAa is zero respectively, which is contradictory as there are examples where theleft hand side of (5.7) has non-zero �rst two entries (see subsection 5.3.2). Thecase a3 = 16 a1 implies that the series for any such X is always of the formf1(t)e2sets+ f2(t)e�2sets+ f3(t)e�ts. This would also be valid for X = CP1�� =A [Y A (using the invariance under Di�(�), as in the proof of lemma 5.10, weget that �w(A; etD2)odd = 0 and so the odd part of the Floer homology does notintervene in the series). Particularising for t = 0, D(w;�)X (es�) would be a linear



84 CHAPTER 5. CONNECTED SUMS FOR GENUS 2combination of e2s, e�2s and 1. But from lemma 5.1 and equation (5.5) we getthat D(w;�)X (es�) = 116(sinh 2s� 2s):�Corollary 5.14 The �i are determined by the series D(w;�)�X1 (et �D1+s�) where �D1 =D1 +�.Corollary 5.15 Let �X1 be of simple type with b1 = 0, b+ > 1 and an embeddedsurface �1 of genus 2, self-intersection zero and representing an odd homologyclass. Let �X2 be an arbitrary four-manifold with an embedded surface �2 satisfyingthe same conditions as �1. Then for X = �X1#� �X2 and D 2 H2(X) of secondtype, DwX((x2 � 4)etD) = 0.Proof. By corollary 5.14, D(w;�)�X1 ((x2 � 4)et �D1+s�) = 0 implies �w(X1; (x2 �4)etD1) = 0, and so D(w;�)X ((x2 � 4)etD) = 0 for any D 2 H2(X) of secondtype. �Theorem 5.16 Let �X1 have b1 = 0, b+ > 1 and an embedded surface �1 of genus2, self-intersection zero and representing an odd homology class. Then �X1 is ofw-�nite type (i.e. Dw�X1((x2 � 4)netD) vanishes identically for some n > 0), forany w 2 H2( �X1;Z) with w � �1 � 1 (mod 2). If we suppose b+ = 1, the resultremains true for the invariants with respect to [�1].Proof. We are going to check that D(w;�)�X1 ((x2 � 4)2etD) = 0, for all D 2 H2( �X1).When D 2 H2(X1) this is a consequence of corollary 5.4. Suppose now thatD 2 H2( �X1) has D � �1 = 1. Put D = D1 +�. If �X1 is of simple type, we have0 = D(w;�)�X1 ((x2 � 4)et �D1+s�) =< �w(X1; etD1); �w(A; (x2 � 4)et�+s�) > :The vectors �w(X1; etD1) (with �X1 being of simple type) generate a 3-dimensionalsubspace (see subsection 5.3.2). Moreover this subspace is given by the equation�3 = 16�1 (see remark 5.18). So �w(A; (x2� 4)et�+s�) is a multiple of (1; 0; 0; 0)and therefore< �w(A; (x2 � 4)et�+s�); �w(A; (x2 � 4)et�) >= D(w;�)��CP1((x2 � 4)2et�+s�) = 0;from where �w(A; (x2 � 4)2et�) = 0 and hence the result. �



5.3. CLASSES OF THE SECOND TYPE 85Now we invert Aa (lemma 5.13) and do the matrix productD(w;�)X (etD) =< (�0; �1; �2; �3); ( 0;  1;  2;  3) >=(v1)T0BBBBBB@ 32(a3+4a2)2 0 0 00 � 32(a3�4a2)2 0 00 0 0 �8(a3�16a1)20 0 �8(a3�16a1)2 32 a2�16a0(a3�16a1)3 1CCCCCCA (v2) (5.8)where vi = 0BBBBB@ coef. of e2setscoef. of e�2setscoef. of e�tscoef. of se�ts 1CCCCCAin D(w;�)�Xi (es�+t �Di). When �X1 is of simple type with b1 = 0, b+ > 1, we can useD w�X1 instead of D(w;�)�X1 .Let us suppose D2 = 0 (by adding a suitable multiple of � to D we can alwaysarrange to have this). This does no harm to the argument. We put �Di = Di+�.Also suppose �D2i = 0. Then we can writev1 = 0BBBBBBBBB@ PKj��=2aj;wetKj� �D1PKj��=�2aj;wetKj� �D1PKj��=0i�d0aj;wet iKj� �D10 1CCCCCCCCCAWhen both �Xi are of simple type with b1 = 0 and b+ > 1, and also X is of simpletype (from subsection 2.3.1, b1(X) = 0, b+(X) > 1), we haveD wX (tD) = (5.9)= ( XKi��=2ai;wetKi� �D1;XKi��=�2ai;wetKi� �D1)0@ 32(a3+4a2)2 00 � 32(a3�4a2)2 1A0BB@ PLj��=2bj;wetLj� �D2PLj��=�2bj;wetLj� �D2 1CCATheorem 5.17 Let �Xi be as in section 5.1 with b1 = 0, b+ > 1 and of simpletype. Write D w�X1 = eQ=2P ai;weKi and D w�X2 = eQ=2P bj;weLj . Let X = �X1#� �X2(for some identi�cation) and suppose X is of simple type. Let D 2 H2(X) be



86 CHAPTER 5. CONNECTED SUMS FOR GENUS 2of second type with D � � = 1. Write D = D1 + D2, Di 2 HR2 (Xi; @Xi). Put�Di = Di +�, so D2 = �D21 + �D22. Then (for appropriate homology orientations)D wX (tD) == eQ(tD)=2( XKi��=Lj ��=232ai;wbj;w e(Ki� �D1+Lj� �D2+2)t + XKi��=Lj ��=�2�32ai;wbj;w e(Ki� �D1+Lj� �D2�2)t):Proof. The statement is equivalent to proving that the square matrix in equa-tion (5.9) is 0@ 32e2t 00 �32e�2t 1A:We can again suppose D2 = �D21 = �D22 = 0 (in the general case we only have toadd some extra terms eQ(tD)=2, eQ(t �Di)=2). For proving this, it would be enough to�nd examples of manifolds �X1, �X2 and X whose basic classes are known. Insteadwe use an indirect argument. Since all the manifolds involved can be chosen ofsimple type with b1 = 0, b+ > 1, the non-zero entries of the matrix are �nitesums of exponentials, i.e. 0BB@ P cn ent 0 00 P dn ent 00 0 0 1CCANow we evaluate the series on tD + r1�1 + r2�2, for �i 2 H2(Xi;Z), put t = 0and use theorem 5.6 to get P cn = 32 and P dn = �32. Let S = CP2#10C P2 therational elliptic surface blown-up once. Denote by E1; : : : ; E10 the exceptionaldivisors and let T1 = C � E1 � � � � � E9, T2 = C � E1 � � � � � E8 � E10, whereC is the cubic curve in CP2. So T1 and T2 can be represented by smooth tori ofself-intersection zero and with T1 � T2 = 1. We can glue two copies of S along T1.The result is a K3 surface S#T1S blown-up twice. The T2 pieces glue togetherto give a genus 2 Riemann surface �2 of self-intersection zero which intersects T1in one point. Now set X = (S#T1S)#�2(S#T1S), call � = �2 and get D piecingtogether both T1 in S#T1S. So (choose w = T1 on S#T1S)D(D;�)X (etD+s�) = eQ(tD+s�)=2( XKi��=Lj ��=2cnaibj e2s+nt + XKi��=Lj ��=�2dnaibj e�2s+nt) == ets(X cn16e2s+nt +X dn16e�2s+nt)



5.3. CLASSES OF THE SECOND TYPE 87since T1 evaluates 0 on basic classes being a torus of self-intersection zero (thecoe�cient 116 appears from the explicit computation of the basic classes of theK3 surface blown-up in two points). The trick is now to use the symmetry factthat X = (S#T2S)#�1(S#T2S) where �1 comes from gluing together both T1.Under this di�eomorphism D = �1 and � comes from piecing together both T2in S#T2S. HenceD(�;D)X (etD+s�) = ets(X cn16e2t+ns +X dn16e�2t+ns):Both expressions are equal, D(D;�)X (etD+s�) = DD+�X (tD + s�) = D(�;D)X (etD+s�)(X is of simple type from proposition 5.5). From here we deduce that cn = 0unless n = �2 and dn = 0 unless n = �2. Also c�2 = d2, c2 + c�2 = 32,d2 + d�2 = �32, so c2 � d�2 = 64. But c2 = �d�2, so it has to be c�2 = d2 = 0,whence the result. �Remark 5.18 Note that when �X1 is of simple type there is no summand inD(w;�)�X1 corresponding to se�ts. Therefore from equation (5.7) with A = Aa,0 = �1(a3 � 16a1) + �3(a1 � 116a3) and then (�3 � 16�1)(a3 � 16a1) = 0, so�3 = 16�1. In particular, for any X2, the manifold X = �X1#� �X2 has a serieswithout the coe�cient corresponding to se�ts. In this case we haveD(w;�)X (etD+s�) == 14(0; (�2 � 16�0)e�ts; (sinh 2s4 �2 + cosh 2s16 �3)ets;(�0 � �216)e�ts + (cosh 2s16 �2 + sinh 2s64 �3)ets)0BBBBB@  0 1 2 3 1CCCCCA== 164( 3 � 16 1)(16�0 � �2)e�ts + ets256 ( 2;  3)0@ 16 sinh 2s 4 cosh 2s4 cosh 2s sinh 2s 1A0@ �2�3 1A:So if both �X1 and �X2 are of simple type, we getD(w;�)X (etD+s�) = ets16 ( 1;  2)0@ 16 sinh 2s 4 cosh 2s4 cosh 2s sinh 2s 1A0@ �1�2 1A:



88 CHAPTER 5. CONNECTED SUMS FOR GENUS 25.3.2 Getting around Conjecture 5.11 and Conjecture 1.22Now we want to give an argument to reach theorem 5.17 without the use ofConjecture 5.11 about the explicit description of P� and also without the use ofConjecture 1.22. We argue as follows. We have, instead of corollary 5.12,D(w;�)X (es�+tD) =< �w(X1; etD1); Q��w(X2; etD2) >;for some symmetric map Q� = Q�(s; t). Write �w(X1; etD1) = (�0; �1; �2; �3),�w(X2; etD2) = ( 0;  1;  2;  3) and �w(A; et�) = (a0; a1; a2; a3) as before, soD(w;�)X (es�+tD) = (�0; �1; �2; �3)B(t; s)0BBBBB@  0 1 2 3 1CCCCCAfor some matrixB(t; s). Separating according to coe�cients of s in the expressionD(w;�)�X1 (es�+t �D1), 0BBBBB@ coef. of e2setscoef. of e�2setscoef. of e�tscoef. of g(t; s) 1CCCCCA = Aa(t)0BBBBB@ �0�1�2�3 1CCCCCA (5.10)where g(t; s) is a function (to be found later) linearly independent with e2sets,e�2sets and e�ts over the �eld F(t) of (Laurent) formal power series on t. Forproving the invertibility of Aa it is enough to �nd four linearly independent vectorsin F(t)
R4 for the left hand side of formula (5.10). For this we use the followingset of examples:� X aK3 surface blown-up twice with E1 and E2 the two exceptional divisors,� = S � E1 � E2 for S a tight surface of genus 2 in K3, w = E1, D acohomology class coming form the K3 such that D � S = 1, D2 = 0. Weget D(w;�)X (es�+tD) = �ets e2s�e�2s4 and therefore the vector (1;�1; 0; 0).� X, �, D as before, but now w 2 H2(K3), with w � S = 1. We will getD(w;�)X (es�+tD) = (�1)w22 ets e2s+e�2s4 � 12e�ts and the vector (1; 1;�2; 0).� X a K3 surface, � a tight torus with an added trivial handle to make it ofgenus 2, w 2 H2(X;Z) such that w �� = 1 and D with D �� = 1, D2 = 0.Then D(w;�)X (es�+tD) = �e�ts and the vector we get is (0; 0; 1; 0).



5.3. CLASSES OF THE SECOND TYPE 89� S = CP1 � �, w = P.D.[CP1], D = CP1. Then D(w;�)S (es�+tD) has asummand of the form s + t f(t; s), since when we set t = 0 there is asummand which is a multiple of s. So we get a vector with non-vanishinglast component.So this means that we have the expression of equation (5.10) with g(t; s) =s+ t f(t; s) and with an invertible matrix Aa (lemma 5.13). Having reached thispoint we know of the existence of a universal matrix as in (5.8). For the simpletype case we get the expressionD(w;�)X (etD) = (v1)T M(t) v2with v1 = 0@ XKj��=2aj;wetKj� �D1;XKj��=�2aj;wetKj� �D1; XKj��=0i�d0( �X1)aj;wet iKj� �D11AT ;and analogously for v2. The 3 by 3 matrix M(t) is universal. This matrixis diagonal since obviously it is always the case Ki � � = Lj � �, for nonzerosummands. Now consider the case in which both �Xi and �i are as in the thirdexample above. Then X = �X1# �X2 splits o� a S2 � S2, so its invariants arezero. Therefore the third diagonal entry in the matrix is zero. The other twocoe�cients are computed in the proof of theorem 5.17.Also, the fact that Aa is invertible implies corollary 5.15, so this corollary doesnot depend on any conjecture. On the other hand, our proof of theorem 5.16 doesdepend on the conjectures.As promised, we are going to support Conjecture 5.11 with some evidence.By equation (5.4) one can writeQ� = esP� = esP0+stP1+ 12 st2P2+���Suppose that all maps Pi = P�;i leave invariant the 2-eigenspace of P0, then Piacts as a complex number �i in that subspace and Q� as e2s+st�1+ 12 st2�2+���. Thisproduces a function of that shape in the Donaldson series D(w;�)X (etD+s�). Sincewe have seen that the term e2s+ts is the only one appearing with a 2s summandin the exponent, it must be �1 = 1 and �i = 0 for i � 2. The same argumentworks for the 0-eigenvector, so it is very plausible that Conjecture 5.11 be true.



90 CHAPTER 5. CONNECTED SUMS FOR GENUS 25.4 Classes of the third typeIn this section we need to use Conjecture 1.22 to compute the Fukaya-Floergroups HFF�(Y; ) (with [] not a multiple of [S1]). Also we shall need anotherconjectural result about the action of �(�) on HFF�(Y; ), Conjecture 5.20. Theresults of this section are dependent on them. At the end of the section, we givesome nice applications of our main result, theorem 5.23, which should also betreated as conjectural.Consider a homology class D 2 H2(X) of third type. Substituting it by arational multiple if necessary, one can always write D as D = D1+D2 with Di 2HR2 (Xi; @Xi), @D1 = �@D2 =  � ��S1 and  a loop such that  ,! ��S1! �is an embedding (so the class [] is primitive and not a multiple of [S1]). Now weneed to work out the groups HFF�(Y; ). There is an identi�cation Y �! ��S1carrying  to a loop �1 inside �. The E3 term of the usual spectral sequence isHF�(Y )
 Ĥ�(CP1) with di�erential d3 given by�(�1) : QHi(Modd� )
Hj(CP1)! QHi�3(Modd� )
Hj+2(CP1):From this we write the E5 term of the spectral sequence and see that the dif-ferential d5, being invariant under the subgroup of di�eomorphisms of � �xing�1, has to be zero. Hence HFF�(Y; ) is equal to this E5 term. Let us writeit down. Set HF red2 =< h2>, HF red0 = HF 2= < h3 � 16h >, W0 = �(�1)? andW = �(�1)?= <�(�1)>. ThenHFF0(Y; ) = HF0 � 0 � HF red2 � 0 � HF red0 � � � �HFF1(Y; ) = 0 � 0 � W � 0 � 0 � � � �HFF2(Y; ) = HF red2 � 0 � HF red0 � 0 � HF red2 � � � �HFF3(Y; ) = W0 � 0 � 0 � 0 � W � � � �So �nally we put e0 = h2 2 HF red2 , e1 = h 2 HF red0 and e3 = h3 � 16h 2 HF0.We have HFFeven = (HF redeven 
 Ĥ�(CP1))� (< e3 > 
H0(CP1)):There is an intersection pairing for HFF�(Y; ) induced by the pairing on Floerhomology. For that, we have e0 � e0 = 0, e0 � e1 = 4, e1 � e1 = 0 and e0 � e3 = 0,e1 � e3 = 0.For every open manifold X1, D1 2 HR2 (X1; @X1) and w 2 H2(X1;Z),�w(X1;D1) = (�0; �1; �2; : : :) 2 HFF�(Y; );



5.4. CLASSES OF THE THIRD TYPE 91which we write as �w(X1; etD1). We decompose �w(X1; etD1) = �w(X1; etD1)even+�w(X1; etD1)odd in components lying in HFFeven and HFFodd. Clearly,�w(X1; etD1)even =Xi�0 �ii! ti = f0(t) e0 + f1(t) e1 + f3 e3with f3 2 Q. We expect that �w(X1; etD1)odd = 0, for any D1 2 HR2 (X1; @X1),whenever b1( �X1) = 0, as in lemma 5.10. This is due to the fact that the pair-ing in HFFodd(Y; ) is antisymmetric though < �w(X1; etD1); �w(X2; etD2) >=<�w(X2; etD2); �w(X1; etD1) > (this argument replaces the proof of lemma 5.10).Consider another pair X2, D2, with corresponding (g0(t); g1(t); g3). The pair-ing formula readsD(w;�)X (etD) = (f0; f1)0@ 0 1414 0 1A0@ g0g1 1A = 14 (f0g1 + f1g0):Remark 5.19 If we take an identi�cation � : Y �! Y , then the induced map onthe even part of the Fukaya-Floer homology is the identity.We use again the trick of transferring � from X1 to X2 and the map P� :HFF�(Y; ) ! HFF�(Y; ), as in the previous section. We have the followingconjecture about the structure of P� analogous to Conjecture 5.11. We also couldavoid using it as in subsection 5.3.2.Conjecture 5.20 P�;0 is quantum multiplication by �(�). P�;1 is the identityon the �2-eigenspaces for the action of �(�) (and preserves the 0-eigenspacegenerated by e3). P�;a = 0, for a � 2.Corollary 5.21 As a consequence of the above conjecture we getD(w;�)X (es�+tD) =< �w(X1; etD1); e(s�)(tD1)es�(�) � �w(X2; etD2) > :Clearly es�(�) � e3 = e3 since �(�) � e3 = 0 andes�(�) : 0@ f0f1 1A 7! 0@ cosh 2s 14 sinh 2s4 sinh 2s cosh 2s 1A0@ f0f1 1A:Easily we obtain es�(�) = 1 + cosh 2s� 116 e0 + sinh 2s4 e1 (5.11)



92 CHAPTER 5. CONNECTED SUMS FOR GENUS 2Let us write �w(X1; etD1) = (f0; f1) and �w(X2; etD2) = (g0; g1). ThenD(w;�)X (es�+tD) = ets(D��)(f0; f1)0@ 0 1414 0 1A0@ cosh 2s 14 sinh 2s4 sinh 2s cosh 2s 1A0@ g0g1 1A == 116 ets(D��)(f0; f1)0@ 16 sinh 2s 4 cosh 2s4 cosh 2s sinh 2s 1A0@ g0g1 1A: (5.12)We consider now the following very important example. Let �A be the K3surface blown-up in two points and let E1 and E2 stand for the exceptionaldivisors. Let S � K3 be a tight embedded surface of genus 2 and put � =S � E1 � E2 for its proper transform, which is represented by an embeddedsurface of genus 2 and self-intersection zero. A will be the complement of atubular neighbourhood of � in �A. Call X = �A#� �A the double of �A, i.e. theconnected sum of �A with itself with the identi�cation which is given by thenatural orientation reversing di�eomorphism of Y = @A to itself. As in the proofof theorem 5.17, we choose D to be the embedded surface obtained by piecingtogether two �bres of the natural elliptic �bration of �A. Then D is a genus 2Riemann surface of self-intersection zero. Also take w = P.D.[D] 2 H2(X;Z).Then D(w;�)X (etD+s�) = ets(2 e2s+2t � 2 e�2s�2t):We can take a collection �i, 1 � i � 4, of framed loops in a �bre � � @A, whichtogether with S1 form a basis for H1(Y ), such that they can be capped o� withembedded (�1)-discs Di (writing �A = S#T1S, as in the proof of theorem 5.17,we consider the vanishing discs of the elliptic �bration of S with �bre T2, see [24,page 167], since they do not intersect T1). Now these discs can be glued to-gether pairwise when forming X = A[Y A, since the framings are respected (seeremark 2.19), to give a collection of (�2)-embedded spheres Si = Di [�i Di. Ev-eryone of these discs has a dual torus Ti, by considering another loop in � � @A,say �i, with �i � �i = 1, and putting Ti = �i �S1 � � �S1. Then the elementsSi+Ti are represented by embedded tori of self-intersection zero. Since the man-ifold X is of simple type (proposition 5.5), the basic classes evaluate zero on Tiand on Si + Ti. Our conclusion isD(w;�)X (e�) = 4 eQ(�)=2 sinh(K � �);with K 2 H2(X;Z) being the only cohomology class with



5.4. CLASSES OF THE THIRD TYPE 93� K � � = (E1 + E2) � � for � 2 H2(A).� K � � = K �D = 2.� K � Si = K � Ti = 0, for all i.i.e. K plays the role of the canonical class of X (if it were an algebraic surface).Now we split K into two symmetric pieces Ki � A. The boundary of Ki is@Ki = 2S1 and K2i = 2 since K2 = 4.Lemma 5.22 For every framed loop  in Y (with  ,! Y ! � embedding), thereis a D 2 HR2 (A; @A), whose boundary is  and such that (f0; f1) = etD2=2(2; 0)or etD2=2(0; 8) (up to sign). Moreover any such D satisfy the condition as longas D �K1 = 0.Proof. Choose any D 2 HR2 (A; @A) with boundary . If D �K1 6= 0, then adda rational multiple of � to D to get D � K1 = 0 (possible since K1 � � = 2).Suppose without loss of generality that D2 = 0. Then consider the embeddedsurface D = D +D 2 H2(X), which has D �K = 0 and soD(w;�)X (es�+tD) = 4 ets(��D) sinh(2s) == 116 ets(D��)(f0; f1)0@ 16 sinh 2s 4 cosh 2s4 cosh 2s sinh 2s 1A0@ f0f1 1A;where (f0; f1) corresponds to (A;D). Therefore we have the equations16f20 + f21 = 644f0f1 + 4f1f0 = 0from where either (f0; f1) = (2; 0) or (f0; f1) = (0; 8). �Return to the manifold �X1, and consider any D 2 HR2 (X1; @X1) with bound-ary  � Y . By the result above, we can cap o� D in ~X1 = �X1#� �A = X1 [Y A,to get D = ~D = D +D2, where D2 �K1 = 0 (this intersection only makes sensewhen @D2 and @K1 are disjoint, but we always can suppose that). Suppose forthe calculations that D2 = D22 = 0. ThenD(w;�)~X1 (es�+tD) = 116 ets(D��)(f0; f1)0@ 16 sinh 2s 4 cosh 2s4 cosh 2s sinh 2s 1A0@ g0g1 1A;



94 CHAPTER 5. CONNECTED SUMS FOR GENUS 2where �w(X1; etD) = (g0; g1). The possibility (f0; f1) = (2; 0) yields0@ coef. of e2s+tscoef. of e�2s+ts 1A = 140@ 4 1�4 1 1A0@ g0g1 1A:The possibility (f0; f1) = (0; 8) yields0@ coef. of e2s+tscoef. of e�2s+ts 1A = 140@ 4 14 �1 1A0@ g0g1 1A:Now ~X1 has b+ > 1 and b1 = 0 (since b1( �X1) = 0). Let us see that it is ofsimple type. For this it is enough to prove that �w(A; (x2 � 4)etD2) = 0 for D2of third type. X = �A#� �A has D(w;�)X (es�+tD) = 4ets(��D) sinh(2s) if D �K = 0.In the same fashion, we �nd that for Z = �A#� �A#� �A, Z is of simple type andD(w;�)X (e�) = 16eQ(�)=2 cosh(KZ � �), where KZ satisfy conditions analogous tothose of K. So D(w;�)Z (es�+tD) = 16ets(��D) cosh(2s), whenever D �KZ = 0. Thisimplies that the vectors (f0; f1) given by A and by Xo = X � N� are linearlyindependent. The vector �w(A; (x2 � 4)etD2) is orthogonal to both �w(A; etD1)and �w(Xo; etD1), as X and Z are of simple type, so it is zero. Then we can writeD w~X1 = eQ=2P ~ai;we ~Ki for its Donaldson series. So either0@ g0g1 1A = 120@ 1 �14 4 1A0BB@ P~Ki��=2 ~ai;wet ~Ki�DP~Ki��=�2 ~ai;wet ~Ki�D 1CCAor 0@ g0g1 1A = 120@ 1 14 �4 1A0BB@ P~Ki��=2 ~ai;wet ~Ki�DP~Ki��=�2 ~ai;wet ~Ki�D 1CCA:If we have two manifolds �X1 and �X2 (with D w~X1 = eQ=2P ~ai;we ~Ki and D w~X2 =eQ=2P~bj;we~Lj) and consider the connected sum X = �X1#� �X2 along �, let D 2H2(X) be decomposed as D1 + D2 with Di 2 HR2 (Xi; @Xi) and consider twocappings ~Di in ~Xi as before. Then we use equation (5.12) and the di�erentpossible combinations of the cases above to get (in all cases)D(w;�)X (es�+tD) = (5.13)= eQ(s�+tD)=2(X~Ki��=2~ai;wet ~Ki� ~D1; X~Ki��=�2~ai;wet ~Ki� ~D1)0@ e2s2 00 � e�2s2 1A0BBB@ P~Lj��=2~bj;wet~Lj� ~D2P~Lj ��=�2~bj;wet~Lj� ~D2 1CCCA



5.4. CLASSES OF THE THIRD TYPE 95= eQ(s�+tD)=2( X~Ki��=~Lj ��=212~ai;w~bj;wet( ~Ki� ~D1+~Lj � ~D2)+2s� X~Ki��=~Lj��=�212~ai;w~bj;wet( ~Ki� ~D1+~Lj� ~D2)�2s):The choice of signs in lemma 5.22 does not matter for this �nal result. Also if wedo not suppose D2 = 0 we get the same expression.We also want to remark that the formula remains valid for any � 2 H2(X).For this it is enough to consider D + r� with � of the �rst or second type andmake t! 0 while keeping rt = 1.Theorem 5.23 Let �Xi be two manifolds with b1 = 0 and Riemann surfaces�i � �Xi of genus 2, self-intersection zero and representing odd homology classes.Consider ~Xi = �Xi#� �A, which are of simple type. Put D w~X1 = eQ=2P ~ai;we ~Ki andD w~X2 = eQ=2P~bj;we~Lj . Let X = �X1#� �X2 (for some identi�cation). Then X is ofsimple type. For every D 2 H2(X), consider any cappings ~Di 2 H2( ~Xi) with thecondition above. ThenD wX (tD) = eQ(tD)=2( X~Ki��=~Lj ��=212~ai;w~bj;wet( ~Ki� ~D1+~Lj� ~D2) � X~Ki��=~Lj ��=�212~ai;w~bj;wet( ~Ki� ~D1+~Lj � ~D2)):Proof. The only remaining point is to prove that X is of simple type. This isproved as in corollary 5.15, using that (f0; f1) is determined by D(w;�)~X1 (et ~D1+s�)(analogue of corollary 5.14). �Corollary 5.24 Under the conditions of theorem 5.23, X has no basic classes �with � � � = 0.Now we pass on to give some nice and simple applications of theorem 5.23.Probably, many results like the following can be obtained in the same fashion.We only want to give some examples to show its usefulness.Corollary 5.25 Let �X1 and �X2 be two manifolds with b1 = 0 and embedded�i � �Xi of genus 2 and odd. Let � and  be two di�erent identi�cations forY = � � S1 and consider the two di�erent connected sums along �, X(�) andX( ). Suppose that �� =  � : H1(Y )! H1(Y ). Then there is an (non-canonical)isomorphism of vector spaces H2(X(�)) �! H2(X( )) sending the basic classes ofX(�) to those of X( ) such that the rational numbers attached to them coincide.Proof. First we observe that we have a natural identi�cation of the images I�of H2(X1) � H2(X2) ! H2(X(�)) and I of H2(X1) � H2(X2) ! H2(X( ))



96 CHAPTER 5. CONNECTED SUMS FOR GENUS 2since the kernels coincide. Now consider a splitting H2(X(�)) �= Im(I�) � Vwith V �! H1(Y ). Choose an integral basis f�g for H1(Y ;Z). For every �we have an element D� 2 H2(X(�)) which can be split as D� = D1 + D2, forDi 2 HR2 (Xi; @Xi) with @D1 = , �@D2 = �() and � = []. Now we leave D1(and ~D1 2 H2( ~X1)) �xed and modify D2 to glue it to D1 in H2(X( )). Write~D2 = D2 +D3 2 H2( ~X2). The loops �() and  () are homologous and hencethere is homology C = S1� [0; 1] ,! � � ��S1 between them. ConsiderD03 = hD3 [�() C [ () ( ()� [0;1))i+ n� 2 HR2 (A; @A)D02 = hD2 [�() (�C) [ () (� ()� [0;1))i� n� 2 HR2 (X2; @X2)where n is chosen so thatD03�K1 = 0. So ~D02 = D02+D03. ConsiderD0� = D1+D02 2H2(X( )). The map D� 7! D0� gives the sought isomorphism H2(X(�)) �!H2(X( )), since ~D2 = ~D02. �This corollary says that although in principle X(�) and X( ) might notbe di�eomorphic (and probably in many cases this happens), they can not bedistinguished by the number and coe�cients of their basic classes. Still thepolynomial invariants can di�erentiate both manifolds (maybe the intersectionmatrix of the basic classes could help). It would be desirable to �nd exampleswhen this happens. The identi�cations to try out could be Dehn twists, asmentioned in remark 2.4.Corollary 5.26 Let �X1 and �X2 be two manifolds with b1 = 0 and embedded�i � �Xi of genus 2 and odd. Let � and  be two di�erent identi�cations forY = � � S1 and consider the two di�erent connected sums along �, X(�) andX( ). Suppose that X(�) has only two basic classes ��. Then the same is truefor X( ) and the coe�cients coincide (up to sign). Also if the invariants of X(�)vanish (no basic classes), so do the invariants of X( ).Proof. We do the case of two basic classes. The other one is analogous. Suppose� = Id, put X = X(�) and let �� be the two basic classes, with � � � = 2. Letc�;w be its coe�cient. We now want to prove that this implies that there is onlyone basic class ~Ki with ~Ki � � = 2 and only one basic class ~Lj with ~Lj � � = 2.The result is obvious from that applying theorem 5.23.Suppose that we can �nd Si 2 H2( ~Xi) with � = S1 \ [Y ] = �S2 \ [Y ] 2H1(Y ;Z) such that all the values ~Ki � S1 are di�erent among them, and all the



5.5. THE CASE OF HIGHER GENUS 97values ~Lj � S2 are also di�erent among them (where ~Ki and ~Lj run through allthe basic classes in ~X1 and ~X2 evaluating 2 on �). Then reorder the subindicesin such a way that ~K1 � S1 < ~K2 � S1 < � � � < ~Kn1 � S1~L1 � S2 < ~L2 � S2 < � � � < ~Ln2 � S2We can easily arrange Di 2 HR2 (Xi; @Xi) with @D1 = �@D2 =  2 F
(Y ) with[] = � such that ~Di = Si. Set D = D1+D2 2 H2(X) and apply equation (5.13).We have c�;wet��D = X~Ki��=~Lj ��=2 12~ai;w~bj;wet( ~Ki�S1+~Lj �S2)Considering the exponentials with the smallest and with the largest exponents,we get that it has to be ~K1 � S1 + ~L1 � S2 = ~Kn1 � S1 + ~Ln2 � S2, from where theresult.To �nd the required collection of Si, we consider all the di�erences �ij =~Ki� ~Kj, �ij = ~Li� ~Lj, i 6= j. Consider � 2 H1(Y ;Z) such that � ��ij 6= 0 for any�ij which happens to be in the image of the homomorphism H1(Y ) �= H2(Y ) ,!H2( ~X1) �= H2( ~X1), and � � �ij 6= 0 when �ij is in the same condition with ~X2replacing ~X1. Now we can choose S1 2 H2( ~X1) with S1 \ [Y ] = � such that�ij �S1 6= 0 (indeed the bad set is a �nite union of hyperplanes). Analogously wechoose S2. �5.5 The case of higher genusWe propose the following (see corollary 5.9)Conjecture 5.27 Let �Xi have b1 = 0, b+ > 1 and be of simple type. Suppose thatthere are embedded surfaces �i � �Xi of genus g � 3, representing odd homologyclasses of self-intersection zero. Form X = �X1#� �X2 with some identi�cation.Then X is of simple type and every basic class � of X intersects Y in n[S1]where n is an even integer with �(2g � 2) � n � (2g � 2). Moreover the sumof the coe�cients c�;w of the di�erent basic classes � agreeing with (K;L) 2H2(X1;Z) � H2(X2;Z) (i.e. �jX1 = K and �jX2 = L) is zero unless KjY =LjY = �(2g � 2)P.D.[S1]. In this latter case, it is �27g�9 times the product( XKijX1=K ai;w) � ( XLjjX2=L bj;w);



98 CHAPTER 5. CONNECTED SUMS FOR GENUS 2where ai;w are the coe�cients of the basic classes Ki of X1 (and similarly for bj;w,Lj and X2).The factor �27g�9 is the one agreeing with section 7.3. Here we propose away of tackling this Conjecture. CallHF� = HF�(��S1) = QH(6g�6)��(Modd� );and let u = �(pt), h = �(�) and � = P�(�2i)�(�2i+1) be the generators ofthe invariant part of HF� (f�ig is a basis of H1(�) with �2i � �2i+1 = 1 and theother pairings zero). Actually this invariant part is generated as a vector spaceby uihj�p with i + 2p < g and j + 2p < g [33]. Now we de�ne I to be the idealin HF generated by the image of H1(�) under �. The space HF=I is generatedby elements of the form uihj with i < g, j < g (in principle they might not belinearly independent). Consider V any subspace ofHF containing the orthogonalcomplement I? of I such that it has generators eij = uihj (mod I), i < g, j < g.The dimension of V is N = g2. We decompose HF� = V �W withW = V ? � I.Obviously, we intend to get rid of the part W corresponding to the 1-homology.Now we write E = esh+�u+�� =X fijp(s; �; �)uihj�p:We have that for every relation R(h; u;�) = 0 it is R( @@s ; @@�; @@�)E = 0 and soR( @@s ; @@�; @@�)fijp = 0. Note also that @@si @@�j @@�pfi0j0p0(0; 0; 0) = �ijpi0j0p0 for i + 2p <g and j + 2p < g. So the fijp are linearly independent functions. E de�nesa map from V to V (which we keep on calling E) by multiplication followedby orthogonal projection. This map is of the form Nc gc(s; �; �), where Nc areconstant endomorphisms of V , c = (i; j), 0 � i; j < g and gc(s; �; �) are linearlyindependent functions.Let now X be an open manifold with boundary Y = � � S1 and D 2HR2 (X; @X) with @D = S1. Then �w(X;D) 2 HFF�(Y;S1) = HF� 
 Ĥ�(CP1)has components �w(X;D)V in V and �w(X;D)W in W . When b1(X) = 0 oneexpects to have �w(X;D)W = 0, as in lemma 5.10. Hence it would beD(w;�)X (etD) =< �w(X1; etD1)V ; �w(X2; etD2)V > :So if either of �Xi has b1 = 0, then D(w;�)X (etD+s�+�x) = D(w;�)X (etD+s�+�x+��) isequal toets < �w(X1; etD1)V ; eij > (< eij; ei0j0 >)�1 < ei0j0; E � �w(X2; etD2)V > :



5.5. THE CASE OF HIGHER GENUS 99Write �a = �a(t) for the components of �w(X1; etD1) in V and  a =  a(t) for thecomponents of �w(X2; etD2). ThenD(w;�)X (etD+s�+�x) = ets �a(t)Mabc  b(t) gc(s; �; �);for some universal matrices Mabc depending only on Y . Now we can decomposeD(w;�)X (etD+s�+�x) = etsDX;c gc(s; �; �) so DX;c = �a (Mabc  b) (note that we canchoose the gc corresponding to non-vanishing DX;c to be independent of �).When X2 = A = D2 � �, we put ab =  b. So we have constructed a mapV 
F(t) ! RN 
F(t)(�a)a 7! (�aMabc ab)cwhere F(t) is (for instance) the �eld of (Laurent) formal power series. Essentially,the map sends the \relative invariants" of X1 to the \closed invariants" of �X1,that is �w(X1; etD1) is mapped to D(w;�)�X1 (et �D1+s�+�x) (more accurately to D �X1;c)To see that D �X1 determines �a we need to prove the injectivity of this linear mapbetween vector spaces of the same dimension (or equivalently the surjectivity).Obviously,Lemma 5.28 Suppose we �nd a collection of N = g2 quadruples (X;�; w;D)consisting of closed manifolds with embedded surfaces � � X of genus g, self-intersection zero and representing odd homology classes with D � � = 1, D2 = 0,such that the functions e�tsDX(etD+s�+�x) are linearly independent over F(t).Then the map above is an isomorphism.If this were proved, we could mimic the argument of section 5.3 to obtain theexistence of some N by N universal matrix P whose coe�cients depend on t and� such that D(w;�)X (etD+�x) = (D(w;�)�X1;a (et �D1))(Pab(t; �))(D(w;�)�X2;b (et �D2)):When X is of simple type, D(w;�)X (etD+s�+�x) is a linear combination of thefunctions e2�e(2+4n)s (�[g+12 ] � n � [g�22 ]) and e�2�e4ns ( �[g2] � n � [g�12 ]), seeremark 1.12. So these functions are among the gc (or they are combinations ofthem) and without loss of generality we can suppose they are the �rst 2g�1 of thelot. With the same sort of arguments and one non-trivial example of the gluingwhere the basic classes were known, we would get the corresponding (2g � 1) by



100 CHAPTER 5. CONNECTED SUMS FOR GENUS 2(2g � 1) minor to be (conjecturally)0BBBBBB@ coef � e2t�2� 0 � � � 00 coef � e�2t�2� � � � 0... ... . . . ...0 0 � � � 0 1CCCCCCAWe can further obtain more information from X = �� CP1, but this gives usa total of (2g) times (2g) coe�cients (very far from the g2 times g2 we seek for).



Chapter 6Seiberg-Witten invariantsSince their introduction in late 1994, the Seiberg-Witten invariants have proved tobe at least as useful as their close relatives the Donaldson invariants. When b+ >1, these provide di�erentiable invariants of a smooth oriented 4-manifold, whoseconstruction is very similar in nature to the Donaldson invariants. Conjecturally,they give the same information about the 4-manifold, but they are much easierto compute in many cases, e.g. algebraic surfaces (see [63][25]). They have beenused very successfully to obtain information about the di�erentiable structure of4-manifolds [47][25] and about submanifolds of 4-manifolds [39][19]. Also Taubeshas used them to prove strong theorems about symplectic manifolds [57][58].The classi�cation problem of simply connected 4-dimensional manifolds cannot be solved with these invariants, but they may be the key for understandingthe subcategory of symplectic 4-manifolds (see [57]). In any case it is intriguing tocompute them for a general 4-manifold. The �rst step towards it is obviously torelate the invariants of a manifold with those of the manifold which results aftersome particular surgery on it. Some cases have been dealt with [63][17]. We areinterested in the behaviour of this Seiberg-Witten invariants under a connectedsum along a Riemann surface, as we have studied the behaviour of Donaldsoninvariants under the same operation and this can be a testing ground for theconjecture that both set of invariants are equivalent.Also we would like to mention that Morgan, Szab�o and Taubes [44] havecarried out very similar work independently. This was pointed out to me bySzab�o, who provided me with a copy of their work [44].101



102 CHAPTER 6. SEIBERG-WITTEN INVARIANTS6.1 Seiberg-Witten invariantsWe start o� by recalling the de�nition of the Seiberg-Witten invariants. Let Xbe a smooth compact oriented four-manifold with b+ > 0 (we will suppose laterthat b1 = 0). We furnish it with a Riemannian metric g.The SpinC (n) group isSpinC (n) = Spin(n)�Z2 U(1):A SpinC structure c on a Riemannian n-manifold is a lifting of the principleSO(n) tangent bundle to a principle SpinC (n)-bundle. There is a morphismSpinC ! U(1) given by [B; �] 7! �2. Accordingly, every SpinC structure c hasan associated complex line bundle L called its determinant line bundle. Ingeneral, the �rst Chern class of the determinant line bundle c = c1(L) is a liftof w2(X) to integer coe�cients (we call that a characteristic cohomologyclass). Conversely, for any such a lift c, the possible SpinC structures withc1(L) = c are parametrised by the 2-torsion part of H2(X;Z). Therefore, if Xis simply connected the SpinC structures are determined by c, which may be anycharacteristic class. Said otherwise, the set of SpinC structures is an a�ne spacemodelled on H2(X;Z), and �xing c0 with determinant line bundle L0, the otherSpinC structures are c = c0 
 �, � 2 H2(X;Z), with determinant line bundleL = L0 
 �2.In dimension four, there is an exact sequenceSpinC (4) ,! U(2)+ � U(2)� ! U(1);where the last map is (A;B) 7! det(A) det(B)�1. So a SpinC structure has asso-ciated U(2)-bundles W+ = W+c and W� = W�c . These are the two inequivalentirreducible SpinC bundles and L = �2W+ = �2W� is the determinant line bundleof c. Cli�ord multiplication consists of a couple of maps� : �1C ! HomC (W�;W�):They induce a map on two-forms� : �2C ! HomC (W�;W�):If we consider an orthonormal basis e1; : : : ; e4 of T �xX, we have �(ei ^ ej) =�(ei)�(ej), i 6= j. We have that the map � splits as two homomorphisms� : (�2�)C ! HomC (W�;W�):



6.1. SEIBERG-WITTEN INVARIANTS 103We can choose the map � to act as12(e1 ^ e2 + e3 ^ e4) 7! 0@ �i 00 i 1A12(e1 ^ e3 � e2 ^ e4) 7! 0@ 0 �i�i 0 1A12(e1 ^ e4 + e2 ^ e3) 7! 0@ 0 �11 0 1Aso � : (�2+)C ! sl(W+), taking the real forms into su(W+) and the imaginaryform to self-adjoint operators.Every connection A on L induces a Dirac operator 6DA : �(W+) ! �(W�)when coupled with the Levi-Civita connection on the tangent bundle of X. Themonopole equations introduced by Seiberg and Witten [63] for a pair (A;�) ofconnection A on the line bundle L and section � 2 �(W+) are8<: 6DA� = 0�(F+A ) = (�
 ��)0 (6.1)where �� 2 (W+)� �= �W+ is the conjugate of � obtained using the hermitianmetric and (�
 ��)0 2 sl(W+) is the trace-free part of (� 
��) 2 End(W+).The gauge group G = C1(X;S1) acts on the con�guration space A(L) ��(W+) by �(A;�) = (A � 2��1d�; ��) with quotient B (here we need to usesuitable Sobolev completions). A solution (A;�) is reducible (i.e. has non-trivialstabiliser) if and only if � = 0. Let B� denote the subset of irreducible pairs.The cohomology ring of B� is H�(CP1;Z)
 ��H1(X;Z). When b1 = 0, it willbe generated by an element � of degree two. If we consider evaluation in onepoint G ev! S1, denote the kernel by Go. Then Bo = A�=Go and Bo ! B� is aU(1)-bundle whose �rst Chern class is �.The moduli space of solutions of the equations (6.1) sits in B and will bedenoted by WX;g(c). It has expected dimensiond = c2 � (2�+ 3�)4 ;where � is the Euler characteristic of X and � its signature. The moduli spaceis always compact. Whenever b+ > 0 and c1(L) is not torsion, reducibles canbe avoided for a generic metric. For obtaining a smooth moduli space we have



104 CHAPTER 6. SEIBERG-WITTEN INVARIANTSto perturb the equations by adding a self-dual 2-form to F+A [39]. As a self-dual2-form is always the self-dual projection of a closed two form, we consider theequations 8<: 6DA� = 0�((FA + i �)+) = (� 
��)0 (6.2)for � a closed real two-form. The moduli space of solutions is denoted byWX;g;�(c). For generic perturbation � there are no reducible solutions. Alsothis moduli space is smooth for generic perturbation (moreover we can supposeit is supported in a small ball). Both statements are also valid when c1(L) istorsion.The moduli space is orientable and an orientation is determined by a choiceof homology orientation for X (see [63]).Let X be a compact, oriented 4-manifold endowed with a Riemannian metricg. Fix a homology orientation of X. Then for generic closed two forms �, themoduli space WX;g;�(c) is smooth, compact, oriented, free of reducibles and ofdimension the expected dimension d. So if d < 0, it will be empty.De�nition 6.1 We de�ne the Seiberg-Witten invariant SWX;g;�(c) for theSpinC structure c to be zero if d < 0 or if d is odd and to beSWX;g;�(c) =< �d=2; [WX;g;�(c)] >for d even. Note that d is even when b+ is odd (since b1 = 0). When d = 0,SWX;g;�(c) is the number of points of WX;g;�(c) counted with signs. When b+ > 1this number is independent of metrics and perturbations and is denoted SWX(c).When b+ = 1 we have to deal with reducibles that appear for generic paths ofmetrics and perturbations �. Let b = [�] 2 H2(X;R). For �xed c with c1(L) = cthere are reducibles when FA+ i� is ASD, i.e. when [c+ 12�b] �!g = 0, for [!g] 2 Hthe period point of g. So for every b 2 H2(X;R) there is at most one wall. Thereare two possible invariants1 SW�X (c) depending on whether �[c+ 12�b] � !g > 0.De�nition 6.2 Let c be a characteristic cohomology class. We de�ne SWX(c)to be the sum of SWX(c) over all SpinC structures c with determinant line bundlewith �rst Chern class c (note that there are a �nite number of them).1We have to choose a component of the cone fx 2 H2(X;R)=x2 > 0g and then ask theperiod point of every metric to lie in it. We suppose that this has always been done.



6.2. SEIBERG-WITTEN EQUATIONS FOR A THREE-MANIFOLD 105De�nition 6.3 Let X be a compact, oriented 4-manifold with b1 = 0, b+ > 1and odd. Then we say that a characteristic cohomology class c 2 H2(X;Z) is aSeiberg-Witten basic class (or a basic class for brevity) for X if c2 = 2�+3�and SWX(c) 6= 0.One important remark in place is the fact that the set of classes with non-vanishing Seiberg-Witten invariant is always �nite [63].De�nition 6.4 For X compact, oriented 4-manifold with b1 = 0 and b+ > 1and odd, we say that it is of (Seiberg-Witten) simple type if SWX(c) = 0whenever d = (c2 � (2�+ 3�))=4 > 0.In this chapter and the next, basic class will always refer to Seiberg-Wittenbasic class and simple type to Seiberg-Witten simple type.Witten has proved [63] that every K�ahler surface is of simple type and ideasof Kronheimer and Mrowka give the basic classes explicitly (see [36]). MoreoverTaubes [57] [58] has proved that for a symplectic four-manifold (X;!) with b+ > 1the canonical class K = �c1(TX) is a basic class and that for any other basicclass � 6= �K, one has j� � [!]j < K � [!].6.2 Seiberg-Witten equations for a three-mani-foldOur main interest is the study of the behaviour of the Seiberg-Witten invariantsunder elementary surgeries. This amounts to splitting X along an embedded3-manifold Y � X. So we have X = X1 [Y X2, where X1 and X2 are manifoldswith boundary. We orient Y so that @X1 = Y and @X2 = Y , Y with reversedorientation. We will have to consider families of metrics giving longer and longernecks. So we need to study the equations (6.1) for cylinders Y �R.The simplest cases are those for which Y admits a metric of positive scalarcurvature. For instance, for Y = S3 (i.e. X is a connected sum) we have that thehypothesis b+(Xi) > 0 for both Xi leads in a straightforward way to the vanishingof all the invariants for X [63]. The case b+(X1) = 0 and b+(X2) > 0 is also ofinterest and we have, for instance, the following theorem about the behaviour ofthe Seiberg-Witten invariants under blowing-ups [19]



106 CHAPTER 6. SEIBERG-WITTEN INVARIANTSProposition 6.5 If X is of simple type and fKig is the set of basic classes ofX, then the blow-up ~X = X#CP2 is of simple type and (denoting by E theexceptional divisor) the set of basic classes are fKi � Eg.If we are interested on the study of equations (6.1) for a manifold X = X1[YX2, the standard technique in Donaldson theory is to pull apart X1 and X2 sothat we are led to consider metrics giving Xi a cylindrical end and L2-solutionsof the equations in these open manifolds. So we will have to use an analogue ofthis process in the Seiberg-Witten setting, �rst introduced in [39].First we need to study the equations on the cylinder Z = Y �R. Let � : Z !Y be the projection. The coordinate on R will be t. Choose a product metric,i.e. g = ��h+ dt
 dt, for a metric h on Y .The SpinC structures on Z correspond to SpinC structures on Y by pull-back (this corresponds to the natural morphism SpinC (3) ,! SpinC (4) inducedby SO(3) ,! SO(4)). Given a SpinC structure cY on Y , there is only one spin(irreducible) bundleWY up to isomorphism. This is a rank two hermitian complexvector bundle with determinant line bundle LY . If c is the corresponding SpinCstructure on Z then its determinant line bundle is L = ��(LY ). AlsoW� �= ��WYand the restriction of the action of the Cli�ord algebra Cl(Z) on W+ to its evenpart corresponds with the action of Cl(Y ) on WY under the isomorphism��Cl(Y ) ! Cl0(Z)�0 + �1 7! �0 + �1dt (6.3)There is also an isomorphism���1Y ! �2+� 7! 12(� ^ dt+ �Y �) (6.4)Under this isomorphism, � : �1Y ! su(WY ) is given by (we denote e4 = dt)e1 7! 0@ 0 �11 0 1Ae2 7! 0@ 0 ii 0 1Ae3 7! 0@ �i 00 i 1A



6.2. SEIBERG-WITTEN EQUATIONS FOR A THREE-MANIFOLD 107Now for every pair (A;�) of connection on L and section of W+, there is agauge transformation putting A in temporal gauge. So we can suppose thatA does not have component with dt. We can interpret this pair as a path(A(t); �(t)), t 2 R, in the con�guration space A(LY )��(WY ). The gauge groupfor Y will be GY = C1(Y;S1) and the quotient BY . It is worth noticing that thegauge transformations preserving the temporal gauge conditions are pull-backsof elements in GY , so there is an equivalence between points in B and paths inBY . Again, the irreducible set will be denoted B�Y .Now let us rewrite equations (6.1) in this set up.6DA� =X ei � rei� + e4 � re4� 2 �(W�):Multiplying by e4 we get �P eie4 �rei��re4� 2 �(W+), which corresponds to�X ei � rei�(t)� @�@t 2 �(WY ):Also FA = FA(t) � @@tA(t) dt, so F+ = 12(F + �F ) corresponds to the one-form�FA(t) � @A@t . Equations (6.1) read8<: d�=dt = � 6@A(t)�(t)dA=dt = �FA(t) � i� (�) (6.5)where we have written � : WY ! �1Y for the quadratic map � (�) = �i��1((�
��)0). The solutions of equation (6.5) are the downward gradient lines of thefunctionalCSW (A;�) = 18�2 �ZY FA0 ^ a+ 12 ZY a ^ da+ ZY < �; 6@A� > dvol� ;where A0 is a �xed connection on L and A = A0+a (changing the base connectionchanges the functional by addition of a constant). To prove this we have tocompute rCSW(A;�)(a; �) == 18�2 �ZY FA ^ a+ ZY < �; 12a � � > + ZY (< �; 6@A� > + <6@A�; � >)dvol� ;where we have used that 6@A is self-adjoint. The 1=2 appears because A is theinduced connection on the determinant line bundle by the connection on WY andL = �2WY .



108 CHAPTER 6. SEIBERG-WITTEN INVARIANTSLemma 6.6 For � 2 WY and a 2 i�1Y purely imaginary form, one has < �; a �� >= �2 < a; i� (�) > (the �rst is a hermitian product, the second is a bilinearone).Proof. This is a calculation in a local basis at every point x 2 Y . Choose anorthonormal basis ei. We only have to use that the map � :WY ! su(WY )! �1Yis given by 0@ �0�1 1A 7! 0@ 12(j�0j2 � j�1j2) �0�1�0�1 12(j�1j2 � j�0j2) 1A 7!7! �Im(�0�1)e1 � Re(�0�1)e2 + j�0j2 � j�1j22 e3:�So �nally,rCSW(A;�)(a; �) = 18�2 (� < �(�FA � i� (�)); a >L2 +2Re <6@A�; � >L2);and the gradient of CSW (with respect to a metric in A(LY )� �(WY ) which isthe L2 metric on imaginary forms and twice the real part of the hermitian metricon spinors) gives equations (6.5).Now we have an exact sequence 0! G0 ! GY ! H1(Y ;Z)! 0, where G0 isthe component of the identity of GY . For an element � 2 GYCSW (�(A;�)) = CSW (A;�)+ < [�]; c1(L) > :So CSW takes values in R=Z. The universal cover of BY is ~BY = A(LY ) ��(WY )=G0. Then BY = ~BY =H1(Y ;Z). Therefore CSW can be lifted to a wellde�ned functional on ~BY (up to a constant).The critical points of CSW correspond to translation invariant solutions onthe tube Z = Y �R. They are solutions to8<: 6@A� = 0�FA = i� (�) (6.6)The reducible solutions are those for which � = 0 and therefore FA = 0. So theyonly appear when c1(LY ) = 0.We consider a perturbation as in (6.2) given by a closed real two-form �. Wesuppose it to be translation invariant and with no dt-term, i.e. the pull-back of a



6.2. SEIBERG-WITTEN EQUATIONS FOR A THREE-MANIFOLD 109two-form on Y . Then �+ = 12(�+�Y �^dt) = 12(�Y �+�^dt) and so it correspondsto a real coclosed one-form � = �Y � on Y . The equations we are led to are8<: 6@A� = 0�FA = i� (�)� i� (6.7)For any perturbation with [��] 6= �2�c1(L) there are no reducibles. For genericperturbation, the moduli space is zero-dimensional [40, lemma 2.4] and thereforeis a �nite collection of points. So reducibles can be ruled out when b1(Y ) 6= 0.The space of perturbations giving a �nite collection of irreducible points is pathconnected whenever b1(Y ) � 2. The perturbed functional isCSW�(A;�) = CSW (A;�) + 18�2 ZY i � � ^ a:Remark 6.7 The functional above is not full gauge invariant. ActuallyCSW�(�(A;�)) = CSW�(A;�)+ < [�]; c1(L) > + < ���2� � ; [�] > :Since we are interested in small �, and we have to let it vary, the functional CSWwill have a gauge behaviour dependent on the perturbation. To get around thisproblem we need to consider more general perturbations. For instance, we mighttry the following: take a neighbourhood of the singular set of CSW small enoughsuch that the preimage under ~BY ! BY is a collection of disjoint open sets.We �x one of them and consider a perturbation which is of the form (6.7) in asmaller neighbourhood and zero in the complement of the original neighbourhood.We de�ne the perturbation in the other open sets by requiring the same gaugebehaviour as CSW . Now we should prove that for a generic small perturbation ofequations (6.6) like this, the moduli space of solutions on Y is �nite and generic,and the deformed CSW functional does have a good gauge behaviour (this is notmeant to be a proof).We also have to de�ne an index ind(A;�) associated to every (deformed)solution (A;�). This is done �xing one of them and considering the spectralow of the relevant operator as in [40]. The index is de�ned modulo N , where< c1(L);H1(Y ;Z)>= NZ, sinceind(�(A;�)) = ind(A;�)+ < [�]; c1(L) > :For proving this, we should consider the mapping torus of �, i.e. a line bundleL ! Y �S1 with c1(L) = c1(L) + 2[�]
 [S1] (the factor 2 is due to the factor 2in the action of � on A). So the index will be d = c1(L)2=4 =< [�]; c1(L) >.



110 CHAPTER 6. SEIBERG-WITTEN INVARIANTS6.3 Seiberg-Witten equations for Y = �� S1We are interested in the computation of basic classes of connected sums alongRiemann surfaces. First we are going to recall briey the set up from chapter 2.�Xi are two smooth oriented four-manifolds and � is a Riemann surface of genusg � 1 such that we have embeddings � ,! �Xi with image �i, representing anon-torsion element in homology, whose self-intersection is zero. We form theconnected sum X = �X1#� �X2 by removing tubular neighbourhoods Ni of �i inboth �Xi and gluing the boundaries Y and Y with some identi�cation �. We putXi = �Xi � Ni, so X = X1 [� X2. The boundaries are di�eomorphic to � �S1.The di�eomorphism type of the resulting manifold depends on the isotopy classof � (see subsection 2.1.2). There is an exact sequence0! H1(Y ;Z)! H2(X;Z) �! G�H1(�;Z);withG the subgroup ofH2( �X1;Z)=Z[�1]�H2( �X2;Z)=Z[�2] consisting of elements(�1; �2) such that �1 ��1 = �2 ��2. The cokernel is a �nite group (so it is torsion).There are two interpretations for this. The �rst one (reading the exact sequence inhomology through Poincar�e duality) says that the 2-homology of X is composedout of the 2-homology of Y plus those cycles which restrict to X1 and X2 havingthe same boundary 1-cycle in Y (here to be in ��1(G) means to have intersectionwith Y = � �S1 a multiple of [S1]). The second interpretation says that a linebundle in X comes from gluing two line bundles in X1 and X2 and that thepossible gluings are parametrised by H1(Y ;Z).Now we pass on to study equations (6.6) for Y = ��S1. Call p : Y ! � theprojection and put � for the S1 coordinate. We choose a metric for Y which isrotation invariant, i.e. h = p�g�+d�
d�, with g� a metric on �. Let L! ��S1be a line bundle. We pull it back to �� [0; 1] under the map identifying ��f0gwith ��f1g, and denote it by ~L. Then this line bundle is topologically the pull-back of some line bundle L� on �. Clearly c1(L�) is the restriction of c1(L) to �and L is obtained by pulling back L� to � � [0; 1] and gluing with some gaugetransformation g 2 G� = C1(�;S1). The homotopy class of g is the componentof c1(L) in H1(�;Z)
H1(S1;Z) under the isomorphisms[�;S1] �= H1(�;Z)�= H1(�;Z)
H1(S1;Z);where the last one is product with the fundamental class of the circle.



6.3. SEIBERG-WITTEN EQUATIONS FOR Y = ��S1 111Any connection A on L gives a connection ~A on ~L. This ~A has a representativein its gauge equivalence class with no d� component. This is unique up to constantgauge transformation (i.e. a gauge pulled-back from �). So giving A (up togauge) is equivalent to giving a family A�, � 2 [0; 1], of connections on L� (up toconstant gauge) with the condition A1 = g�(A0), with g 2 G� in the homotopyclass determined by L.Suppose now that we have a SpinC structure c on Y , which is determineduniquely by its determinant line bundle L (since H2(Y ;Z) has no two-torsion).The SpinC structure c induces a SpinC structure on � with determinant linebundle L�. This latter one has two (irreducible) spin bundles, S+ and S�, whichare U(1)-bundles. If K� denotes the canonical bundle,S+ = �0 
 �; S� = �0;1 
 �;where � = (K� 
 L�)1=2. So L� = K�1� 
 �2. For a connection A on L� theinduced Dirac operators are(p2)�@A : 
0(�;�)! 
0;1(�;�)and its adjoint (p2)�@�A : 
0;1(�;�) ! 
0(�;�). When restricting to every �bre� � pt � � � S1, WY splits as S+ � S� ((�0; �1) corresponds to �0 + �1 � d�zp2,as jd�zj = p2) and the action of the Cli�ord algebra Cl(Y ) corresponds with theaction of Cl(�) under the inclusion.We interpret every pair (A;�) of connection on L and section of WY as apath (A�; ��), � 2 [0; 1], in the con�guration space A(L�) � �(S+ � S�). Weagain denote B� for the quotient of this space with G� and B�� for the subset ofirreducible pairs. Writing �� = �� + �� 2 �(S+ � S�), we have that the Diracoperator 6@A : �(WY )! �(WY ) is identi�ed with (we denote e3 = d�)6@A� =X ei � rei�� + e3 � re3�� = h(p2)�@A� + (p2)�@�A�i+ @@�(i� � i�):Recall that the connection A� is on the bundle L� and induces uniquely aconnection B� on the bundle �. Actually FA� = 2FB� � FK�, where FK� is thecurvature of the Levi-Civita connection on K�.By the proof of lemma 6.6, � = � + � = �0 + �1 � d�zp2 corresponds to� (�) = �Im(�0�1)e1 � Re(�0�1)e2 + j�0j2 � j�1j22 e3 =



112 CHAPTER 6. SEIBERG-WITTEN INVARIANTS= �i�0�12 d�z + i�0�12 dz + j�0j2 � j�1j22 e3 == ��0�12 � d�z � �0�12 � dz + j�0j2 � j�1j22 e3 = � �  ��p2 + ��p2!+ j�j2 � j�j22 e3;since � is complex linear and dz = e1+ ie2, d�z = e1� ie2. Now �FA = �FA�e3+��(@A@� ).Lemma 6.8 Let (A;�) 2 A(LY ) � �(WY ). Consider the family (A�; ��), � 2[0; 1], determined by the pair and write �� = (��; ��) 2 
0(�) � 
0;1(�). Thenthe solutions of (6.6) correspond to solutions of:8>>>>><>>>>>: @�@� = �ip2�@�A��@�@� = ip2�@A��p2@A�@� = �i(�� + ��)2 i�FA� = �j�j2 + j�j2 (6.8)In the third equation �� + �� 2 
1 is a real two-form. Recall that theconnection A� is equivalent to the holomorphic structure �@A� , so we can rewritethird line as either@@�(�@A�) = � ip2�� or @@�(@A�) = � ip2��:Proposition 6.9 Let (�; �) 2 
0(�)� 
0;1(�) and A�, � 2 [0; 1], such that8>><>>: @�@� = �p2i �@�A��@�@� = p2i �@A��@@� (@A�) = � ip2�� (6.9)Then A�, � and � are constant and either � = 0 and �@�A0� = 0 or � = 0 and�@A0� = 0.Proof. We work out the following expression (using i�@� = �@ in (0; 1)-forms andj�j2 = �i�� ^ �) @@� (�@��) = � @@�(i�@)� + �@�(@�@� )with the given equalities to get� 1p2i @2�@�2 = i� ip2��� � �@�(�ip2�@�);�@2�@�2 + �j�j2 + 2�@��@� = 0;



6.3. SEIBERG-WITTEN EQUATIONS FOR Y = ��S1 113where we drop subindices for convenience of notation. Take scalar product with� and integrate along � by parts to get, for every � 2 [0; 1],� Z� < @2�@�2 ; � > + Z� j�j2j�j2+ 2 Z� j�@�j2 = 0:This equation makes sense in S1, since the values for � = 0 and � = 1 coincide.Then we can integrate again by parts to getjj @@��jj2 + jj��jj2+ 2jj�@�jj2 = 0:The result is immediate from this. �Now the fourth equation in (6.8) is constant. From lemma 6.8, c1(Lj�) =14� R�(j�j2 � j�j2). So � = 0 when c1(Lj�) < 0 and � = 0 when c1(Lj�) > 0.When c1(Lj�) = 0 it must be � = � = 0 and the solution will be reducible.Corollary 6.10 If the line bundle L admits any solution to (6.6) then L is pulled-back from �. Any solution is invariant under rotations in the S1 factor.Now let L be a characteristic line bundle on Y which is the pull-back of a linebundle in �. Since � � � = 0 we have that c1(L) � � is even. Consider the SpinCstructure cY with determinant line bundle L. Then we haveCorollary 6.11 ([27]) Suppose that c1(L�) > 0. Then the solutions of equa-tions (6.8) are equivalent to the solutions of8<: �@A� = 02i�FA = �j�j2 (6.10)on �. These are the typical vortex equations. The solutions are parametrised bythe smooth algebraic variety M� = sk� (the k-th symmetric product of �), wherec1(L�) = 2g � 2 � 2k. If c1(L�) > 2g � 2 this space is empty.Theorem 6.12 Let X have b1 = 0 and b+ > 0 and odd. Suppose we have � � Xof genus g � 1 with self-intersection zero and representing a non-torsion class inhomology. Let Y be the boundary of a tubular neighbourhood of �. If SWX(L) 6= 0then jc1(L) � �j � 2g � 2 and LjY is a line bundle pulled back from �.Proof. This is a direct consequence of corollary 6.10 and the fact that the func-tional CSW is bounded when we stretch the neck into an in�nite tube Y �R, as



114 CHAPTER 6. SEIBERG-WITTEN INVARIANTSproved in [44, section 7.1] (they use the tube R� Y , which has opposite orienta-tion, so in their case the functional is increasing for solutions on the tube). Wecan give a more direct proof, as suggested by Paul Seidel. For a closed manifoldX and a pair (A;�) of connection and spinor as in section 6.1, we have, as in [11],the functionalEX(A;�) = ZX �jrA�j2 + 14 jFAj2 + 18(j�j2 + s)2� dvol;where s is the scalar curvature. This can be rewritten asEX(A;�) = ZX �j 6DA�j2 + 12 jF+A � ��1(� 
 ��)0j2 + 18s2� dvol� �2c1(L)2:The Seiberg-Witten solutions minimise this functional to ��2c1(L)2+ RX s28 . ForZ = Y � [0; T ], we have the same functional, but when rewriting it there is anextra boundary term 12(CSW (A(0); �(0))� CSW (A(T ); �(T ))).Now consider X = X1 [ (Y � [0; T ])[X2. ThenEX = EX1 + EY�[0;T ] + EX2 :For solutions to the Seiberg-Witten equations on X, EX � RX s28 +K (with K aconstant), EY�[0;T ] = RY�[0;T ] s28 + 12(CSW (A(0); �(0))�CSW (A(T ); �(T ))) andalways EXi � 0. From here we deduce the boundness of the functional CSW .�Corollary 6.13 Let �Xi be smooth oriented manifolds with b1 = 0 and b+ > 0and odd. Suppose we have �i � �Xi of the same genus g � 1 with self-intersectionzero and representing a non-torsion class in homology. Construct X = �X1#� �X2(choosing an identi�cation). Then the intersection of the basic class with Y isn[S1]. Moreover, n is an even integer between �(2g � 2) and (2g � 2). In otherwords, every basic class of X lies in ��1(G) (see exact sequence (2.2) for de�nitionof �).Remark 6.14 We can paraphrase corollary 6.13 by saying that any basic class isorthogonal to H1(�;Z)
H1(S1;Z) ,! H2(Y ;Z) ,! H2(X;Z). We can prove thatusing the adjunction inequalities. For every torus T � Y (see de�nition 2.14),T has self-intersection zero and hence K � T = 0 for any basic class K.



6.3. SEIBERG-WITTEN EQUATIONS FOR Y = ��S1 115To deal with the case of c1(Lj�) = 0 we have to introduce perturbations. Inthis case the moduli space of solutions of (6.8) consists uniquely of reduciblesand is isomorphic to the Jacobian of line bundles of degree g � 1 over �. Theperturbation we use is a real closed two-form � on Y which is S1-invariant (i.e.of the form 2�t!, for ! the symplectic form of �), such that < [�];P.D.[S1] >=2�t > 0 and equation (6.10) becomes8<: �@A� = 02i�FA = �j�j2 + 4�t (6.11)The solution space for these equations is sg�1�. Now CSW� takes values inR=tZ. We can further choose another extra (small) perturbation with a two-formnot S1-invariant to make the moduli space zero-dimensional, but we should dothis without destroying the behaviour of CSW� under gauge transformations, asin remark 6.7.When b+ = 1, c1(L) �� 6= 0, one has to consider the Seiberg-Witten invariantscorresponding to a metric with a long tube, i.e. to a metric with a period point!g 2 H close to [�]. So we consider SW�X (L) for �c1(L) � � > 0. When b+ = 1,c1(L) � � = 0, and we have chosen a perturbation of the form � = 2�t! (plusa second small perturbation), we always refer to the invariant SW+X (L), since[�] � � > 0.



Chapter 7Seiberg-Witten gluing theory7.1 Seiberg-Witten-Floer homologyIn the Seiberg-Witten context there is a parallel of the usual Floer theory forthe Donaldson invariants developed in section 1.2. At the moment this topic isunder development. Some nice few remarks about the case relevant to us appearin [11] and details have been carried out in [40] [62]. Wang [62] has studied thecase of a homology 3-sphere and Marcolli [40] has analysed the case of a gen-eral three-manifold with a line bundle of non-zero �rst Chern class. Nonetheless,Seiberg-Witten-Floer theory must be considered still under construction while allthe checking of details has to be completed. In this sense, this chapter is an appli-cation of this theory and relies upon the results of [11] [40] [62] which, althoughexpected to be true, might require eventually minor modi�cations. Therefore thischapter is rather speculative and some of the results conjectural.In general, for a three-manifold Y and a line bundle LY on Y , we perturb theSeiberg-Witten equations in the three-manifold as in equation (6.7). We will onlyhave a �nite number of solutions which are non-degenerate and irreducible. Theproblem with this perturbation is that the functional CSW� is not well-de�ned, sowe have to consider a more general perturbation as in remark 6.7. The solutionsof the perturbed equation will be the generators of CFSW�(Y ;LY ). There is alsoan index ind(a) attached to every translation invariant solution a = (A;�) (whichis de�ned up to addition of a constant). We recall that this index is de�ned onlyin Z=NZwith N such that < c1(LY );H1(Y ;Z) >= NZ (so when c1(L) = 0,the index is an integer). For generic perturbations (they might need to be moregeneric than in equation (6.7) or remark 6.7), the moduli spaces M(a; b) are of116



7.1. SEIBERG-WITTEN-FLOER HOMOLOGY 117dimension ind(b)�ind(a), and they admit a freeR-action, with quotientM0(a; b).These moduli spaces are also orientable1, so we can de�ne the boundary map as@ : CFSWi(Y ) ! CFSWi�1(Y )a 7! Xbind(a)=ind(b)�1#M0(a; b)bThen @2 = 0 and one de�nes the Seiberg-Witten-Floer homology groupsHFSW�(Y ;LjY ) as the homology of this complex. Whenever c1(L) is not torsion,these groups are independent of metrics and of (small) perturbations. When c1(L)is torsion, this is true as long as b1 � 2, since the space of perturbations givingrise to reducibles is of codimension at least two.Actually we could have de�ned these groups a bit more generally for everySpinC structure cY on Y .The cohomology groups HFSW �(Y ;LY ) are de�ned similarly out of the dualcomplex and are naturally identi�ed with the homology groups of Y with reversedorientation. We have a natural intersection pairing� : HFSW�(Y ) 
HFSWc��(Y )!Z;for some constant c.Let X1 be an open manifold with cylindrical end Y . For a line bundle L overX1 whose restriction to Y is LY , the limit values of solutions to the (deformed)Seiberg-Witten equations give an element�(X1; L) =Xa #M(X1; a)a 2 CFSW�(Y ;LY ):This element is actually a cycle and de�nes a Floer-Seiberg-Witten homologyclass which is independent of metrics and deformations under the conditionsabove. When we have two open manifolds X1 and X2, which we want to gluealong the common boundary Y (with a �xed di�eomorphism of the boundaries),and line bundles Li ! Xi with LijY �= LY , there is an indeterminacy for choosingthe identi�cation of the line bundles over Y resulting in di�erent line bundles forX = X1 [Y X2, as it was explained in subsection 2.3.1.Theorem 7.1 For every compact oriented three-manifold Y and every charac-teristic line bundle LY , with either c1(LY ) 6= 0 or b1 � 2, there are well-de�ned1The problem of giving orientations is analogous to the case of instanton Floer homology.



118 CHAPTER 7. SEIBERG-WITTEN GLUING THEORYSeiberg-Witten-Floer homology groups HFSW�(Y ;LY ) (graded modulo N) inde-pendent of metrics and perturbations, with the following properties:1. Let X be an open manifold with boundary Y and b+ > 0. Let L be acharacteristic line bundle on X restricting to LY on Y . Then there is awell-de�ned a homology class �(X;L) 2 HFSW�(Y ;LY ).2. Let X be a closed manifold with b+ � 1 which can be written as X =X1 [Y X2 and let Li be characteristic line bundles on Xi with LijY = LY .Then we have the following pairing formula�(�(X1; L1); �(X2; L2)) = XfL=LjXi=Li; i=1;2gSWX(L)If b+ = 1 then the invariants refer to the chamber given as in the end ofchapter 6.In the case b1(Xi) = 0 for both i, the possible L are parametrised byH1(Y ;Z).For Y = ��S1 we only need to consider characteristic line bundles L whoserestrictions to Y have c1(LjY ) = 2m[S1], for jmj � g�1, as already established intheorem 6.13. Fix m, i.e. the topological type of LjY , and put k = (g� 1)� jmj.Then (after a perturbation in the case m = 0), the moduli space of translationinvariant solutions is M� = sk�. We have the followingConjecture 7.2 ([11]) For c1(LY ) = 2m[S1], k = (g � 1) � jmj, we have thefollowing isomorphism HFSW�(Y ;LY ) �! H�(sk�);where the grading is reduced modulo N = 2jmj = 2(g � 1 � k).Remark 7.3 Actually, Morgan, Szab�o and Taubes [44] have developed the ana-lytical details for the case k = 0, g � 2 of the above conjecture, proving it in thatcase, and using it to get a proof of the Thom conjecture for symplectic manifolds.Corollary 7.4 Let �X1 be a compact oriented four-manifold with b+ > 0 suchthat there is an embedded Riemann surface of genus g � 2 and self-intersectionzero representing a non-torsion homology class. Let L be a line bundle with



7.2. COMPUTATIONS OF BASIC CLASSES 119c1(L) �� = 2m 6= 0, jmj � g � 1. Let A = ��D2. Then there exists an element� = �(A;LjA) 2 H�(sk�) such thatXfL0=c1(L0)=c1(L)+n�gSW �X1(L0) =< �(X1; LjX1); � >;where �(X1; LjX1) 2 H�(sk�) is the relative Seiberg-Witten invariant for X1.When �X1 is of simple type at most one of the L0 can appear in the sum above,since at most one of them has c1(L0)2 = 2�+ 3�.When b+ = 1, c1(L) �� 6= 0, one has to consider the Seiberg-Witten invariantscorresponding to a metric with a long tube, i.e. to a metric with a period point!g 2 H close to [�]. So we consider SW�X (L) for �c1(L) �� > 0.7.2 Computations of basic classesNow we state the gluing theorem about basic classes for a connected sum. Letus suppose g � 2. The di�erent cases to be treated correspond to the possiblerestrictions of L to �. The easiest case is when c1(L) � � = �(2g � 2) andthe situation gets more and more complicated as k = (g � 1) � 12 jc1(L) � �j getsbigger. Morgan, Szab�o and Taubes have worked out the case c1(L)�� = �(2g�2),carrying out the analysis explicitly and using perturbations as in equation (6.7).We deem that the analysis would be probably easier for perturbations as inremark 6.7, but details are yet to be carried out.Theorem 7.5 ([44]) Suppose that �Xi have b1 = 0, b+ > 1 and are of simpletype, and g � 2. Fix �i 2 H2( �Xi;Z) characteristic with �2i = 2� �Xi + 3� �Xi, suchthat �i � �i = �(2g � 2). ThenXLjXi=�ijXi ; i=1;2SWX(L) = (�1)g�1SW �X1(�1) � SW �X2(�2);for appropriate homology orientations.Proof. In the case c1(LY ) = (2g � 2)[S1], one has k = 0 so M� = s0� is a pointand H�(M�) �=Z. Fix line bundles Li ! Xi and LA ! A that are isomorphic toLY when restricted to the boundary. Put � = �(A;LA). ThenSW �Xi(�i) = �(�(Xi; Li); �) = x�(Xi; Li)�;



120 CHAPTER 7. SEIBERG-WITTEN GLUING THEORYwhere x = �(1; 1) 2Zand Li = �ijXi. Now for CP1�� with a metric giving CP1long volume, one has only the basic class (2(g�1)C P1�2�) with Seiberg-Witteninvariant 1. So x�2 = 1 and it must be x = 1 and � = �1. Therefore the sumin the left hand side above isXLjX1=L1LjX2=L2 SWX(L) = �(�(X1; L1); �(X2; L2)) = SW �X1(�1) � SW �X2(�2):For the case c1(LY ) = �(2g � 2)[S1], we have that CP1 has only the basic class�(2(g � 1)C P1� 2�) with Seiberg-Witten invariant (�1)g�1, responsible for thesign. �The sign above can be checked as in remark 5.8, since d0(X) � d0( �X1) +d0( �X2) � 3(g � 1) (mod 2). Now we analyse some examples in which the infor-mation already gathered in theorem 7.5 is enough to �nd the basic classes for theglued manifold.Proposition 7.6 Suppose that we are in the situation of remark 2.19 and sup-pose that both �Xi are of simple type and g � 2. Then X = �X1#� �X2 is of simpletype and the basic classes � of X such that � � � = �(2g � 2) are in one-to-onecorrespondence with pairs of basic classes (�1; �2) for �X1 and �X2 respectively,such that �1 ��1 = �2 ��2 = �(2g � 2). Moreover, � is determined in an explicitway.Proof. By remark 2.19 we have a primitive lattice V � H2(X;Z) generated byhomology classes represented by tori of self-intersection zero. The basic classesvanish on all of these homology classes (see for instance theorem 6.12). So if � isa basic class for X, we have argued that P.D.[�] 2 V ?.Let S be a (�2)-sphere provided by remark 2.19 such that [S] 2 V and soL � S = 0 whenever SWX(L) 6= 0. From [19, theorem 1.3], we know that if L is aline bundle with SWX(L) 6= 0 and dimWX(L) > 0 then SWX(L� 2S) 6= 0. Butthis is a contradiction as (L � 2S) � S 6= 0. So X is of simple type.Now let � be a basic class for X with � � � = 2g � 2. Corollary 6.13 tellsus how the image of � under � is. From the previous theorem, there are basicclasses �1 and �2 in �X1 and �X2 such that � � � = �1 � �1 = �2 � �2 = 2g � 2. Asg � 2, we have that �2 6= (�+ n�)2 for n 6= 0, so at most one of the �+ n� canbe basic class. Also � is determined as the only class in V ? agreeing with both�ijXi and with square �2 = 2�X + 3�X = �21 + �22 + (8g � 8). �



7.2. COMPUTATIONS OF BASIC CLASSES 121Remark 7.7 In the situation of the last proposition, and under the splittings ofremark 2.20, we have�i = �i + (2g � 2) �Di + ri�i 2 W?i �Q[�i; �Di];for the basic classes �i of Xi. The corresponding basic class for X is� = 0 + �1 + �2 + (2g � 2)D + (r1 + r2 + 2)� 2 V �W?1 �W?2 �Q[�;D];where the coe�cient of � is found out using the requirement on �2. So formally� = �1 + �2 + 2�: (7.1)The condition in proposition 7.6 is indeed a very natural condition. Forexample if we have a K�ahler manifold which is a �bration X ! C over a complexcurve C with �bres being generically genus g Riemann surfaces and if we takea smooth �bre � � X and a vanishing cycle  � � (see [24, page 167]), thenthe vanishing disc is a (�1)-disc (the framings are the natural framings of inside �). If for instance there is a rational �bre then all the 1-cycles in � arevanishing cycles and the hypotheses in the theorem above are satis�ed. As aconsequence, when we glue two of these �brations along a �bre we get the sameSeiberg-Witten invariants for basic classes � with � � � = �(2g � 2), regardlessof the chosen gluing, although in general one expects that only for one particulargluing the resulting manifold is a K�ahler surface.Remark 7.8 Suppose both �Xi are symplectic manifolds and �i are symplecticsubmanifolds. Then from recent work of Taubes [59], �Xi are of simple type. NowX = �X1#� �X2 can be given a symplectic structure by proposition 2.12 (regardlessof the homotopy class of the chosen gluing �). Taubes [57] [58] has proved thatthe canonical class K = �c1(TX) is a basic class and that for any other basicclass � 6= �K, one has j� � [!]j < K � [!], with ! the symplectic form. SinceT � [!] = 0, none of the K + PnT can be basic classes unless all n = 0.Hence in the formula of theorem 7.5 only one term appears in the sum. Noticethat Taubes also proves that this number is �1.The result of the last remark falls very short since it does not even tell usabout the other basic classes that might appear when we glue two basic classesKi for �Xi with Ki � � = 2g � 2 but Ki are not the canonical classes. In some



122 CHAPTER 7. SEIBERG-WITTEN GLUING THEORYsituations we get more: suppose that (both) �Xi have b+ > 1 and are the blow-up of some symplectic manifolds Mi of simple type at points on �0i ,! Mi (and�i is the proper transform of �0i) and that the cohomology class de�ned by thesymplectic forms in bothMi are Poincar�e dual to [�0i] (i.e. [�0i] are ample classes).Then one has j�i � [�i]j < K � [�i] = 2g � 2 for every basic class �i in �Xi. So weconclude that the only basic classes with � � � = �(2g � 2) for X are � = �K.Suppose now the case when the manifolds involved are complex surfaces and�i are embedded complex curves. If the holomorphic normal bundles to �i are(orientation reversing) isomorphic then there is a preferred identi�cation as ex-plained in section 2.2.Proposition 7.9 Suppose that both �Xi are K�ahler manifolds with embedded com-plex curves �i of self-intersection zero. Suppose that X is an algebraic surfacewhich is deformation equivalent to the variety �X1 [� �X2 with a normal crossingalong �. Then the basic classes � of X such that � �� = �(2g�2) are in one-to-one correspondence with pairs of basic classes (�1; �2) for X1 and X2 respectively,such that �1 � �1 = �2 � �2 = �(2g � 2).Proof. Recall from proposition 2.9 that X has the di�eomorphism type of the(preferred) connected sum of �X1 and �X2 along �. First, it is known afterWitten [63] that all K�ahler manifolds with b+ > 1 are of simple type. Alsoby proposition 2.9, X = �X1#� �X2. As in the proof of proposition 7.6, wejust need to prove that if � is a basic class for X and T = Pn�T� 6= 0 inH2(Y ;Z) � H2(X;Z) �= H2(X;Z) then � + T is not basic class. In the K�ahlercase we know that the basic classes are in H1;1, so it is enough to show thatT =2 H1;1. But T 2 = 0 and T � [!] = 0, for the symplectic form !. If T were inH1;1 \H2(X;Z), it would represent a divisor with T 2 = 0 and orthogonal to anample class, but this is impossible. �The case of k = 1The following natural case to pursue is c1(L�) = �(2g�4), with g � 3. Obviouslythis corresponds to k = (g�1)� 12 jc1(L�)j = 1. So HFSW�(��S1; LY ) = H�(�),with the grading being modulo N = g � 2. Every open manifold X with b+ > 0and boundary @X = Y , and line bundle L ! X with c1(LjY ) = (2g � 4)[S1],



7.3. DONALDSON AND SEIBERG-WITTEN THEORIES 123de�nes a class �(X;L) = (f0; f1; f2) 2 H�(�):For a closed manifold X with b+ � 1 which can be written as X = X1 [Y X2and Li characteristic line bundles on Xi with LijY = LY , we put �(X1; L1) =(f0; f1; f2) and �(X2; L2) = (g0; g1; g2). ThenXfL=LjXi=Li; i=1;2gSWX(L) = f0 � g2 + f2 � g0 + f1 � g1:If we have that for di�erent identi�cations the sum in the left hand sideremains unchanged, then f1 ���(g1) is constant, for all � 2 Di�+(�), which forceseither f1 = 0 or g1 = 0. For example, for A = ��D2, one has X = A[�A = ��CP1 and the invariants SWX(L) = 0 for any line bundle L with c1(L) �� = 2g�4(in the chamber given by [�]), as there are no zero-dimensional non-emptymodulispaces with that condition. So writing �(A;LA) = (a0; a1; a2), it must be a1 = 0and either a0 = 0 or a2 = 0. Let us suppose (a0; a1; a2) = (0; 0; 1). Then for everyclosed manifold of simple type X = Xo [Y A and characteristic line bundle Lwith c1(L) = �(2g � 4), one has SWX(L) = f0, where �(Xo; LjXo) = (f0; f1; f2).Now one should look to di�erent cappings X2 to extract f1 and f2 from theSeiberg-Witten invariants of ~X = Xo [X2. We will not say anymore about this,but it seems very promising and we hope to come back to it for future research.7.3 Final remarks on the comparison of Donald-son and Seiberg-Witten theoriesHere we would like to point out the close relationship between the results inboth parts of the thesis. Witten [63] has conjectured that for a simply connectedmanifold the condition of being simple type and Seiberg-Witten simple type areequivalent, and that in that case the basic classes are the same as the Seiberg-Witten basic classes2, the shape of the Donaldson series beingD wX = eQ=2X ai;weKi;where ai;w = (�1)Ki�w+w22 22+ 14 (7�+11�)SWX(Ki):2Let us remark here that Pidstrigatch and Tyurin [52] have a program to prove rigorouslythis relationship in general.



124 CHAPTER 7. SEIBERG-WITTEN GLUING THEORYWe have from theorem 7.5 that for X = �X1#� �X2 and basic classes Ki for �Xisuch that K1 � � = K2 � � = 2g � 2 one hasXLjXi=KijXi ; i=1;2SWX(L) = SW �X1(K1)SW �X2(K2):Now we recall that the topological numbers are computed in subsection 2.1.3 andare �X = � �X1 + � �X2 + 4g � 4 and �X = � �X1 + � �X2. So2 + 14(7�X + 11�X) = 2 + 14(7� �X1 + 11� �X1) + 2 + 14(7� �X2 + 11� �X2) + (7g � 9):When g = 2, this tells us that the sum of the coe�cients of the (Seiberg-Witten) basic classes L such that LjXi �= KijXi , i = 1; 2, is 32 times the product ofthe coe�cients of Ki and Lj. This agrees with corollary 5.9 about the (instanton)basic classes. We want to remark here that the result in the Seiberg-Wittencontext is more general in the sense that we do not impose restriction in thegenus g � 2, but the results in chapter 5 are far more general in the sense thatthey also give information about basic classes K with K �� = 0 and more explicitinformation about the structure of the Donaldson invariants. Nonetheless, it ishighly likely that Seiberg-Witten-Floer theory can provide results of this kind.
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