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Introduction

Since the apparition of Donaldson’s invariants [7] nearly ten years ago, these
have been very useful in classifying a range of differentiable 4-manifolds. Early
results about the vanishing of the invariants for connected sums where both sum-
mands have bT > 0 produce corollaries about the indecomposability of certain
four-manifolds (see [13, chapter 10]). Computing the invariants of a given four-
manifold has been a major and very challenging problem in most cases. Nonethe-
less, Kronheimer and Mrowka [38] have discovered that, for a wide range of the
manifolds (the so called of simple type), they are encoded in a finite collection of
cohomology classes (called the basic classes of the manifold) and some rational
numbers attached to them, satisfying very restrictive constraints. The computa-
tion of the basic classes for a manifold which appears as a the union of two open
manifolds with the same boundary is the key for understanding the behaviour of
the invariants under surgery. Here one can proceed in the style of a TQFT, i.e.
one attaches to every closed oriented three-manifold Y a vector space Vy, in some
natural way, and for every open manifold X with boundary Y a vector ¢x € Vy-.
When we glue two open manifolds X; and X, with 0X; = Y, 90X, = Y, the
invariant for X = X Uy X5 appears as the product ¢x, - ¢x,, where ¢x, € Wy,
ox, € V& = V§f. This program has been carried out to some extent [3][9][10].
The vector spaces are the instanton Floer homology groups of Y. But these are

in general difficult to compute.

In the case of Y = ¥ x S!, with ¥ a Riemann surface of genus ¢ > 1,
and bundles £ — Y which have odd first Chern class in H*(Y;Z), there is a
description of the Floer groups as the homology of the moduli space of stable
bundles of odd degree over ¥. One expects to be able to use this to get some
information on the basic classes of a manifold (in the shape of constraints that
they satisfy) which is a connected sum along a Riemann surface. In this thesis,

we succeed in carrying on this program for the cases of ¢ =1 and 2.
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In the late 1994 there was a revolution in gauge theory with the introduction of
Seiberg-Witten invariants. They are much easier to compute, but keep the flavour
of the former invariants. Conjecturally [63] they give the same information on
the manifold whenever bt > 1, by = 0 and the manifold is of simple type. An
analogous gluing theory for this case is under development, constructing Floer-
Seiberg-Witten homology groups [40][62]. One can use similar sort of arguments
to get constraints on the Seiberg-Witten basic classes for connected sums along
Riemann surfaces.

The thesis is mainly divided in two parts, the first one corresponding to com-
putations with the Donaldson invariants and the second part dedicated to the
Seiberg-Witten invariants. In the first instance our intention was to carry on
looking to connected sums along ¥ of genus bigger than 2, but the introduction
of Seiberg-Witten invariants made more sensible to turn around and look into
the direction of using a sort of Floer-Seiberg-Witten theory. This was quite use-
ful, although not at all a trivial problem. Many things remain to be said about
the computation of Seiberg-Witten invariants for connected sums along Riemann
surfaces or more general three-manifolds.

The first chapter introduces the rudiments and notations of gauge theory and
Donaldson invariants and is complemented with an exposition of Floer homology
and Fukaya-Floer homology, which we think has not been exploited as much as
one could.

The second chapter is very basic and contains essentially topology about con-
nected sums of two four-manifolds along Riemann surfaces. The more interesting
part is the introduction of the extended homology groups HZ(X,9X) for a man-
ifold X with boundary 9X.

Then we have added a description of algebraic manifolds which are fibred with
fibres being elliptic curves and complex curves of genus 2. This has been inserted
for the sake of completeness, as these manifolds are examples to which we could
apply all the theory developed in this thesis.

In chapter four we use the gluing techniques to compute basic classes for
manifolds coming from open manifolds glued along a three-torus. The seed of
this work is the first year dissertation of the student, and we thought worthwhile
to add our own proof of Friedman’s theorem [22], as it uses a very elementary
gluing theory. Essentially, we reduce the computation of the low dimensional
invariants of an arbitrary simply-connected elliptic surface to those of T? x CP!

and then we compute these ones. This is the reason for having a section with a
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description of the wall-crossing formulae for algebraic manifolds in chapter three
(we must say that we have another proof that avoid the wall-crossing formulae,
finding out the moduli space of stable bundles explicitly, but it is not as beautiful
as this one). We complete the chapter with general results about basic classes for
glued manifolds along a T? (which are a bit more general than some of the results
there are in the literature so far) and for a manifold in which we have performed
a log-transform.

The last chapter of the first part is devoted to the case of connected sum
along a Riemann surface of genus 2 and it forms the main bulk of the thesis.
We have to look at the invariants on three different types of cycles in the glued
manifold, according to the way they intersect Y = ¥ x S, since the Fukaya-Floer
groups differ. The main task is to determine the invariants of an open manifold
in terms of the invariants of closings (or cappings) of it, and this can be done for
g = 2 since the dimension of the Floer homology of Y is not too big. Our main
argumental line goes through assuming Conjecture 1.22 about the action of the
homology of Y on its Floer homology. We also have to assume Conjectures 5.11
and 5.20 which are variations of the former about the action of the homology of
Y on its Fukaya-Floer homology.

The principal results, theorems 5.6, 5.17 and 5.23, yield that different iden-
tifications for Y = ¥ x S! inducing the same action on homology give the same
invariants, although in principle the resulting manifolds might not be diffeomor-
phic. We also deduce a finite type condition for manifolds with b* > 1, b, = 0
and an embedded ¥ of genus 2 representing an odd homology class, theorem 5.16.
The main task left for future research is try to remove the use of the conjectures
and to generalise these results to the case of connected sums along surfaces of
higher genus. One would expect that the finite type condition holds in all cases.

The second part of the thesis deals with the Seiberg-Witten theory. In chapter
six we introduce the Seiberg-Witten equations and prove that the basic classes
L for a connected sum X = X;# X, satisfy the condition L]y = n[S!], with n an
even integer between —(2¢ — 2) and (2¢ — 2) (corollary 6.13).

In chapter seven we make some use of a gluing theory for the Seiberg-Witten
invariants which is being developed by many people at the moment (so in this
sense the chapter is rather speculative). Now there are no restrictions on the genus
of X, but there are restrictions on the degree of the line bundle along the curve.
We finally compare the results now obtained with the ones obtained previously.

For future research it is left the rigorous definition of the Seiberg-Witten-Floer
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homology and the study of the gluing for line bundles L with |ei(L)-X| < 2g — 2.
We have tried to be short and clear at the same time in our exposition, but we
have decided to include some results which overlap whenever we have considered

enlightening the different ways provided to prove them.



Chapter 1

Basic notions

1.1 Polynomial invariants

We begin with a review of the definition of Donaldson’s polynomial invariants.
Throughout X will be any compact oriented connected smooth manifold of di-

mension four, but we will not suppose in principle that it is simply connected.

1.1.1 Spaces of connections

Here we follow [38] mainly. Very good references for the basics on gauge theory
are [13] and [20]. The set-up for gauge theory on X is the following. Fix a line
bundle w and a U(2)-bundle £ — X (whose fibres are C? with the standard

representation of U(2)) with an isomorphism
Y det(E) — w.

The topological type of E is given by its Chern numbers ¢;(F) and ¢y(F). Let gg

denote the bundle of traceless skew-hermitian endomorphisms of E. This is the

associated SO(3)-bundle with second Stiefel-Whitney class wy; € H*(X;Z,) the

reduction mod 2 of ¢;(F) and with Pontrjagin class p; € H*(X;Z) = Z given by
L,

= —i < pilap), [X] >=< ex(B) — A(E), [X] >

We recall that an SO(3)-bundle is uniquely determined by ws and p;, subject to
the constraint p; = w3 (mod 4).
The gauge group G = G is the group of determinant one unitary automor-

phisms of F (i.e. those that respect ¢) and acts in a natural way on gg. We

1



2 CHAPTER 1. BASIC NOTIONS

denote by A = Ap the space of connections in gg. Then G acts on A and the
quotient is denoted by B = BY. We can think of this space as the moduli space of
connections in F all inducing the same connection in det(F). For all the spaces of
connections and gauge groups we have to consider coefficients in suitable Sobolev
spaces to make the theory work, but we will not be explicit about this point.
For a connection A in gg, we denote its curvature by F4. By Chern-Weil

theory, the action of A is

1 1 ,
k== <pilee) [X] 5= = [u(rd).

The possible stabilisers of connections are as follows. The typical connection
has stabiliser +1 C Z(SU(2)) C G, in which case it is called irreducible. The
space of irreducible connections is A* C A and the quotient A*/G, denoted by
B* = B"*, is a Banach manifold. If the connection is non-trivial but preserves a
splitting gg = R & L, where L is a complex line bundle, then the stabiliser of the
connection is a circle subgroup S' C G. These connections are called reducible. If
H'(X;Z,) # 0 then we might have connections preserving a splitting gz = A& L,
where A is a non-orientable real line bundle and L is a non-orientable real two
plane bundle with orientation bundle isomorphic to A. These are called twisted
reducible connections. Note that the stabiliser of a twisted reducible connection
is 1. Finally, the trivial connection has stabiliser SU(2).

Now we choose a riemannian metric g on X. We have a Hodge operator *,
and put

ML = MU(X)y ={[A] € B/ *4 Fa = —F4}/G

for the space of g-antiselfdual connections (abbreviated as ASD). We have

the following result for generic metrics for a closed manifold

Proposition 1.1 ([20][38, corollary 2.5]) For a generic metric on X, the
moduli spaces MY are smooth manifolds, except at flat or reducible connections.

For a generic path of metrics v = { ¢ hiejo], the same is true of the parametrised

moduli space M (X), = U MY(X),,.

The (formal) dimension of the moduli space MY is 8x — 3 (1 — by + b*). This
is its actual dimension for a generic metric at points which correspond to non-flat

irreducible connections.

Remark 1.2 The point of proposition 1.1 is that twisted reducible connections

do not appear for closed manifolds, as they are ruled out on dimensional grounds.
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So in that sense, it is rather special for closed manifolds. For open manifolds
(manifolds with cylindrical ends) we only have the general result that for a generic
metric the moduli spaces of ASD connections are smooth except at locally reducible
connections. These also include twisted reducible connections, as well as flat and

reducible connections.

To orient the moduli spaces MY we need to choose a homology orientation
Q). This is an orientation of H°(X;R) @ H'(X;R) @ H;(X;R). The orientation

of the moduli space reverses when we change € to —().

Remark 1.3 Instead of using this U(2) gauge set up, we might have started up
with an SO(3)-bundle ¢ with fibre R® and associated principle bundle P, defined
by its classes wy and p; (with the constraint w3 = p;  (mod 4)). The space
of connections in this bundle is acted on by the gauge group G, consisting of
the sections of the adjoint bundle AdP. Now every lift w € H*(X;Z) of wy
to integer coefficients (this might not exist) defines a lift of P to a U(2)-bundle
E with ¢;(E) = w = wy (mod 2) and p; = ¢ — 4ey. Clearly ¢ and g are
isomorphic and the spaces of connections coincide, but the gauge groups are not

quite the same. One has the following exact sequence
0= Gr/ £1 — Aut(gg) — Hom(m(X),m(SO(3))) = H'(X;Zy) — 0.

Then of M. denotes the moduli space of ASD connections in ( = gr modulo
Gc = Aut(gg), one has
M = MY JHY (X Zs).

The fized points of this action of H'(X; Zs) on MY are the O(2) reductions which
are not SO(2) reductions (i.e. the twisted reducibles). The advantage of working
with U(2) instead of SO(3) is that the only reductions are to a copy of U(1), no
matter whether X is simply connected or not.

The moduli space of SO(3)-connections is oriented by choosing a homology ori-

entation  of X and an integral lift w of wy. If we pick another integral lift w’,

w—w' )2

the orientation of the moduli space reverses or not depending on whether (*5

is odd or even (see [34]).

Recall that there is a universal SO(3)-bundle P — B* x X defined as the
quotient (A* x Frg)/G, where Frg is the orthogonal frame bundle of gg, and

there is a map

p: Hi(X;R) — H*'(B*R)
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given by the slant product p(a) = —1p1(P)/a. Also there is a natural compact-
ification of MY, the Uhlenbeck compactification (see [13, section 4.4]).

ME C MU (MY, % X) U (M2, % Sym?X) U U (M2 x SymPX),

where Sym'X is the i-th symmetric product of X and [z] is the integer part of
z € R. Now Donaldson and Kronheimer [13] and Kronheimer and Mrowka [38]
construct geometric representatives for p(a) which have good properties with re-
spect to this compactification, i.e. they define cycles V,, C M. for any homology
class o € H.(X).

1.1.2 Definition of the invariants

Consider a manifold X with 6% > 0 and a fixed homology orientation 2. Don-
aldson’s polynomial invariants are diffeomorphism invariants of X (more exactly,
X with homology orientation €2, and only when % > 1) and are defined as mul-
tilinear functions on the (rational) homology of X. First fix w € H*(X;Z). We

consider the algebra
AX) = Sym™(Heven(X)) © A\ (Hoaa( X)),
where deg(a) =4 — i if @ € H;(X). Throughout this thesis, H.(X) will denote

homology with rational coefficients, unless otherwise stated (and similarly for
H*(X)). The Donaldson invariant will be a linear function on A(X). For a
monomial z = 3135 ... 3, of degree §, we define DSU(’S(Z) in the following way. Set
DY (z)=0if
6 # —2w? — 3(1—by + b"") (mod 8).

Otherwise choose p; = w? (mod 4) such that § = —2p; — 3(1 — b; + b%) and
consider the moduli space MY with x = —ipl. Then proposition 1.1 says that
for generic metric, this moduli space has dimension § and is smooth away from
flat or reducible connections. Since bt > 1, reducible non-flat connections will
not appear for a generic metric. For the moment let us suppose that flat con-
nections do not appear. Then we can compactify MY as explained at the end of
subsection 1.1.1 and choose generic representatives Vj, of u(f3;) (compatible with
the compactification). They intersect in a finite (transverse) number of points in
M. We define the invariant to be the algebraic count of these points using the

orientation of MY, i.e.

DY (2) = #Vs N NV
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This invariant turns out to be linear. The usual cobordism argument along
with proposition 1.1 for paths of metrics proves that it does not depend on the
(generic) metric in the case b* > 1. For bt = 1 the picture is more complicated
and will be discussed in subsection 1.1.3. In this case we will have to specify the
metric g and denote D}’f; for the invariants with respect to the generic metric g.

The usual trick to get rid of flat solutions (see [42]) is to blow-up X at one point
(the definition of blow-up is well-known but it is recalled in definition 2.1). Call
X the blow-up of X and F the exceptional divisor, put # = x+ i, w=w+ K and

Z=zF € A(X). As @ does not vanish when restricted to the sphere representing

E, there can not be any flat connections in Mg”(j() So now we set

DY’ (z) = DY (2B,

The right hand side is always defined. When both sides are defined, they are
equal as proved in [34] (they have a factor of —2 because of different gauge group
conventions). Otherwise the left hand side is defined to be equal to the right
hand side. (This is also valid for b = 1 choosing a metric on X which is close
to the metric g on the X part, close to the Fubini-Study metric on the CP” part
and gives very large length to the neck joining both parts).

When we change w by w' = w + 2a, we obtain the same invariants multi-
plied by a factor of (—1)“2. This is due to the fact that the moduli spaces M

w!/—w 2

and M™" are naturally isomorphic but the orientations differ by (=1)("Z )" (see
remark 1.3).
In general we will be dealing with manifolds with b, = 0 and so we shall

restrict attention to the case a € Hy(X). There are several ways of wrapping up
all the information about the different degrees ¢ in a single series. We put first
DY = @5DSU(’5. Now for instance, calling = the class of the point, we define for
a € Hy(X) ;

Dyl =y Pty
This is a formal series on ¢. In the same vein as Witten [63] does, consider

w w atiz Dw7d+2a(adxa)
DX(Q):DX(et +/\):Z A d'a'

which is a formal series on ¢ and A, although we do not add these variables in the

left hand side.

tixe,

Definition 1.4 Let X be a four-manifold and w € H*(X;Z). Then we define
dO = do(X,w) = —w2 - %(1 - bl —|— b+)
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With this notation the only coefficients of the series DY (e'*) which are non-

vanishing are on degrees d = dy (mod 4). Analogously, the non-zero coefficients

of DY () have d + 2a = dy (mod 4).

Definition 1.5 Let X have bt > 1. We say that X is of w-simple type when
x? — 4 annihilates the Donaldson invariant DY, that is, when DY ((2* —4)z) =0
for all z € A(X).

When by = 0 and bt > 1, it is an important fact proved in [38] that whenever X
is of w-simple type for some w, it is so for every w', and it is called of simple
type for brevity.

When bt = 1 the invariant does depend on the (generic) metric g and so we have
that X is of w-simple type with respect to g when Dy ((x* —4)z) = 0 for all
z € A(X).

Many manifolds, like elliptic surfaces, algebraic complete intersections in CP"
and many others are known to be of simple type (see [38]). At the moment there
are no examples of simply connected non-simple type manifolds with 6T > 1.

When X is of simple type, we have
DY () = Dy (") cosh 2) + D}U((gem) sinh 2.

Kronheimer and Mrowka defined in [38] another series for simple type manifolds

containing the same information

X
D (ta) = DY (") + DY (5).

We warn the reader that this notation differs slightly from that of Dy in that
we keep track of the variable ¢ in the left hand side. This series has non-zero
coefficients only for d = dy (mod 2) and therefore it is even or odd depending on
whether dy is even or odd. The most fundamental result of [38] [18] is

Proposition 1.6 Let X be a manifold of simple type with by = 0 and bt > 1
and odd. Then we have

Wy w w2 -
DY () = Q@23 (- 1) "5 g el
for finitely many cohomology classes K; (called baste classes) and rational num-
bers a; (the collection is empty when the invariants all vanish). These classes are
lifts to integral cohomology of wo(X). Moreover, for any embedded surface S — X
of genus g and with S? > 0, one has 2g — 2 > S* +|K; - S|.
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Proposition 1.7 ([38]) Let X be a 4-manifold with by = 0 and b* > 1 and odd.
Suppose that it contains a tight surface ¥ (i.e. an embedded surface ¥ — X
with X* > 0 and genus g satisfying 2g — 2 = ¥.?). Then X is of simple type.

1.1.3 The case b =1

When bt = 1 the invariants depend on a fundamental way on the metric ¢
of X, since for a generic path of metrics reducibles may appear. Thanks to
proposition 1.1 we only have to deal with reductions of the sort g = R @ L,
with L a complex line bundle. If we put e = ¢;(L), we have e = w (mod 2),
pi(gr) = €* and the connection corresponding to the reduction is ASD if and
only if e € H2 C H?*(X;R), the subspace consisting of antiselfdual harmonic
2-forms for (the conformal class of) the metric g. This space is of codimension
1 so one expects that for generic 1-families of metrics ¢, t € [0, 1], there will be
some ¢ with e € H”'.

Let H be the image of {z € H*(X;R)/2* > 0} in P(H* X;R)). Note that
this is the model of the hyperbolic space of dimension 6. Its boundary is the
projectivisation of the set {x € H*(X;R)/x # 0,2? = 0}. The positive harmonic
space of g (being of dimension b* = 1) defines a point w, in H called the period
point. The reducibles in M}’ = correspond to pairs xe € H*(X;Z) with e =
w (mod 2), €* = pi(gr) and w, - ¢ = 0. Finally, for the compactified moduli
space ./\/l—j:b”’g, the reductions which can appear for different strata and varying
metric correspond to pairs +e € H?(X;Z) such that e = w (mod 2) and
p1 < e? <0.

Remark 1.8 The second inequality is strict whenever there are no reducible flat
connections. The usual trick for ruling out reducible flat connections is to blow-up
as explained in subsection 1.1.2. Other case in which these flat reductions are not
present is when there is an embedded Riemann surface ¥ with w-¥ =1 (mod 2).

This case is obviously equivalent to w being odd in H*(X;Z)/torsion.

We will suppose that w is odd in H*(X;Z)/torsion. In that case if ¢ = 0
and e -w, = 0, it should be e = 0 and therefore e Z w (mod 2) (in the SU(2)

case one must deal with flat connections). So we define

Definition 1.9 Let e € H*(X;Z) be such that e = w (mod 2) and p; < €* < 0.
We call the image of the hyperplane e~ = {x € H*(X;R)/2* >0, x-e =0} in H
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the wall defined by e, and denote it by W.. We say that W, is a wall associated
to (val)'

The wall W, divides H in two connected components. All the walls associated
to (w,p1) partition H into infinitely many components (but the union of the
walls form a locally finite subset) called chambers. When the metric move with
its period point in a fixed chamber C the invariants remain constant, but when
it crosses a wall they change. The main issue is whether the fibres of the period
map are connected or not. This is not known, so in principle the invariants
depend not only on the chambers. Also it might happen that the period map
is not surjective (and therefore there are no metrics with period points in some
particular chambers at all).

When X has by = 0, Kotschick and Morgan [35] have proved that the invari-
ants only depend on the chamber by proving that the change of the invariants
under the crossing of a wall is independent of the particular path of metrics (their
argument also allows them to define the invariants in chambers in which there
are not period points of any metric).

For an algebraic manifold, if we restrict attention to the ample cone (the
subcone of {z € H*(X;R)/2* > 0} spanned by ample line bundles, see section 3.1
for definition of ampleness), and it happens that the invariants can be computed
with moduli spaces of stable bundles (because these were generic, see section 3.1),
then these invariants are the same for Hodge metrics with period points in a fixed
chamber. We will only use this for X = ¥ x CP!, in which case any point in H

is the period point of some Hodge metric.

Remark 1.10 Let [z] € H be any point not contained in any wall associated to
(w,p1) for any py (this is the case if for instance v € H*(X;Z) and v - w =
1 (mod 2)). Then for every py, [x] is in the interior of a chamber and suppose
that we can find a generic metric g in it (this is going to happen in all the cases

we will be dealing with). Define D;U(’jl,] = DSU(’Z. In this way we have defined Dy

(at least when X has by = 0 or for the case X = X x CP*).

We also can allow [z] to lie in the closure of H, i.e. x* = 0. These invariants
appear for metrics g giving a very small volume (with respect to the two-form
wy) to surfaces representing homology classes orthogonal to x. For instance, if
we consider X = X; U (Y x [0,1]) U Xy and metrics giving a very long neck, we
will have x = P.D.[T] with [T] € Hy(Y) C Hay(X). Obviously there are different
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ways of stretching the neck, corresponding to different metrics on 'Y and different

[T] € Hy(Y).

1.1.4 Definition of D;U’E)
Let us suppose now that we have w,Y € H*(X;Z) satisfying w - X =1 (mod 2)
and ¥? = 0. Then we define, for b* > 1,

Dy = DY = Dy + Dyt™

and similarly Dy = DE;"U’E) = Dy + D}“{"E. When bt = 1 we consider the
invariants referring to the chambers defined by [X], i.e. DE}““’E) = DY g+ DSU(:%].
Obviously, Dy depends only on ¥ and w (mod ¥), since Dy™* = D% by
subsection 1.1.2. Now we note that since (w + X)* = w? + 2 (mod 4), we can
recover DY and D%t from the series Dy. This series is even or odd according

to whether dy = —w? — %(1 — by + b") is even or odd.

Proposition 1.11 Suppose X is a manifold of simple type with by = 0 and

I\"J ~w+w2

bt > 1 and odd. Write the Donaldson series as D% = e?/25(=1)""7 —a; e,
Then setting do = do(X,w) = —w? — 3(1 4 bT) we have

K ~w+w2 . K ~w+w2 sy
ngg”’z)(ea) — Q)2 Z(_l) 1 ajelx]u_l_e—Q(a)/? Z z"do(—l) L ajemj.a

K;-X=2 (mod 4) K;-£=0 (mod 4)

So giving DY is equivalent to giving Dg;u’z).

Proof. Since ((w+X)* 4+ K; - (w+ X)) = (w? + K; - w) + 2(w - X 4+ K; - ¥/2) we
have
I\"J~w+w2 I\"J~w+w2

DYtE = /2 YN(=1)" 7 aqje™ - ?/? SN(=1)" 7 a; e

K;-¥=2 (mod 4) K;-2=0 (mod 4)

Now since the only powers in D% (e'®) are those ¢4 with d = dy (mod 4) one has
| o
DY (") = 5(]D)} (ta) 4+ i~%DY (ita))
and analogously

1
DY) = SO (ta) — i DY (ita)
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since do(X,w + X) = do(X,w) + 2. So we finally get
I\"J~w+w I\"J~w+w2 .
ngg”’z)(ea) — Q)/2 Z (—1) ™7 g i | j=do o =Q(a)/2 Z (_Uf%em].a

K;-X=2 (mod 4) K;-£=0 (mod 4)

4

K w-l-w

Remark 1.12 For the class of the point x € Ho(X), aj,, = (—1)7 2

Dggu,E)( _26 o)/2 Z a; Ix"J~a_2Z~—d0 a)/2 Z a; zIxJ

K;X=2 (m0d4) K;-X=0 (m0d4)

1.2 Gluing theory

A natural way of computing the invariants for a closed manifold X is to split it
into elementary pieces for which the invariants are easily computable. For this
we need to understand, for every splitting X = X; Uy X, along a three-manifold
Y, how to the record differential-topological information about the open pieces!
X; from which we can recover the invariants of X. This was answered in the first
place with the (instanton) Floer homology of Y, which allows us to calculate the
invariants of X on classes o € Hy(X1) & H2(X2) (i.e. classes not split in two by

Y'). The general case is treated with the so called Fukaya-Floer homology.

1.2.1 Instanton Floer homology

Let Y be an oriented three-manifold and let Py — Y be a U(2) bundle such that
ci1(Py) is odd in H*(Y;Z)/torsion (what will be called odd). In this situation
Py only carries irreducible flat connections (with fixed determinant). We say
that Py is free of flat reductions. Possibly after a small perturbation of the
flat equations, there will be finitely many flat connections p;, and they will all
be non-degenerate. The Floer complex C'F,(Y) is the free abelian group on the
generators p;, where the grading is given by the index (see [9] [8]) and lies in an
affine Z /8-space (this complex depends on ¢;( Py ) but we do not express this in
the notation). When Y is a homology sphere (and Py is obviously trivial) the
trivial connections were used to fix the index (see [2]). In the general case, the

index is only defined up to a constant.

TAn open manifold will refer to a manifold with boundary or with a cylindrical end. A

closed manifold is a compact manifold (without boundary).
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Now for every two flat connections py and p; such that ind(px) = ind(p;) + 1,
there is a compact zero dimensional moduli space Mo(pg, pi) of (perturbed) ASD
connections on the tube ¥ x R with limits p; and p; modulo translations. This
space can be oriented? and so we have well defined the algebraic number of its

points, #Mo(pk, p1). We define the boundary map of the Floer complex to be

pe > #Molp, p)pi

ind(e;) =ind(pg) -1
Lemma 1.13 ([15][2][8]) 9? = 0.

Proof. Consider pj and p; flat connections such that ind(p;) = ind(px) — 2. Then
the moduli space Mg(pg, pi) is a smooth one dimensional manifold which can be

compactified adding the broken instantons in

U Molpr, pm) x Molpm. p1).- (1.1)

ind(pm)=ind(p) -1

So this compactification, Mo (py, p1), is a manifold with boundary given by (1.1).
Therefore
> #Molpkpm) - #Mo(pm, 1) = 0,

ind(pm)zind(pk)—l

from where we get 9> =0. O

We define the Floer homology H F.(Y') as the homology of this complex (this
is what Floer did originally [15]). It can be proved that these groups do not
depend on the metric of Y or on the chosen perturbation of the ASD equations.
The groups HF.(Y) are natural under diffecomorphisms of the pair (Y, Py). The
Floer cohomology HF*(Y') is defined analogously out of the dual complex and
it is naturally isomorphic to HF._.(Y'), for some constant ¢ (where Y is Y with

reversed orientation). Therefore we have a natural pairing

o HF(Y)® HF._(Y) > Z.

?The orientation involves choosing a manifold Z with boundary Y and for every pj a con-
nection Ai on Z with limit pg. Also we need to choose a homology orientation of X = Z Uy Z.
Then My (pi, pi) is oriented in such a way that the orientations for the moduli spaces M (7, py),
Mo(pr, p1), M(Z, p1) and M(X) match up correctly.
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It is worth noticing that when Y has an orientation reversing diffeomorphism,

ie. Y 2V, we have a pairing
o: HF.(Y)Q HF_.(Y) = Z.

In [8] it is explained that there is an extra symmetry which gives an involutive
isomorphism h : HF;(Y) — HF,14(Y) lifting degrees by 4, allowing us to consider
the Floer homology graded mod 4. This will be done systematically in this thesis.
It is equivalent to consider the Floer homology starting with an SO(3)-bundle.
Let o € Hs_;(Y). We have cycles V,, in the moduli spaces M(py,pi), of
codimension ¢ 4 1, representing p(« x pt), for o x pt C Y x R, much in the same

way as in the case of a closed manifold. Using them, we construct a map

ple) : CF(Y) = CF_i(Y)
pro= Y (FMpe ) O VL) i

PL
ind(p;)=ind(py)—i—1

It is easily seen that 0 o u(a) + p(a) 0 @ = 0 by considering the 1-dimensional
moduli space M(pg, p1) NV, for ind(p;) = ind(px) — ¢ —2 and counting the number
of its ends, which yields

Z (#M(,Ok,ps)mva) '#M(IOSHOI) +

Ps
ind(ps)=ind(p;)+1

+ Z #M(lokvlos) ) (#M(Psapl) N Va) = 0.

ind(ps)=ind(py) -1

So p(a) descends to a map
pla): HE(Y) — HF—;_1(Y).

Consider now an open (oriented) manifold X with X = Y and® let » =
a1y ... € A(X) of degree 2d. We are going to define relative invariants for
X. Choose w € H*(X;Z) such that w|y = ¢;(Py). We give X a cylindrical
end modelled on Y x [0,00) and denote it by X again (we hope no confusion
arises out of this). Then we have moduli spaces M(X, p;) of (perturbed) ASD
connections with finite action and asymptotic to p;. The dimension of M (X, p;)

is dim M (X, p;) = ind(p;) + C, for some constant C'. For orienting the spaces

3The orientation of Y followed by the inward normal gives the orientation of X.
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M(X, pi) we have to choose a manifold Z as in the footnote of page 11 and a
homology orientation for X Uy Z. Then orient M(X,p;) coherently with the
orientations of M(Z,p;) and M(X Uy 7). Now we can choose (generic) cycles
Vi, C M(X, pi), so we have defined an element

qble(XvZ): Z (#M(X,pl)ﬂvalﬂ---ﬂVar)pleCF*(Y).

ind(pl;)fI-C:2d
This element has boundary zero and hence it defines a homology class in H F,.(Y')
(see [12]). In the same vein, one defines ¢¥(X, D) = ¢¥(X, D?) for D € Hy(X).

Now the important gluing theorem reads as follows

Theorem 1.14 Let X = X, Uy X3 with b7(X) > 0 and w € H*(X;Z) with w|y
odd. Let T € H*(X;Z) whose Poincaré dual lies in the image of Ho(Y;Z) —
Hy(X;Z) and satisfying w-T = 1 (mod 2). Put w = wy + wy (this merely
means that w; = w|x, € H*(X;;Z), and different w’s can be written in this way).
Choose z; € A(X;) of degree 2d;. Then

DY (21 22) = o (851 (X1, 21), 952 (Xa, 22).
Also for a; € Ho(X;) and d; > 0
DY (afa®) = o (84 (X1, 1), 642 (X, a9)).

Proof. The essential feature is to consider a family of metrics stretching out the
neck joining X; and X, into a long tube. Then the instantons A on X split
into pairs (A, Az) of instantons on X; and X3, whose limits are the same flat
connection on Y. Then we also need the result that we can glue two instantons
A; and Ay with the same flat limit p in a unique way (depending on a parameter
t € (0,¢)) and this happens as long as p is irreducible (see [12] for details). When
bT = 1 this forces the metric to be in chambers corresponding to metrics giving a
long neck to X. This is the case for the chambers defined by [T]. The explanation

of the appearance of (w,T) is in the remark below. O

Definition 1.15 We define an allowable pair to be a pair (w,T) with w €
H*(X;Z), wly odd, T € H*(X;Z) whose Poincaré dual lies in the image of
Hy(Y;Z) — Hyo(X;Z), and satisfying w-T =1 (mod 2).
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Remark 1.16 When we glue two line bundles L; — X;, e1(L;) = w;, with
Lily & Lyly (under the orientation reversing diffeomorphism Y =Y ), we have
an element of choice lying in H'(Y;Z) = Hy(Y;Z). An isomorphism L = L,
L = e1(Py), covering the identity is given thus by an element T € Hy(Y;Z).
This lifts to an isomorphism Py = Py (which is not a gauge transformation, as

it does not preserve the determinant). We have
mo(Aut(L)) = Hom(m(Y), m(SY) = H'(Y;Z) —

— To(Aut(Py)) = Hom(m(Y), 7 (SO(3))) = H'(Y; Zy) 2 Zy.

This isomorphism is an element of the SO(3) gauge group, so the induced mor-
phism on HF.(Y) is the identity when we consider the Z/4Z grading. For the
Z[8Z grading, when w-T =0 (mod 2), the induced map HF.(Y) — HF.(Y)
is the identity. When w-T =1 (mod 2), it is the involution shifting degrees
by 4. (Considering the mapping torus of T as an automorphism of Py, we have
an U(2)-bundle over Y x S* with first Chern class w + [T] @ [S']. The index is
4 (mod 8) precisely when w-T =1 (mod 2)). So if (w,T) is allowable, then for

grading mod 8 we have
DY (21 22) = o(dg) (X1, 21), @47 (X2, 22))
Jor oy (X1, 21) € HF(Y), ¢32 (X2, 20) € HF._i(Y') and
DY (21 20) = o5 (X1, 1), 652 (X2, 22))

Jor ¢ (X1, 21) € HF(Y), ¢32(X3,20) € HF.y4_i(Y). This gives the resull for

our groups graded mod 4.

If we write

w Oéd
¢w(X7eta) :qud (A;(; )td,

d

we have the following version of theorem 1.14

Theorem 1.17 Let X = X; Uy X3 with bT(X) > 0 and let (w,T') be any allow-
able pair. Then for o; € Hy(X;)

D§U7T)(et(a1+a2)) = (" (X1, etcvl)7 ¢ (X3, 6750&2))‘
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Computing effectively the Floer homology is a very difficult task. In chapter 5
we will be using the Floer homology of Y = ¥ x S! where ¥ is a Riemann surface
of genus 2. The Atiyah-Floer conjecture (which has been already proved in the
case of ¥ x S! by Dostoglou and Salamon [14]) relates these (instanton) Floer ho-
mology groups with the (symplectic) Floer homology of the moduli space of flat
connections over Y with odd second Stiefel-Whitney class. In turn these symplec-
tic Floer homology groups are identified with the quantum cohomology through
work of many authors [53]. Moreover, quantum multiplication is intertwined with

the pair-of-pants product in Floer homology.

Remark 1.18 ([53]) Let M be a positive symplectic manifold (i.e. c¢;(M4?) =
Aw, for some positive number X) of dimension 2n with minimal Chern number
N. The quantum cohomology of M, QH*(M) is equal to the usual cohomology
of M, as abelian groups, but with a different ring structure given by the quantum
multiplication. Quantum multiplication is a deformation of the usual cup product
on the cohomology of M. If o € QH'(M), 8 € QH/(M), the quantum product
ax 3 is a sum of terms (a * 3)y € QHTI=2NE(M) for k > 0. The leading term
is (ax B)g = aUB. The other terms, the quantum corrections, are defined by
counting pseudoholomorphic curves (for some generic compatible almost complex
structure J on M ). More precisely < (o B)g,y >, ¥ € QHP=HI=2NE (A s
the number of pseudoholomorphic spheres f : S* — M with f(0) € A, f(1) € B,
f(oo) € C for generic cycles A, B, C' in M representing Poincaré duals of o, (3
and v respectively and ¢;(f.[S?]) = Nk.

Proposition 1.19 ([14]) Let Y = ¥ x S and wy(Py) = P.D.[S'] € H*(X x
S Zs). Then we have the following isomorphism

HF,(2 x 81y = QH =9~ M2t (1.2)
of the Floer cohomology of Y with the homology of the moduli space M2 of odd

degree rank two stable vector bundles on X, with the grading considered mod 4.

The natural pairings on both sides correspond under this isomorphism.
Proof. In [14], Dostoglou and Salamon prove that
HE(Y x SY, Py) 5 HEY™ (MY 7).

Now M2 is a positive symplectic manifold (see [9, page 133]). Then there is an

isomorphism [53]

HE™ (Mg 2) % QH 5= (Mg, 7).



16 CHAPTER 1. BASIC NOTIONS

which gives the desired result. O

Remark 1.20 The number 6g — 6 is rather arbitrary, since the grading of the
Floer homology is only defined up to a constant. We use this convention because

it produces an isomorphism HF*(X x SY) = QH*( M) preserving the grading.

Remark 1.21 We are only going to use the above proposition in the case of
genus g = 2. In this case, M2 is isomorphic to the intersection of two quadrics
in CP® (see [/5]). Therefore the symplectic form corresponds to the hyperplane
section H and the canonical divisor is KMEMM =(242—-6)H = —4H. Hence

cr(ME) = 4w and M is positive.

D. Salamon gave a program for determining the equivalence of the different
products for the different Floer theories in [55] (which has not been completed so
far). This is believed to be true, and it has been used in several places (see [9]).
We state it as a conjecture, in the form which we are going to use later (only for

the manifolds Y = ¥ x S', but including the expected result about the action of
p(pt)).

Conjecture 1.22 For every homology class o € H.(X) there is an element
f(a) € QHOI=O=( M) given by slanting with —1 times the first Pontrja-
gin class of the universal SO(3)-bundle. Then the action of p(a) in HF.(Y) is
intertwined with quantum multiplication by fi(a) € QHGI=O=(MM), for any
a € H (Y) (x=1,2). For pt € Ho(X), u(pt) is quantum multiplication by j(pt)

plus (possibly) a correction term of lower degree.

1.2.2 Fukaya-Floer homology

Now we pass on to the definition of the Fukaya-Floer homology for a triple
(Y, Py,v), where 7 is a loop in Y, i.e. an (oriented) embedding S* — Y and
c1(Py) is odd (see [3]). The complex C FF.(Y,~) will be the total complex of the
double complex CF.(Y) @ [:]*(CIF’OO) (]:]*(CIF’OO) is the completion of H.(CP*)).
Recall that H;(CP*) =0 for « odd and Z for ¢ even. Therefore

CFFZ(Y,’)/) = CFZ(Y) X CFZ_Q(Y) Xoee

So elements are infinite sequences of (possibly non-zero) Floer chains. This com-

plex is also graded modulo Z /87 in principle, but we will reduce the grading mod
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4 again. There is a moduli space Mq(px, p1) for every pair of flat connections py
and p; and we can construct generic cycles representing (v x R) and intersect-
ing transversely in the top stratum of the compactification of Mg(pk,pi). The
boundary will be defined as

9:CFF(Y) = CFF_y(Y)

v Z (g) < ply R)ﬁ—a7ﬂ0(pk7pl) > pi
o1

for pr, € CFi_90, p1 € CF;_1_95 and 3 > o. My(py, pi1) denotes again the moduli
space of instantons on the cylinder with limits p; and p;, quotiented out by the

translations, which is of dimension 2(8 — a) = ind(px) — ind(p;) — 1. Again

Lemma 1.23 ([3]) 9* = 0.

Proof. Consider two flat connections py and p;, such that ind(p;) = ind(px) —
2 —2e. Then the moduli space Mo(pr, p1) N Vg is a one dimensional manifold.
Then we compactify it and count the boundary points in the same way as in

lemma 1.13 to get

Z (;) #MO(IOkHOm) N ‘/WfXR : #MO(prHpI) N ‘/wex_]l{ =0

ind(pm):ind(pk)—1—2f

from where 00p, = 0. O

So we have defined thus the Fukaya-Floer homology HFF.(Y,v). These
groups are independent of metrics and of perturbations of equations (see [3]).
There is a filtration (K(i))* =CF.(Y)® (H*Zi [:]*(CIF’OO)) of CFF.(Y,~) inducing
a spectral sequence whose Fs term is HF,.(Y)® [:]*(CIF’OO) and converging to the
Fukaya-Floer groups. The boundary d3 turns out to be

u(7) : HE(Y) @ Hoy(CE™) = HEis(Y) © Hajyo(CP™).

The pairing in Floer homology descends to give a pairing for the Fukaya-Floer
homology groups

oc: HFF.(Y,y)@ HFF.(Y,—v) = Z,
where —~ is 7 with reversed orientation.
To define relative invariants, let X be an open manifold with X =Y. We
give it a cylindrical end. Choose w such that wl|y is odd. Let D C X be
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an embedded Riemann surface such that 9D = D NY = v (more accurately,
DN (Y x[0,00)) = v x[0,00)). One has the moduli spaces M (X, pi) and we can
choose generic cycles Vl()i) representing p( D) and intersecting transversely. Then
we have an element

U (X, D)= Y (FMX, p) V00 v,

PE
ind(py)+C=2d

in CF(Y)® Hayq(CP*>) C CFF.(Y,v). We remark that this is not a cycle. Then
we set ¢ (X, D) = [1;04(X, D), which is a cycle (we also denote by ¢*(X, D)
the Fukaya-Floer homology class it represents). The definition of ¢4 (X, D) de-
pends on some choices, but the homology class ¢*(X, D) only depends on (X, D).
Moreover if we have a homology of D which is the identity in the cylindrical
end of X, ¢“(X, D) remains fixed (otherwise stated, ¢“(X, D) only depends
on the class D € HE(X,0X) in the terminology of subsection 2.3.2). Anal-
ogously we have ¢¥(X, D?z), for any 2 € A(X) of degree §, and the cycle
(X, z,D) =1y ¢¥(X, D 2). The relevant gluing theorem is:

Theorem 1.24 ([3]) Let X = X; Uy Xy with bT(X) > 0 and let (w,T) be an
allowable pair in the sense of definition 1.15. Choose D € Hy(X) decomposed as
D = Dy + Dy with D; C X; embedded as above, w = wy + wy. Then

D w0m) =3 (

7

m

. ) (6" (X1, D1), 6% (X, Dy)).

4

Let us remark that the numbers o (i (X1, D1), ¢, (X2, D2)) are dependent
of the particular cycle representing the homology class, but their sum is only
dependent on the homology class [3].

We write formally

¢w(X7 etD) — Z ¢§U(ili7 D)td.

d

This element lies in [, V; t%, where [, V; is the graded module associated to the
spectral sequence of C'F,(Y) @ H,(CP>) converging to HFF,(Y,~).

Theorem 1.25 Let X = X Uy Xy with b7 (X) > 0 and let (w,T) be an allowable
pair. Choose D € Hyo(X) decomposed as D = Dy + Dy with D; C X; embedded

as above, w = wy + w,. Then

DD (D) = o (¢ (X1, ePr), ¢ (Xy, e!P2)).



Chapter 2

Connected sums

2.1 General definitions

2.1.1 Blow-ups

Suppose given two closed oriented four-manifolds X; and X,. The connected
sum X = X;#X, is formed by removing two small balls from each of the X;
and gluing the boundaries by an (orientation reversing) diffeomorphism. The
(oriented) diffeomorphism type of the result does not depend on any choices.
It is known since the introduction of the invariants that whenever b"’(Xﬂ > 0
for both manifolds, the invariants of X vanish. When 57(X;) = 0 the general

formula relating the invariants of X and X;, ¢ = 1,2 is not yet completely known.

Definition 2.1 If X is a closed oriented four-manifold, we call X = X#(C—IF’2
the (differentiable) blow-up of X. We call £ = [C—Pl] € HQ(C—[F’Z) C Hg()N()
the exceptional divisor of the blow-up. This is represented by an embedded
(—1)-sphere.

When X is a complex manifold, we can perform the blow-up of X in the
category of complex manifolds and we get a complex manifold whose underlying
differentiable manifold is X.

In general, if we have a manifold X with an embedded ¥ C X and we consider
X, with exceptional divisor E, we have the proper transform of ¥ defined to
be 3 = Y#(—F), the connected sum of ¥ and the embedded sphere F (with
reversed orientation) joined with a thin tube in X not intersecting either ¥ or

E. Therefore ¥ is an embedded Riemann surface of the same genus as ¥ but

19
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2 = %2 — 1. Of course, ¥ is strictly speaking well-defined, after a choice of a
path connecting ¥ and E (and with no further intersections to either ¥, F or
itself), only up to isotopy. Also note that, in the complex context, when X is a
complex surface and ¥ a complex curve, if we blow-up at a smooth point in X,
then ¥ is the proper transform of ¥ in the complex sense.

Fintushel and Stern [16] have found the precise relationship between the in-
variants of X and those of X. Their result settles the case b+(X2) = () whenever
X, = #nC—PQ. In general, when X, is simply connected, it is homeomorphic
to some #nCP" (because of a result of Donaldson [6] which establishes that its
intersection form is standard) and it is conjectured that the same relationship
between the invariants would hold. When X is of simple type the result comes

down to the following

Proposition 2.2 Let X be of simple type with by = 0 and b* > 1 and odd. Let
Dy = 925 a;e’i be its Donaldson series. Then X is of simple type and has

Series

D; = e F/2cosh E Dy = @/ Z(%GKH'E + %GK"_E),

where () stands for the quadratic form of X and E € HZ(C—IF’Q) C H*(X) is the

cohomology class dual to the exceptional divisor.

2.1.2 Connected sums along Riemann surfaces

In general, we may have a splitting of X along an embedded (oriented) 3-manifold
Y C X. This Y divides X into two manifolds' with boundary X; and X, such
that X = X; Uy X;5. The orientations of all pieces can be arranged to have
0X, = Y and dX, = Y (that is, Y with reversed orientation). Conversely,
we could have started with two manifolds with boundary X; and X, such that
0X,; =Y and 9X; = Y, and choosing a (orientation reversing) diffeomorphism
¢ 0X, — 0X,, form the glued manifold X = X, Uy X3. The diffeomorphism
type of X depends only on the isotopy class of ¢.

Consider the case of two manifolds X; and X, together with embeddings
Y — X; of the same Riemann surface. Identify ¥ with its image Y; and let

n; be the self-intersection of ;. Suppose n; + ny = 0. Then we can choose

open tubular neighbourhoods N; of ¥;, X; = X; — N;. The boundary Y = 90X,

LA general 3-manifold Y does not necessarily split X. It does whenever [Y] =0 € H3(X).
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is the total space of a circle bundle over the Riemann surface ¥; with Chern
class equal to ny. Obviously, Y = 9Xj is the total space of a circle bundle over
Yy with Chern class ny = —ny. So there is (at least) one orientation reversing
diffeomorphism ¢ between the boundaries of X; and X3, namely any bundle
isomorphism covering the identity on ¥ from dX; to dX,. We want to consider
the manifold X = X; U, X;. Obviously the diffeomorphism type of X depends
on the isotopy class of ¢.

It would be important for us to understand the group mo(Diff¥(Y)) of isotopy
classes of diffeomorphisms where Y is the total space of a circle bundle over the
Riemann surface 3. Let Y =Y, , be the total space of a circle bundle of degree n
over a Riemann surface of genus g. When ¢ =1 and n =0, Y is a three-torus and
each isotopy class of diffeomorphisms is characterised by its action on Hy(Y;Z),
hence giving that mo(Diff *(Y10)) = SL(3;Z) (see for instance [24, page 145]). In
general, the group mo(Diff ¥ (Y, ,)) is difficult to compute, so we will restrict our
attention to the subgroup Aut(Y,,) C Diff"'(ng) of automorphisms of Y} , as a

circle bundle. Then we have

Proposition 2.3 Let Y = Y, , and (g,n) # (1,0). Then we have the exact
sequence

0— HY(X;Z) — mo( Aut(Y,,.)) — mo( Diff=(¥)) — 0.

Proof. By definition any element ¢ € Aut(Y') covers a diffeomorphism f of
Y, and isotopic elements in Aut(Y') give isotopic diffeomorphisms. When f is
orientation preserving, ¢ will preserve the orientation of the fibres. If f is ori-
entation reversing, ¢ reverses the orientation of the fibres so ¢ € Diff*(Y, ).
Any diffeomorphism f of 3 can be lifted to a bundle isomorphism Y, , — Y, ..
so the map above is surjective. The kernel is the set of isotopy classes of bun-
dle isomorphisms covering the identity (the gauge group of ¥ — ¥). This is
mo(C(X,8Y) = HY(X;Z). O

Remark 2.4 The group mo( Diff (X)) is quite big. In general, mo(Diff*(%)) =
Out(mi(X)), the group of outer automorphisms of m(X). We have an obvious
morphism

mo( DIffE (X)) — Aut(H,(2; 7))

given by the action on homology. The kernel of this homomorphism is called the
Torelli group of 2. It is an infinite group for g > 2 and contains very interesting
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elements like Dehn twists along separating curves.

Definition 2.5 Let Y =Y, ,. If (g9,n) # (1,0), we define an identification
for Y to be any orientation reversing diffeomorphism ¢ : Y =Y which lies in
Aut(Y) € Diff t(Y) = Diff~(Y.Y). If (g,n) = (1,0), an identification for Y is

any orientation reversing diffeomorphism ¢ 1Y =Y.

Definition 2.6 Let X; be as in the beginning of this subsection. We call X =
X(¢) = X1 Uy X, the connected sum of X, and X, along ¥ with identifi-
cation ¢, and denote it by X = X #5X,.

Remark 2.7 The fact that g =1, n = 0 is a special case will allow us to perform

logarithmic transforms which have no analogue when the genus is bigger.

Suppose now that we have n; 4+ ny > 0. By blowing-up X; or X, sufficiently
often and replacing ¥; by its proper transform at each stage, we can reduce
11 + ng to zero, and then consider the connected sum along ¥ of those manifolds.

A simple extension of the arguments in [29] gives the following

Proposition 2.8 The diffeomorphism type does notl depend on the points al
which we blow-up. More concretely, blow-up X; at n; points and fix an (isotopy
class of ) identification ¢ between the boundaries of the tubular neighbourhoods
of the proper transforms of ¥;. Let X = X(¢) be the connected sum along ¥.
For other choice of integers s; with s; + s, = nq + ng, blow-up X; at s; points.
Then there is a isotopy class of diffeomorphisms i between the boundaries of the
tubular neighbourhoods of the proper transforms of X; such that the resulting con-
nected sum along ¥ is diffeomorphic to X. Moreover, the correspondence ¢ —
is bijective.

Therefore we have a process consisting of blowing-up the manifolds, taking
proper transforms and then doing the connected sum along ¥. What proposi-
tion 2.8 tells us is that the only choice (up to diffeomorphism) involved in all
the process is an element of mo(Diff(Y)) with Y a circle bundle of degree n
over ¥ (for any n in the range 0 < n < max(ny, ng)). Actually we will see in
corollary 2.11 that whenever ny + ny > 0 (i.e. we have to perform at least one
blow-up) the choice reduces to an element in mo(Diff ¥ (X)).

When n; = ny = 0, Y = ¥ x St is a trivial circle bundle. Note that when

ny > 0 and ny > 0 we can lower both quantities to zero by blowing-up to have

Y =% xS.
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2.1.3 Characteristic numbers of the connected sum

Let X; and X3 be two manifolds with embedded Riemann surfaces ¥; < X; of the
same genus and self-intersection zero, and let X = X145 X, be their connected
sum along the Riemann surface (for some identification). Let ¢ stand for the
genus of Y. Since yy = 2 — 2g it is easy to prove that the characteristic numbers

are related as follows:

XX = Xx, txx,t+4g—4
ox = O'X1—|-0'X2

BE(X) = 0i(X) = (B5(X0) = ba(X0)) + (0F(Xo) = bi(X0)) +29 — 1

As a consequence, when bt (X;) > 0 and b;(X;) = 0 for both sides and g >
1, one has that b¥(X) > 1. Also in general b+(X) > bH(X;) + b¥(Xy) — 1.
Suppose that X;, X, and X are algebraic manifolds (we will see some cases
in proposition 2.9 when this actually happens), or even only almost complex
manifolds, with canonical classes K5 , K, and Kx respectively. We recall that

for an almost complex manifold K = 2y + 30. This gives

K% =K% + K% +8(g—1).

I(%( +co
12

In the algebraic case, Y(Ox) = and so if p, stands for the geometric genus

of X and ¢ for the irregularity

Pa(X) = a(X) = (py(X1) — ¢(X1)) + (ps(X2) — ¢(X2)) + 9.
In general, ¢(X) < ¢(X;) + q(X3), so when ¢(X;) = 0, 7 = 1,2 we conclude
g(X) =0 and py(X) = py(X1) + py(X2) + 9.

2.2 General results on connected sums

In this section we will state some general results about connected sums along
Riemann surfaces. The first one, proposition 2.9, relates the smoothing out of
an algebraic manifold with normal crossings with the connected sum of the two
irreducible components. The second one, corollary 2.11, gives a condition for
the connected sum to be independent of the choice of identification of the normal
bundle. The third and last, proposition 2.12, is a result of Gompf about connected

sums of symplectic manifolds.
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To start with, consider the case when the manifolds X; are complex surfaces
and Y; are embedded complex curves and let v; denote the holomorphic normal
bundle to ¥;. Suppose that the embeddings ¥ = ¥; C X; are holomorphic
(which amounts to say that ¥; and ¥, are isomorphic complex curves and that
we fix an isomorphism). If v; and v are isomorphic (obviously this implies that
ny + ny = 0), we have an isomorphism ¢ : 14 = v} (unique up to a constant
factor) and then there is a preferred diffeomorphism ¢ : N; — N, between
the tubular neighbourhoods of ¥; (the bar denotes orientation reversed). Then,
restricting to the boundaries of the tubular neighbourhoods, there is a preferred
identification ¢ : X; — 90X, between the boundaries of X; = X; — N;. We can
use this identification to perform a connected sum of X; along ¥. Note that when
ni+nz > 0 we need to blow-up. This only can be done if 1y @vy = Os(p1+---+p;)
for some points p; € ¥. In that case we must blow-up at the r points p;, but we

can choose at which of either X; to blow-up.

Proposition 2.9 Let Z 5 A = D(0,1) C C be a (flat) family of complex
surfaces. Suppose that Z; = 7w~ '(t) are smooth for t # 0 and that X = Z, is
the union of two surfaces X; and X, intersecting in a normal crossing along ¥
(i.e. X1 and Xy are smooth and intersecting transversely). If ny +nqy =0 (where
n; is the self-intersection of ¥ in X;), then the diffeomorphism type of a generic
fibre is obtained by a connected sum along ¥ of X1 and X, with the preferred
identification alluded above.

Proof. We note that when ny +ny = 0, 1 ® s = O. So the deformation is
d-semistable in the terminology of Friedman [21]. Equivalently, the total defor-
mation space is smooth. In this case the general fibre Z; is diffeomorphic to the
connected sum of X; and X, along ¥ (see [24, page 162, lemma 2.13]). O

We cannot hope for a converse of proposition 2.9 (even in the case of d-
semistability), as it is shown in [51], where it is constructed an algebraic surface

with a normal crossing which can not be deformed into a smooth algebraic surface.

Theorem 2.10 Let X be a smooth four-manifold with an embedded Riemann
surface ¥ C X. Suppose that there exists an embedded sphere E of self-intersec-
tion —1 intersecting X transversely at one point. Then for any element ~ €
HY(X;Z) there exists a diffeomorphism ¢ : X = X fizing ¥ and inducing the

isomorphism given by v in the normal bundles to ¥ (see proposition 2.3).
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Proof. We shall suppose that ¥? = 0, but the argument is the same for ¥? # 0.
We can also suppose ¥ - F = 1. We contract £ to a point to get a smooth
manifold X with a smooth embedded Riemann surface ¥ C X of the same genus
as Y, such that X is the blow-up of X with exceptional divisor £ and ¥ is the
proper transform of 3. Obviously, H*(X) & H*(i) in a natural way. Now we
are going to move the point at which we blow-up around a curve ¢ : S' — ScX
whose homology class is Poincaré dual of ¥ in 3. To move the point at which we
blow-up we argue as follows. Consider the family X = X xS! with the embedded
three-manifold S = ¥ x S! ¢ X'. Consider the curve A : §' — X x S! given by

Then a tubular neighbourhood N = B x S' (B is a four-ball) of the image of A
has boundary S*xS*'. We remove it and glue in (C—[F’2 — B")xS' where B’ is a small
ball in CP”. The resulting manifold is X' — S' with fibres X, = X, for 0 € S!
(X = X xS! when g =0 € m(X)). We also glue together S =3 x S! minus the
part removed with (£ — B'N E) x S* with reversed orientation (we choose the ball
B’ to have centre on the exceptional sphere F), to get § = ¥ x S' < X, In this
way we have constructed a parametrised blow-up along ¢ with a parametrised
proper transform of X. Now fix a trivialisation of the normal bundle of ¥ x {o} in
X,, 0 € S (equivalently fix the homotopy class of ONsy oy — (X x {o}) x S, for
Ny (o} a tubular neighbourhood of ¥ x {0} in X, ) and transport the trivialisation
along g. To look at the holonomy as we go around the loop, we need to compute
the global normal bundle of S in A'. Its first Chern class is

[S]|s € HX(S) = HX(S x S).

Now [S] = P.D.[E x S —P.D.[E x SY] € H2(X), [© x $Y|s = [S!] (since 2 = 1)
and [F x S']|s = [A]. So

[S]ls = P.D.[ST]-P.D.[A] = —y@[S'] € H}(ExS!) = H*(S)@(H (Z)@ H'(SY)).
This is enough to infer the theorem. [

Actually, the proof is based on the fact that the isotopy class of the proper
transform of & does depend on the chosen path from Y to the exceptional sphere.
Morally, we have been comparing two different proper transforms whose paths

differ by juxtaposition of a path which is given by moving ¢ slightly off 3
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Corollary 2.11 Let X, and X, be manifolds furnished with embeddings ¥ — X;
with image X;, with self-intersection number n;. Suppose ni+ny > 0. Perform the
process of blowing-up until the intersection numbers of the proper transforms are
zero and do the connected sum along . If we choose two different identifications
of the boundaries Y = ¥ x S', say ¢ and ¢, whose homotopy classes in Aut(Y')
differ by an element v € H(3;Z) then XUy Xy and X, Uy X,y are diffeomorphic.

We recall here remark 2.4 about the richness of the group mo(Diff¥(X)). Al-
though this last result says that the diffeomorphism type of the resulting glued
manifold depends on the identification only through the homotopy class it induces
in mo(Diff (X)), this is still quite a big group. Actually, the homology groups
of X only depend on the induced element in Aut(H;(¥;Z)). Now we pass on to
state the last result, which is proved by Gompf [29] and also by McCarthy and
Wolfson [41].

Proposition 2.12 Suppose X| and X, are two symplectic four-manifolds with
symplectic submanifolds ¥; C X; being Riemann surfaces of the same genus g.
Suppose that the self-intersections n; of ¥; satisfy ny + ny = 0. Fiz an iden-
tification ¢. Then there is a natural isotopy class of symplectic structures for
X = Xi#x X, associated to the symplectic structures on X1, Xy and the identi-

fication ¢.

2.3 Gluing cycles in the connected sum

From now on we are going to consider the case of two four-manifolds X; and X,
with b, = 0 and with embeddings ¥ — X; whose images X; represent cohomology
classes [¥;] € H?*(X;;Z) which are non-torsion elements and have self-intersection
zero. Choose an identification ¢ between the boundaries of tubular neighbour-
hoods of 3; and form the connected sum along 3, say X = X;#sX,.

2.3.1 Computing the (co)homology

The cohomology exact sequence for the pair (X;, X;) gives the exact sequence?

?The identifications between homology and cohomology groups are through Poincaré duality.
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where L; C Hy(X;Z) is the image of the composition
H*(Xi;Z) — Hy(X;,0X5Z) S Hi(S x SLZ) S Hy (S x D% Z) = Hi(%: Z),
and it is a free abelian group of rank 2g. We also have isomorphisms
HY X;Z)=2 HY(X;;Z)=0
(X1 2) = HY(X 2) ) (Hi(3: 2) /1)

It is worth noticing that b;(X;) = 0, b;(X;) = 0, b'(X;) = 0 and b'(X;) = 0 are
all equivalent (here we use that [¥;] is non-torsion).

From the exact sequence (2.1) one has that there is a (non-canonical) splitting
H*( X, Z) = HY(X;; Z) | Z[S) @ Li. Giving one such splitting of the exact sequence
is equivalent to giving a subspace V; C H?*(X;;Z) projecting isomorphically to
L; C H{(X;Z). Suppose now that two such splittings V; C H*(X;;Z) being given.
The Mayer-Vietoris sequence for X = X; U X, gives

HY(X;Z)= H(X:Z) & HY (X5 2)
and the exact sequence
0— HY(Y;Z)— H*(X;Z) — H*(X\;Z)® H* (X, Z) —

— HX(Y;Z)=(H'(Y) @ H'(S")) & H*(Y) 2 H'(S;Z)® H* (S Z),

where the last map is surjective when we tensor with rational coefficients. The
first conclusion is b1(X) = 0. Also, under the splittings V;, we can describe the

last map as (we drop Z in the notation)

(H*(X1)/Z[Sh] @ Vi) @ (HY(X2)/Z[Se] & Vo) — HY(EZ) @ H* (X5 Z)
(a1, Br,02,B2) = (B — P2, 1 - X1 — ag - X).

Now call G the subgroup of H*(X;Z)/Z[>1]) & H*(Xy;Z)]Z[X,] consisting
of elements (ay,as) such that oy - ¥; = ag - ¥y (note that these pairings make

sense). Then we have the exact sequence
0— HY(Y;Z)— H*X;Z) 5 Go H' (X Z) (2.2)

with the cokernel of last map being a torsion group.
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Remark 2.13 Call m; the divisibility of ¥; (that is, the minimum of the positive
numbers appearing as X;- D;, for D; € H*(X;;Z). Note that m; > 0 as ¥; is non-
torsion. Put m for the least common multiple of my and my and d = mymy/m
for the greatest common divisor. Then m is the divisibility of ¥ C X. The
cokernel of 7 is isomorphic to Hi(X;Z)/(L1 N Ly). So m is surjective if and only

if H3( X3 Z) = H3 (X3 Z), 1 =1,2.
Now let us rewrite the exact sequences we have for rational coefficients (we recall
that H*(X) stands for rational coefficients)
0— HY(Y)—= H*X)—= Gao H(Z) = 0.
Working with homology, we have an analogue exact sequence
0 — Hy(Y) = Ho(X) — Ha(X1,0X1) @ Ho(X2,0X5) — Hi(Y) — 0.
Also we have the following
0 — Hy(Y) = Ha(Xy) & Ho(X3) — Ho(X) — Hi(Y) — 0,

or working with cohomology

0— HY(Y) — H*(X,,0X,)® H*(Xy,0X5) — H*(X) = H*(Y) = 0. (2.3)

Calling K the cokernel of the first map of (2.3), one has 0 - K — H?*(X) —
H*(Y) — 0, which tells us that the homology of X is always an extension of
H*(Y) and K. If we use different identifications ¢, the first map in (2.3) and

hence K are only dependent on the action of ¢ on the 2-homology.

Definition 2.14 Let v € H1(X;Z) be a primitive class. Then we call T, the
homology class in Ho(Y';Z) represented by g x S' C ¥ x St, where g is any loop
in X with v = [g]. So T, = v @ [SY] is represented by a torus of self-intersection

ZETO.

Now, the exact sequence (2.2) admits the following interpretation. The first
term corresponds to the 2-homology of Y, i.e. it is generated by ¥ and the tori
T,. The subgroup 7~*(G) consists of the classes obtained by gluing cycles coming
from X; with cycles from X, intersecting ¥; on the same number of points,
equivalently homology classes cutting Y in a multiple of [S']. The preimage

of H'(X;Z) corresponds to 2-homology classes whose intersection with Y is a
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homology class lying in Hi(X) C Hyi(Y). All of these classes are necessarily
represented by cycles with a part in X; and a part in X, going through the
neck. The process of gluing two homology classes is not well-defined. If we have
homology classes D; € Hy(X;,0X;) with 9D, = —0dD;, we can glue them together
to give D € Hy(X). For this, we choose cycles representing the homology classes
with the same cycle as boundary. The point is that different representatives will
lead to homology classes differing by an element in Hy(Y). This is due to the
fact that a homology in (X, 9X;) does not extend to the whole of Xj.

Now if we think of the exact sequence (2.2) in terms of line bundles and
their first Chern classes, then for a line bundle L on X with ¢ = ¢ (L), m(¢)
is the (Chern classes of the) restrictions of L to the two open manifolds X;.
Now H'(Y;Z) expresses the indeterminacy present when we glue two different
line bundles L; — X; such that Li|y = Ls|y, that is, the possible choice of
identification of both L; along Y.

2.3.2 The extended homology groups

The reason for refining the second homology groups for the pairs (X;,0X;) is
two-fold. On the one hand, we want to keep track of the indeterminacy of gluing
two homology classes or two line bundles on the pieces X;. On the other hand,
we have to use the Fukaya-Floer theory, in which the groups H F' F.(Y,~) depend
in principle on the isotopy class of the loop 7 and not only on its homology class.

For this we define the following concepts.

Definition 2.15 Let Y be a three-manifold. A loop ~ in Y is an embedded
oriented S' C Y. We define Q(Y') to be the vector space (over Q) generated by
all loops in' Y™ (with the identification of —v with v with opposite orientation). A
framaing for a loop v is a homotopy class of trivialisations of its normal bundle
inY. A framed loop is a loop endowed with a framing. We denote by FQ(Y)
the vector space generated by all framed loops in Y. Obviously Z acts freely and

transitively on the framings of a loop, and hence it acts freely on FQ(Y') with
quotient Q(Y).

Now we are ready to define our extended relative homology groups. Let X be
an open manifold with boundary 90X =Y. We will give X a cylindrical end, i.e.
we will consider X' = XUy (Y x[0,00)). Let X = X'—(Y x[1,00)) and let C}(X")
be the subgroup of 2-chains ¥ C X’ such that ¥ N (Y x [0,00)) = v x [0, o), for
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some v € Q(Y). Let Z)(X') C C4(X") be those which are cycles and let By(X?)
be the boundaries supported in X°.

Definition 2.16 We define the extended non-framed homology groups of
the pair (X,0X) as

N 10 G
1200 = 5050 Az

We have an exact sequence
0 — Hy(X°) — HE(X,0X) — Q(Y).

We define the extended homology groups HI(X,0X) as the pull-back of
[:[f(X, 0X) under the projection FQ(Y) — Q(Y). So we have

0 — Ho(X°) — HIF(X,0X) 5 FQY).

The image of ¢ is given by those loops v € FQ(Y) whose homology classes lie
in the image of Hy(X;0X) — Hy(Y) (so the map is surjective when H(X) =
0). The group HI(X,0X) is natural under diffeomorphisms of X inducing the
identity in Y. We have obvious surjective maps HZ(X,0X) — Hy(X,0X) and
FQUY) — Hi(Y). If K is the kernel of the first map, one has an exact sequence
Hy(0X) = K — FQ(Y) — Hi(Y) — 0. The kernel of the first map in this exact
sequence is the kernel of Hy(0X) — Ha(X).

Let now X; and X, be two manifolds with ¢ : 0X; = 90X, and X = X; Uy Xs.

We have a natural map
m HE (X0, 0X)) & HY(X3,0X3) — FQ(Y)
given by (D1, D2) = é.(qi(D1)) — q2(Ds). Tts kernel is the diagonal
A ={(D1, D) € H(X1,0X1) & H3'(X5,0X5)/du(q1(D1)) = ¢o(D2)}.
The gluing of cycles is encoded in the following exact sequence
0= Hx(Y) = A — Hy(X) B FQY),

where the first map is a — (o, ¢.()). This expresses that every pair (Dy, Dz) €
HE(X,,0X,) @ HE(X5,0X,) with ¢.(qi(D1)) = g2(D3) can be glued in a unique
way to give a homology class for X. Also every class D € Hy(X) can be decom-
posed in this way, i.e. A — Hy(X) is surjective.
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Now we also have to extend the intersection pairing to HI(X;, dX;) (and
here it enters the fact that we have used FQ(Y') rather than ©(Y)). For an open
manifold X with boundary Y = 9X we define

Q: Hy(X,0X) = Q

in the following way. Let v be a loop in Y and D € HF(X,0X) with ¢(D) = 7.
Perturb slightly D by moving its boundary along the framing, so that we get
another cycle homologous to D which does not intersect D in Y x [0,00). Then
count the intersection points with signs to get Q(D). Now if we represent by
D, =noD & HE(X,0X) the cycle D with the framing of its boundary twisted
n times, we have Q(D,) = Q(D) + n.

Now let X, X, be two open manifolds with boundary 0X; = 90X, =Y, and
let Q; be the intersection pairings in HE(X;,0X;). If Q denotes the intersection
pairing of X = X; Uy Xj, then for any cycle D € Hy(X) decomposed as D =
Dy + Dy, D; € HE(X;,0X;), one has Q(D) = Q1(Dy) + Q2(D3). Obviously this
is independent of the framing since when twisting D = (D1), + (D2)—,, for any
n € 7.

Remark 2.17 Note that for v = pt x S* C X x St there is always a preferred
framing since Y — X is a circle bundle over Y. Also if there is a canonical
diffeomorphism Y = ¥ x St and v C ¥ C ¥ x S, there is a preferred framing of
~, namely the framing inside 3.

Remark 2.18 For the manifold A = ¥ x D?, the extended group contains a
subgroup Q[A] & Q[X] with A = pt x D? being a horizontal section, for a fived
point pt € X2, Also A* =0, with the framing as in remark 2.17.

Remark 2.19 Sometimes we can find a collection Dg{), 7 = 1,2, formed by
(—1)-discs, i.e. embedded discs of self-intersection —1 (any self-intersection can
be achieved by modifying the framing), for 2g framed loops vy; C X whose homology
classes form a basis of H\(Y;7Z) together with [S']. When this is possible and ¢
matches up the cycles and the framings, the resulting D., are embedded (—2)-
spheres and T, - Dy = o~ p(v) (forp: Hi(Y) = Hi(X)). So for every D., there is
some torus T, of self-intersection zero intersecting D., in one point. Thus D,+T,
can be represented by a torus of self-intersection zero as well. All the T, and the

D., generate a primitive sublattice V-C H*(X;Z) hence V&V~ = H*(X;Z) and
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the exact sequence (2.2) reduces to
0-ZX]—-V- 5 G —=0. (2.4)

Remark 2.20 In the situation of the previous remark, we can split the (rational)
homology of X in a nice way. Choose cohomology classes D € Vi C Hy(X),
Dy € Hy(Xy), Dy € Hyo(Xy) with D =Y = 1, and such that D = Dy + D,
Dy = D+ A, Dy = Dy + A, Let W = Q[Y, D] be the vector subspace of
Vg generated by ¥ and D. Let W; = Q[¥;, D;] € Hy(X;). Then 7 induces an
isomorphism W= = W @ W, preserving the intersection forms. So finally

Hy(X) = Vo @ Q[y, Di]™ ® Q[E,, Do]” @ Q[E, D]

This decomposition is orthogonal. Also note that Q[¥;, D;] = Ho(X;)/Q[X].

We can define the Fukaya-Floer theory of Y as

HFE(Y)= @ (HFE(Y,7)27Q) = FO(Y),
~ framed loop
which collects all Fukaya-Floer groups at once. Then every D € HF(X,0X) de-
fines a cycle ¢"(X, D) € HF F.(Y'). Now the pairing is defined as 0 : HF F.(Y)®

HFF.(Y)— Q and for a closed manifold X = XUy X3, D = D1+ Dy € Hy(X),
w = w; +wy € H*(X;Z), one has

DY () = o(¢™ (X1, e, 6" (Xa, 'P2)).



Chapter 3

Complex manifolds

This chapter tries to gather together some results concerning the computation of
Donaldson invariants for 4-manifolds which are furnished with the extra structure
of algebraic surfaces. In this case the invariants can be obtained via algebraic
geometry as will be explained in section 3.1. The next two sections contain
remarks on (and examples of) surfaces which are fibred as complex manifolds over
complex curves, with fibres being generically curves of genus 1 and 2, respectively.
These are the basic blocks to which we apply the theory developed in chapters 4
and 5. The last section is devoted to the computation of wall-crossing formulae

for some algebraic surfaces with p, = 0.

3.1 Invariants for algebraic surfaces

The first computations of Donaldson invariants for four-manifolds (except in some
cases of vanishing) were carried out for complex surfaces. This is due to the fact
that in this case one can study the moduli space of stable bundles with fixed
Chern classes instead of the moduli space of ASD connections.

Let S be a smooth projective surface and ¢ a Hodge metric on S with corre-
sponding ample line bundle H. Such an H is also called a polarisation of S. The
two-form w € H*(S;Z) given by H is a positive form. By definition of ampleness,
there is an embedding of S in some projective space! such that the hyperplane
section is a positive integer multiple of H, or equivalently, the Kahler form cor-

responding to the Fubini-Study metric restricts to a positive integer multiple of

!For smooth algebraic surfaces, it is equivalent the existence of an ample line bundle H, to

be algebraic and to be projective.

33
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w. Then w is a Hodge form corresponding to a hermitian metric i, whose real
part is the Hodge metric g.

Fix the Chern classes ¢; and ¢y and also a holomorphic line bundle O(L) with
c1(L) = ¢1. We consider the set My (cq, c2) of stable bundles £ — S with respect
to the polarisation H (for definition see for instance [24, page 322]), with Chern
classes ¢;(F) = ¢; and ¢(F) = ¢; and with a fixed isomorphism det(E) = O(L)
of holomorphic line bundles. Different choices of I would give isomorphic moduli

spaces.

Proposition 3.1 ([5]) Under the conditions above, there is an isomorphism of
real analytic varieties M"Y = My (cy,c2) from the moduli space of ASD connec-
tions on S with respect to the metric g and with w = ¢1, Kk = ¢3 — ic%, to the

space of stable bundles with respect to H with given Chern classes.

The metric g is generic in the sense of section 1.1 if the following condition is
satisfied:

H®(Endy(FE)) = H*(Endo(E)) = 0, for all £ € My(e1,cz),

where Endg(F) is the sheaf of trace-free endomorphisms of E. This means
that the moduli space of stable bundles is reduced and of the virtual dimen-
sion. My (cq,ca) is naturally a complex variety and therefore it has a natural
(complex) orientation. The Hodge form w selects a homology orientation since
Hf_(S;R) ~ H"? ¢ H** G R-wand H'(S;R) = H*' ¢ H'® (and H% @ HWY
are naturally complex vector spaces). We will always consider this homology
orientation. The orientations under the isomorphism of proposition 3.1 compare

w2+I\"~w -~ -~ . .
as (—1)" 2z , where K = Ky is the canonical class for S.

Now we have to construct the g-map. In some cases there exists a universal
bundle U — My (c1,cz) x S, and then we have defined a class

— ) = ex(Bndo(t)) = ex(U) = erU) € Y (er,c3) x 5),

as (gu)c = Endo(U). The good news is that such a class exists even when U does

not [24, section 5.1]. So for an algebraic curve C' C S, we can define

1

(€)= = pi(@a)/[C] € HA Mz (e, e2))-

Proposition 3.2 ([24, section 5.1]) Suppose that ¢; - C =0 (mod 2). Let 0
be a holomorphic line bundle such that 0%? = Ko @ Oc(L™) (which exists by the
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assumption on ¢1). Put
216, (C,0) = {V € My(er, ) [R(C; (V]e) @ 0) # 0}

If Z.,.,(C,0) is a proper hypersurface in My (c1,cz) (i-e. of codimension one
and not containing any irreducible component of My (e, c2)) then it is naturally a
divisor representing p([C]), such that the multiplicity of an irreducible component
Z of Z.,.,(C,0) is given by the length of R'pi.(U @ p30) at a generic point of
Z. Here U — My(er,c2) X S is a universal bundle (at least locally) and p
and py denote the projections of My (c1,ca) X S onto its first and second factors

respectively.

We have a word to say about the case bt = 1. Since for an algebraic surface
we have b = 1+ 2p,, bt = 1 is equivalent to p, = 0. The space of selfdual
harmonic forms for S with the Hodge metric g is H** @& H*° & R - w, so when
p, = dim H%? = 0 the positive harmonic space is just generated by w. The space
of antiselfdual harmonic forms is its orthogonal complement, i.e. H_ = {D €
H?*(S;R)/D-H = 0}. The period point corresponding to the metric g is [w] € H.
When £ is a hermitian metric coming from a polarisation H, such a point is the
line spanned by H.

The moduli spaces My (e, c2) do not change when we vary H inside a cham-
ber. Therefore if we restrict to the ample cone and the moduli spaces My (cy, ¢2)
are generic (which is going to be the case for the case we need S = ¥ x CP!),
then remark 1.10 and the discussion preceding it remain valid.

A very detailed study of the behaviour of Donaldson invariants when crossing

a wall will be undertaken in section 3.4.

3.2 Simply connected elliptic surfaces

We feel it necessary to gather some of the results on the classification of smooth
projective surfaces since they have been very important in the story of Donald-
son invariants. In chapter 4 we will compute the basic classes (and hence the
invariants) of elliptic surfaces. Furthermore, all the theory of chapter 5 can be
used to compute the basic classes of algebraic surfaces which admit fibrations
over complex curves with fibres being generically of genus two.

A rough classification of algebraic surfaces with by = 0 can be made using

the Enriques-Kodaira classification of surfaces (see [1, page 188]), so we get (



36 CHAPTER 3. COMPLEX MANIFOLDS

denotes the Kodaira dimension):

1. For k = —oo we have the rational surfaces. This group consists of the
projective plane CP?, its blow-ups CPZ#nC—PQ, the quadric S? x S? and the
ruled surfaces over CP! (i.e. the Hirzebruch surfaces) and their blow-ups.
So any of these surfaces is diffeomorphic to either CPQ#nC—PQ or §? x §2

2. For k = 0 we have the Enriques and the K3 surfaces. The non-minimal

examples are the blow-ups of these.

3. For k = 1 we have the rest of the irrational, elliptic surfaces with b, = 0. All
these surfaces admit an elliptic fibration over CP'. Again the non-minimal

examples are their blow-ups.

4. For k = 2 we have the surfaces of general type with by = 0. This group
includes all hypersurfaces in CP? of degree d > 5, and is poorly understood.

All of these surfaces are projective (equivalently, algebraic) except for some
examples of A3 surfaces and some elliptic surfaces with k = 1.

In this section we will discuss briefly the surfaces in the second and third
groups. A very good reference for this is the book [24]. An elliptic surface S is a
complex manifold with an algebraic projection 7 : S — (' onto a complex curve
with fibres being generically smooth elliptic curves. We denote by F' the class of
the fibre. When b, = 0, C' = CP! necessarily and the irregularity is ¢ = 0. S is
called relatively minimal when there are no exceptional divisors contained in any
fibre. S is algebraic if and only if it admits a multisection, i.e. a connected curve
C’ C S not contained in a fibre (see [24, page 34]).

A multiple fibre of multiplicity m is a non-reduced fibre which is m times a

reduced divisor. By [1, page 162], the canonical divisor is
Kq = (n — Q)F + Z(mZ — 1)an

where n = y(Og) and F; are the reductions of the multiple fibres (with multiplic-
ities m;). So always K2 = 0 and ¢z = K2 + ¢z = 12x(Os) = 12(1 + p,) = 12n.
Since n > 0, there are always singular fibres.

If S has a section, then there are no multiple fibres. In case S has no multiple
fibres, S will be deformation equivalent to an elliptic surface with a section [24,
page 81]. Such a surface S is characterised, up to deformation equivalence, by its

geometric genus p,(S) = n — 1. We denote by 5, the unique, up to deformation,
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relatively minimal elliptic surface with by = 0, no multiple fibres and p,(5,) =
n— 1.

Doing the connected sum along any fibre, as explained in section 2.1 (see
also [24, page 162]), we have that S,#rS, = Sntm, as differentiable manifolds
(where the identification is taken to be the preferred identification as explained
in section 2.2). This is true by proposition 2.9 since S,4,, can be deformed to a
variety with a normal crossing S, Ur S,,. The well known K3 surface is 5.

If we allow multiple fibres, still b = 0. The fundamental group is finite when-
ever there are two multiple fibres, of multiplicities m; and my. When there is only
one multiple fibre, we set m; = 1 since a fibre of multiplicity 1 is a non-multiple
fibre. Analogously, if there are no multiple fibres, we put m; = my = 1. So we
can suppose 1 < my < my. The fundamental group of S is Z/dZ where d is the
greatest common divisor of m; and my. So for S to be simply connected, m;
and my have to be coprime. S is always deformation equivalent to an elliptic
surface whose multiple fibres are smooth elliptic curves [24, page 113]. Further-
more, there is a process for creating multiple fibres, called logarithmic transform.
This process can be carried out in the analytical setting (see [32, page 564] [1,
page 164]), and so the resulting manifold is in a natural way a complex variety
(in the general case it is not a projective variety anymore). The differentiable
analogue of the logarithmic transform is to remove a tubular neighbourhood of a
non-multiple fibre in S, say A = T?x D?, a 2-torus times a disc, and to replace it
by another A,, = T?x D? with a twisting. This twisting is given by an orientation
preserving diffeomorphism

& A, = IS — A)
which depends, up to isotopy, only on its effect on the first homology groups
(see subsection 2.1.2). There are different possibilities for ¢ giving the same 4-
manifold. The different ¢ producing the same result (see [24, pages 143-145])

have ¢, : Hi(0Am;Z) — H1(0(S — A); Z) with matrix

* x —a
* * —b
x x om

where g.c.d.(m,a,b) = 1. In fact, Gompf [28] has shown that whenever there is
a cusp fibre (and we always can suppose this since S is deformation equivalent

to an elliptic surface with a cusp fibre, as long as n > 0), one can choose any
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diffeomorphism ¢ : A, = J(S — A) such that mo¢: pt xSt = 7(9(5—A)) = S*
has winding number +m, and the resulting manifold is the same. This means
that the bottom right entry of the matrix above has to have absolute value m.
We denote by S, (my, ms) the result of performing two logarithmic transforms
of multiplicities m; and my in two different fibres of S,. There are different
choices for the logarithmic transform but all of them produce elliptic surfaces
which are deformation equivalent since ¢; > 0, and deformation equivalent to an
algebraic elliptic surface (see [24, section 1.7]). So S,(m1,ms) is unique up to
diffeomorphism. We can drop the m; that are equal to 1, as a log-transform of
multiplicity 1 does not change the elliptic surface. The surface S is irrational

unless p,(S) = 0 and m; = 1 and in this latter case S is diffeomorphic to

S, = CP2#9(C—[F’2. The canonical divisor of S, (my,my) is
Ks=(n—2)F + (mi —1)Fy + (ma — 1) F,

where F; denotes the reduction of the multiple fibre of multiplicity m;. So it is
F; = m%F in H*(S).

In S, we can always find a section ¢ = og, such that ¢* = —(1 + p,) = —n.
Indeed, thinking of S; as the blow-up of CP? at the nine points of intersection of
two generic cubic curves, we have that any of the nine exceptional divisors is a

section of the fibration with self-intersection —1. For

Sn = Sl#f...#fsl
———
we can obtain o by smoothly gluing sections of the above form in each of the
S1’s. In particular, there is a section ¢ in So = K3 with 0% = -2,
For elliptic surfaces we are going to define suitable metrics following Fried-
man [22].

Definition 3.3 Let S be an elliptic surface and let F be the cohomology class
corresponding to the fibre. Let w € H*(S;7Z) and py = w? (mod 4) a negative
integer, and suppose w - F' =1 (mod 2). Then we say that a Hodge metric is
sustable (or that the corresponding polarisation is suitable) for (w,py) when it

belongs to the chamber (associated to (w,py)) containing F' in its closure (see
remark 1.10).

Remark 3.4 Roughly stated, a suitable metric is one which assigns small volume

to the fibre F' in comparison to a section. This is so since a suitable polarisation
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is obtained by taking an ample line bundle Hy and considering H = Hy + nF,
for big n (see [22]). Then for a section o, Vol(o) = o - H is much bigger than
Vol(F)=F-H.

When we split an elliptic surface as S = X ;#rXy = X; Upya1 Xy, suitable
metrics for S correspond to metrics giving a long neck, in the sense that they
define the same chambers (at least for appropriate metrics on ¥ = F' x S, see

remark 1.10) and hence give the same invariants.

3.3 Algebraic genus 2 fibrations

An algebraic genus 2 fibration is an algebraic surface S together with a holomor-
phic map S — (' onto a complex curve with fibres being generically connected
genus 2 curves. If by = 0 then the base curve is ¢' = CP'. They are called
relatively minimal whenever there are no exceptional curves lying in fibres. The
best treatise in this subject is [64]. There is not a complete classification but
many examples have been constructed, mostly by Xiao [64] and Persson [49]. We
will say very little about them. We will just remark that very often they are
minimal general type surfaces and that there are two ways of constructing them,

for whose exposition we refer to [50].

1. The canonical system (if necessary twisted by fibres) gives a rational map
of degree two which image is a ruled surface. So we can construct algebraic
genus 2 fibrations by taking the minimal model of the resolution of the
singularities of the double cover of a ruled surface branched along a six

section.

2. A genus two fibration X — ' can be considered as a rational map C' —
M, the space parametrising genus two curves. There is a surface in M,
consisting of the double elliptic curves, i.e. those genus 2 curves which are
double covers of elliptic curves. When the image of C' lies in this surface, X
is called doubly elliptic. In practice, such X appears as the minimal model
of the resolution of the singularities of the double cover of an elliptic surface

branched along a bisection.
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3.4 Wall-crossing formulae

In this section we want to compute some wall-crossing formulae for algebraic
surfaces. We will follow mainly [26]. In that paper, Friedman and Qin obtain
some wall-crossing formulae for algebraic surfaces S with —Kg being effective
and the irregularity ¢ = 0 (equivalently, by = 0). We want to adapt their results
to the case ¢ > 0 modifying their arguments where necessary. We will suppose
that p, = 0 and — K is effective throughout.

We introduce some notation. Fix w € H?*(S;Z) and p; € Z with w?® =
p1 (mod4). Put d = —p; — 2(1 — by +b7) = —p; — 3(1 — q). Let ¢ define a wall
of type (w, p1). We recall that by definition 1.9 this means ( = w (mod 2) and
p1 < (? < 0. We defined the wall corresponding to ¢ as W, = {z € H/x-{ = 0}.
The walls of type (w,p;) divide H into a locally finite collection of chambers
(see subsection 1.1.3). In every chamber C of the ample cone we have defined
the Donaldson invariant Dgu’d(C) associated to metrics with period point in that
chamber (see remark 1.10). If two chambers Cy and C_ are separated by a single
wall W, (although there may be more than one class ¢ of type (w,p;) defining

W¢), there is a wall-crossing difference term
529(Cy,C_) = DE(Cy) — DEY(C).

For an algebraic surface S with a Hodge metric ¢ defined by the polarisation
H, we fix the Chern classes ¢1, ¢; and the determinant bundle O(L). Let w = ¢
and p; = ¢ — 4c¢y. For any chamber C (of the ample cone) of type (w,p;), we
shall use My (er,c2) with H € C, to compute the invariant Dgu’d(C). It turns
out that when C; and C_ are adjacent chambers and Hi € C., one can obtain
M, (c1,¢2) from My_(c1, ¢c2) by a sequence of blow-ups and blow-downs (what
is usually called a flip [61]).

Suppose from now on that C_ and C; are two adjacent chambers separated
by a single wall W, of type (w,p1). For simplicity, we will assume that the wall
W, is only represented by the pair +( since in the general case we only need to

add up the contributions for every pair representing the wall. Set

le=(C—m)/4 €.

Let ¢ define the wall separating C_ from Cy and put, as in [26, section 2],

EZ™ to be the set of all isomorphism classes of non-split extensions of the form

0—-0F)@1z, -V =0O(L—-F)® Iz —0,
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where [’ is a divisor such that 2F — L is homologically equivalent to (, and
7y and Z, are two zero-dimensional subschemes of S with [(Z;) = n; and such
that ny + ny = l¢. Let us construct E?l’nz) explicitly. Consider H; = Hilb,, (),
J = JaCF(S) the Jacobian parametrising divisors homologically equivalent to F,
Z; C 5 x H; the universal codimension 2 scheme, and F C S x .J the universal
divisor. Then we define Egl’nz) — J x H; x H, to be

E=81"" = gXtiQ(OSx(JlexHQ)(WTL — F) @ Iz, Osx(ixm xm:)(F) @ Iz,),

fOI’T['l:SX(JXH1><H2)—>S,7T2:SX(JXH1><H2)—>J><H1><H2,
the projections (we do not denote all pull-backs of sheaves explicitly). This is a

vector bundle of rank
tk(E) = l¢ + ' (Os(2F — L)) = lc + h(¢) + g,

where h(() = C'I;S —%—1, by Riemann-Roch [26, lemma 2.6]. Put N, = rk(€)—1.
Then E?l’nz) = IF’((E?“”Q)V) which? is of dimension ¢ + 2l + (I + h(() + q). Also
Ne+ N_¢+q+2l; =d—1. We will have to treat the case rk(€) =0 (i.e. [ =0
and h(¢) + g = 0) separately.

We can modify the arguments in sections 3 and 4 of [26] to get intermediate
moduli spaces Dﬁék) together with embeddings Eéc_k’k — Dﬁék) and £

—C
Dﬁék_l), fitting in the following diagram

9}}8’4 ) . mo
v ¢ v ¢ v ¢
Dﬁélc) mélc—l) Dﬁéo) Dﬁé_l)

I I
m_ M,

where DAﬁék) — Dﬁék) is the blow-up of Dﬁék) at Eéc_k’k and DAﬁék) — Dﬁék_l) is the

blow-up of Dﬁék_l) at Eﬁ’érk. This is what is called a flip. Basically, the space
E, = I_IEéc_k’k parametrises H_-stable sheaves which are H,-unstable. Analo-
gously, £_, = I_IEi’éc_k parametrises H-stable sheaves which are H_-unstable.
Hence one could say that 97y is obtained from 9M_ by removing F, and then
attaching £/_.. The picture above is a nice description of this fact and allows
us the find the universal sheaf for 9, out of the universal sheaf for 9M_ by a

sequence of elementary transforms.

2We follow the convention (&) = Proj(@iSi (£€)).
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The point is that whenever — K is effective (which is a condition quite re-
strictive for 5), we have an embedding E?’lc — IM_ (the part of E; consisting
of bundles) and rational maps E?’lc_k -—» M_, k> 0, but if we blow-up M_ at
E?’lc, we have already an embedding from Ecl’lc_1 to this latter space. Now we
can proceed inductively for £ =0,...,l,. Analogously, we can have started from
M, blowing-up Eﬁ’érk one by one. The diagram above says that we can perform
these blow-ups and blow-downs alternatively, instead of first blowing-up [ + 1
times and then blowing-down [, 4+ 1 times. We see that the exceptional divisor
in DAﬁék) is a PN¢ x PN-c_bundle over J x Hy, . X H.

When addapting the arguments of [26, sections 3 and 4], the only place re-
quiring serious changes is proposition 3.7 in order to prove proposition 3.6.

Proposition 3.5 ([26, proposition 3.6]) The map Eéc_k’k — Dﬁgf_k’k is an

—kk le=kk . cole—kk . le—k.k
Tt BESTTT in MG ds exactly prELTTT @

— J x Hj,_x X Hy is the projection.

immersion. The normal bundle ./\/Cl
OEéc—k,k(—l)} where p : Eéc_k’k

The analogue of [26, proposition 3.7] that we need to prove is

Proposition 3.6 For all nonzero £ € Ext' = Ext' (O(L — F) @ 1z,, O(F)@ Iz,),

the natural map from a neighbourhood of £ in Eéc_k’k to Dﬁéc’k) is an tmmersion

at £, The image of TgEéC_k’k in Feto(V, V) (the tanget space to Dﬁéc’k) at &,
where V' is the sheaf corresponding to £) is exactly the kernel of the natural map
Exto(V,V) — Ext'(O(F) @ 17,,0(L — F)® Iz,), and the normal space to Eéc_k’k
at & in Dﬁéc’k) may be canonically identified with Ext'(O(F)@1z,O(L—F)®1z,).

Proof. We have that Ext'(Iz, [7) parametrises infinitesimal deformations of I
as a sheaf. These are of the form Iz @ O(D) for D = 0. The universal space
parametrising these sheaves is Hilb,(S) x Jac’(S), where r is the length of Z.

There is an exact sequence
0— HO(gth([Z, [Z)) — Eth([Z, [Z) — Hl(Hom([Z, [Z)) — 0,

where H°(Ext! (17, I7)) = H°(Hom(Iz,Oz)) = Hom(Iz, Oy) is the tangent space
to Hilb,(S) and H'(Hom(lz,Iz)) = H'(O) is the tangent space to the Jaco-
bian. Analogously, Ext'(V,V) is the space of infinitesimal deformations of V
(but the determinant is not preserved). The infinitesimal deformations preserv-
ing the determinant are given by the kernel Ext}(V,V) of a map Ext'(V,V) —
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HY(Hom(V,V)) — H'(O). Now E = Eéc_k’k sits inside the bigger space E =

Eéc_k’k given as
P(Exty (Osu(ay it xdysct) (TiL — F2) @ Iz, Osy gy sty o i) (F1) @ I2,)Y),

for J1 = Jy = J, F, C S x J; the universal divisor, and H; the Hilbert scheme
parametrising Z;. The arguments in [26, proposition 3.7] go through to prove
that for every non-zero ¢ € Ext' = Ext'(O(L — F) @ Iz,,O(F) @ Iz) we have

the following commutative diagram with exact rows and columns

T.E —— Exth)(V,V) —— Ext'(O(F) @ I, O(L — F) @ Iz,)

| J \

TeE —— Ext"(V,V) —— Ext"(O(F)@ Iz, 0(L — F)® Iz,

J J

HY(O) ——  H'(0)

So the natural map from a neighbourhood of ¢ in F to Dﬁéc’k) is an immersion at &

and the normal space may be canonically identified with Ext'(O(F)® Iz, O(L —
Fy@lgz). O

Therefore proposition 3.5 is true for ¢ > 0. The set up is now in all ways

analogous to that of [26]. We fix some notations [26, section 5]:

Notation 3.7 Let ¢ define a wall of type (w,p1).

o )\ is the tautological line bundle over E?l’nz) = P((Egl’nz))v). Ap will also be

used to denote its first Chern class.

e pr: S X Eéc_k’k — S X (J x Hy .y x Hy) is the natural projection.

® Di: DAﬁék) — Dﬁék) is the blow-up of Dﬁék) at Eéc_k’k,

® Gi_1: DAﬁék) — Dﬁék_l) is the contraction of DAﬁék) to Dﬁék_l).

o The normal bundle of Eéc_k’k in Dﬁék) is Ny = ngﬁ’éc_k @ At
e D, =P(NY) is the exceptional divisor in DAﬁék).

= Oéj"t(k)(—Dk”Dk is the tautological line bundle on Dy.

o 1M(a) = —ipl(gu(k))/oz, for a € Hy(S;Z) and UM a universal sheaf over
S X Dﬁék). Let pl'd(a) = pu_(a) and = (a) = py (o).
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We have already mentioned that although 2/*) might not exist, there is always
a well-defined element p;(g; ). The analogues of lemma 5.2, lemma 5.3 and
theorem 5.4 of [26] are

Lemma 3.8 Let a € Hy(S;Z) and put a = (( - «)/2. Let 79, 71 and 7 be the

rojections of EX""F 1o J H; _. and H}, respectively. Then
proj ; 0 p y

(1d x pr) erU™)|(sxpyy = 71 L + (plpy )" M
Pit (), = (pilp,)" [ ([Zi=i) /@) + 75 (2] /@) — aks — 75 (e (F)?/a)]
Lemma 3.9 For a € Hy(S;Z) we have ¢;_ %D (a) = piu™ (o) — aDy.
Theorem 3.10 Let ¢ define a wall of type (w, pr) and d = —py—3(1—q). Suppose

le +h(¢)+q>0. For a € Hy(S;Z), put a = (C-a)/2. Then [y (a)]? —[p_(a)]?

is equal to

Z (_1)h(C)+l<+jj!b!(d il!j _ b)!ad_j_b([zlc—k]/a + [Zk]/oz)j-

0< <2

le—hk kol —
(e(F)? ) satemjrgs (857 @ (E27)Y),
where s;(+) stands for the Segre class.

We warn the reader to be very careful with signs when checking the formula

in theorem 3.10.

Remark 3.11 If I + h(¢() + ¢ =0 i.e. [ =0 and h(¢) + ¢ = 0, then M, is
IM_ with an additional connected component EE’? which is a P %-bundle over J,

since E?’O = (. The universal bundle over EE’? is given by an extension
0= T Osxg(miL —F)@p" A > U — 7" 0sx(F) =0,

where m: 5 X EE’? = SxJandp: S5 x EE’? — EE’? are projections and X is the
tautological line bundle. From this pi(gu)/a = —4ar+4c(F)? /o (with notations
as in theorem 3.10), so py(a) = p_(a) — pi(gu)/o = p(a) + ar — ¢ (F)?*/e.
Therefore

T S CSUl ) LA CIE RO mIeaes)
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We see that it is important to understand e, = ¢;(F)*/a, for o € Hy(S;7Z),
and es = ¢;(F)*/[S]. Write ¢, (F) = cl(F)—I—ZoziQQof, a; € HY(S), of e H'(J),
the Kiinneth decomposition of ¢;(F) € H*(S x J). So

e =—-2Y <a;ANaj,a> ®0z2¢/\0z}$ c H*(J)
i<y

es= Y <o Naj Ao Aoy, [S] > (EQoz}'éé/\oz}‘#/\ozk#/\ozfE € H*(J).
ikl
Lemma 3.12 Let S be a manifold with bt = 1. Then there is a (rational)
cohomology class > € H?*(S) such that the image of A : H*(S)@ H'(S) — H*(S)
is Q[X]. Also es = 0.

Proof. Let v1,72,73,v4 € H'(S). If 44 A v2 A y3 A 74 # 0 then the image of
A HYS)® HY(S) — H?*(S) contains the subspace V generated by v; A~;, which
has dimension 6, with 6% = 3 and b~ = 3. This is absurd, so v A2 Ayz Ay4 = 0.
Then eg = 0.

Now let Xy = v Az, B2 = y3Av4 € H*(S). Then ¥ = X2 = 0 together with
the fact that b* = 1 imply that ¥, - X3 # 0 unless ¥; and X, are proportional.
Since ¥ - Y9 = 0 by the above, this has to be the case. 0O

Now write 7y, ...,7, for a basis of H'(S) and fix a generator ¥ of the image
of A : HY(S)® HYS) — H*(S). Put v Av; = a;;X. The Jacobian of S is
J=H'YS;R)/H'(S;Z), so naturally H'(J) = H'(S)*. For the universal bundle
L — S x J parametrising divisors homologically equivalent to zero, ¢ (£) =

Z 5 @47, so

€y = —ZZaij(Z - a) ®’yz# A ’y]# = —-2(¥ o)w,

<J

where we write w = 3, _; ai;(vF A ’y]#) € H?*(J), which is an element independent

of the chosen basis.

The case [ =0

Now & = 5?’0 = R'7.(Osxy(2F — 7w;L)), for 7 : S x J — J the projection.
We note that H°(Os(2F — L)) = 0 and H°(Os(—2F 4+ L) @ K) = 0, as — K is

effective, so R°w, and R*m, vanish.

ch& = —chm(Osxy(2F — L)) = —mi(ch Osyy(2F —nj{L) - Todd Ts) =
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g‘j_g‘*K

2
= _( 9 9 —I_ 1 — Q) —I_ GI(_QC - ges = rk(gc) -I_ €](_2C7

since es = 0. A fortiori ch &Y, = —(% + % + 1 —¢q)— exyoc and
ch (& @ &) = (—C* +2q —2) — dee.

Remark 3.13 The Segre classes of F are given by s,(F) = ¢,(F)~". For the
relationship between the Chern classes of F and its Chern character, write a; for
1! times the i-th component of ch F. Then

a; n—1 0
ay a n—2
1
Cn(f) - E
1
an Ap_1 Ap—2 . e aq

From this remark, s,(& & EXC) = j.—;eé. This together with theorem 3.10,
and recalling that [y (o)]* — [u—()]? differs from 6%%(a) by a factor es(w) =

w2+I\"S~w

(=1)7 =z —, gives

52”’51(@) = es(w) Z (_1)h(C) (b) ad_beiY - Sq—b(Ec B SXC) =

qa-b

= est) 3 00 (jae s

— és(w) Zb: (—1)h(c)+q_(2;q: ;)' (Z) (C . og)d_b(z . oz)b(z . g)q—buﬂ.

Corollary 3.14 Let S = CP! x T? ¥ = CP! C S, { defining a wall, d = —(?,
a € Hy(S). Suppose that I + h(¢) 4+ ¢ > 0. Then

(%u,d(a) _ és(w)(—l)h(C)+1 (23—d(§ . Oz)d(z . C) + 22—d d(C . Oz)d_l(z . Oz)) ‘

Corollary 3.15 Let S = CP! x T? ¥ = CP! C S, { defining a wall, d = —(?,
a € Hy(S). Suppose that I + h(¢) + ¢ = 0. Then from remark 3.11

55 a) = es(w) (274(C - a) (K +2¢) - ) + 27d(¢ - )71 (S - a)) .
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Case [, =1

We do not want to enter into the detailed computations of the wall-crossing
formulae, but just to remark that the pattern laid in [26] can be used here to

obtain many of them. For instance, if we write

Sin = (sl o+ (B[ 0) - € suemjrama (57 @ (E257)Y),
k
we can give some of the wall-crossing formulae (without proof). For obtaining
all of them we would need a better understanding of the Hilbert scheme, not

available at the moment.

2(:)!
Sﬂ@q _ ( C) (a2)l<€i

20!
Sy = () ZL eyt g
20!
5210(1_1 — 4( ZCC’) (a2)l<€q—lec

where @ = (¢ - «)/2. Also in the case [ =1,

Soq = (6% +2K%)el
Stg-1 = —32aei_leg—|—8€i

_ 2 q—2 2
Sz4—2 = l16a” el e

Conjectures and speculations

From all the cases we have studied it is natural to give the following conjecture,
which is a generalisation of the conjecture about the wall-crossing terms in the

case by = 0 (see [35]).

Conjecture 3.16 Let X be an oriented compact four-manifold with b* = 1 and
by = 2q even. Let w € H*(X;Z). Choose ¥ € H*(X) generating the image of
A HY X))o HY(X) — H*(X). Define w € H*(J) such that e, = —2(X-a)w and
put a = [; % If ¢ defines a wall, then the difference term 530(’51(@) only depends
onw, d, by, by, (%, Qx, (C-a) and a(X-a) (X-()?", 0 <1 < q. The coefficients

are universal on X.

This is quite a strong conjecture and one can obviously write down weaker

versions. It would allow one to carry out similar arguments to those in [31] and
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therefore to find out the general shape of the wall-crossing formulae for arbitrary

X. This would involve modular forms.



Chapter 4

Connected sums along a torus

In this chapter we are interested in applying all the techniques of gluing theory
to the case of connected sum of two manifolds along an embedded two-torus. As
we have seen in subsection 2.1.2, we need to apply the gluing theory for the case
of Y = ¥ x S where ¥ is a Riemann surface of genus 1, i.e. a two-torus T2 We
want to point out that results of this kind can be obtained by gluing along circle

bundles of degree 1 over a torus [56].

Our first main goal is to recast the results of Friedman in [22] about invariants
of elliptic surfaces into a much simpler and tractable form. Instead of using
moduli spaces of stable bundles to compute the invariants as in [22], we will
use topological methods and the gluing theory from section 1.2. A very similar
approach have been carried out in [43]. There, Morgan and Mrowka compute
some SU(2) and SO(3) invariants of the elliptic surfaces X = 5,(mq,m2) (see
section 3.2 for notation) by using the same procedure of splitting X = X; Uy X,
along a three-torus Y = T? They decompose X into elementary pieces which
are elliptic surfaces of geometric genus p, = 1 or p, = 2 and compute some
of the invariants inductively using known information about these elementary
pieces. In our approach, we use instead only information about the K3 surface
and some invariants of S = T? x CP', computed in section 4.3. They can not
use the Fukaya-Floer groups as in their case Py is trivial, and so they have to
deal with the presence of reducibles. There are some technicalities, as they need
to use the character variety x(T?) of the three-torus for the possible flat limits
of connections along the cylindrical end as X is pulled apart (in our case, the
possible limits are only one point, proposition 4.1). This allows them to consider

the case of w-T = 0 (mod 2), and therefore elliptic surfaces with multiple

49
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fibres of even multiplicities. On the other hand, their argument is restricted as
to which classes they can evaluate the polynomial invariant on (they again use
classes going across Y, but they are constrained on the number of them across Y’
they can use). So if we write
() = 3 alnai) (S - nx )5 (52
i=0

for the SU(2) Donaldson invariant of X = S, (m1, m2), kx = F/mims, F' denot-
ing the fibre, m = (d — n + 2)/2, then they are able to compute the two leading
terms a(n,m) and a(n,m — 1) and conclude from that a differentiable classifica-
tion of simply connected elliptic surfaces with bt > 1. Instead, we compute all
the terms, but only for the low dimensional invariants (and with the condition
w-Y =1 (mod 2)).

Later, in section 4.4, we will have a full computation of the invariants for
elliptic surfaces, superseding the proof that we include of theorem 4.2. Nonethe-
less, we chose to keep this earlier computation because it does not use at all any
of the deep results of [38] about basic classes and their properties.

The second goal is to relate the basic classes of the manifold obtained as
connected sum along a torus of two manifolds with b > 1. Applying this to the
case of elliptic surfaces and with a little bit more input, we get all their invariants
of elliptic surfaces with multiple fibres. This was conjectured by Kronheimer and
Mrowka in [37] and proved by Fintushel and Stern [17]. The point of carrying
out again these results is to generalise the computations for basic classes when
the connected sum along a torus of two elliptic surfaces is not performed in the
algebraic setting (see section 2.2). We will see that in this fashion we can also
understand the earlier results of Gompf and Mrowka [30] in a very straightforward

way.

4.1 Splittings along a three-torus

We will use the following proposition which is an application of the gluing theory
from section 1.2. We recall that (w,T) is an allowable pair for a glued manifold
X = X, Uy X3 when w € H*(X;Z) with w|y odd in H*(Y;Z)and T € H*(X;Z)
is any class whose Poincaré dual lies in Hy(Y;Z) and with w-T =1 (mod 2).

Proposition 4.1 There exists a vector space V' of dimension 1 with the following

properties
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1. Let X be an open manifold with boundary Y = 0X = T? x S! and with
bH(X) > 0. Let D € HE(X,0X) and w € H*(X;Z) with w|y odd in
H*(Y;Z). Then we have defined a sequence ¢; = ¢¥(X,D) € V,i=0,1,...

2. Let X be a closed manifold with bt > 1 which can be written as X =
Xy Uy Xy, and let D € Hy(X) and (w,T) an allowable pair. Then writing
D = Dy + Dy, D; € HE(X;,0X;), and w = wy + wq, w; € H*(X;;Z), we
have

D D™y = =3 (?)(é?l(Xl,Dl) (07 (Xa, Da).

Proof. The space V is the Floer homology of the three-torus Y. This is one
dimensional because there is only one flat SO(3)-connection on Y with wy =
w (mod 2), and furthermore this connection is generic. Indeed, as explained
in [9], there are two flat U(2)-connections with the appropriate w (one with
holonomy 1 around the S'-factor, and the other with holonomy —1), but they
are interchanged by the involution shifting degrees by 4. So when we reduce the
Floer groups mod 4 there is only one generator. We recall that the grading is
not well-defined and that we have a pairing o : HF.(Y) ®@ HF_.(Y) — Z. The
important point is to note that for the generator a, o : @ @ a — —1. For checking
this take Z = D* x T? and A the (only) flat connection on Z (with limit the
only flat connection on Y'). Glue them together to get the flat connection on
X = Z Uy Z = CP! x T?% This connection contributes with a —1, as the moduli
space of flat connections for X is generic, zero-dimensional and consisting of one
point. This point is a +1 for the complex orientation of the moduli space and

w2+w~I\"
2

hence it contributes as (—1) = —1, since w is an odd multiple of [CP] (see

theorem 4.3). O

We remark that we do not need Atiyah-Floer conjecture for the result above.
We recall that for defining the invariants ¢'( X, D) we had to orient the moduli
spaces (see section 1.2). We can choose Z and A as above and then for every
open manifold X with boundary Y, we have to choose a homology orientation of
X = XUy Z. When X is an algebraic surface, the homology orientation is always
the one given by the Hodge form w as in section 3.1. It is important to notice that
whenever X, X, are algebraic manifolds with F' a complex torus and F' — X,
embeddings (with image F; of self-intersection zero) such that X = X #rX,
is also an algebraic manifold, the homology orientations agree (by an excision

argument).
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Friedman’s result [22] (at least the part of it corresponding to odd multiple
fibres) is:

Theorem 4.2 Let X be a simply connected elliptic surface. Lel p, denote ils
geometric genus and 1 < my < mg be the multiplicities of the (possibly) multiple
fibres. Suppose they are both odd. Let F' be the cohomology class corresponding to
the fibre of the fibration and let w € H*(X;Z) such that dy = —w* — 3(14b%) =
0 (mod 4) and w-F =1 (mod 2). So w? =n =1+p, (mod 4). Write

w2+I\"X~w

ew)=(=1)"=2 ,s0e(w+ F)=—e(w). Then for o € Hy(X) we have

1. D¥(a?) = e(w)
2. DY (a?) = e(w 4 F)(a® + Cy(F - a)?)

3. D% (at) = e(w)(3(a?)? + 6C1a*(F - a)? + (307 — 2C5)(F - a)*), where
1 1

Cr=py 41— ——
ey R
1 1

Cr=p, 41— —5——
g T

In the case p, = 0, D;U’F)(ozm) is computed in the chamber defined by the fibre F

(i.e. with respect to a suitable metric).

Recall (section 3.1) that the complex orientation of the moduli space and
w2l K ow . .
its natural orientation differ by e(w) = (—1) 2 , and so the difference in our

signs. The proof of this theorem proceeds in two stages. The first main goal is

to reduce it to a very particular non-simply connected case, which is:

Theorem 4.3 For the non-simply connected elliptic surface S = T? x CP!, w =
[CP!'] € H*(S;Z) and D = [CP'] € Hy(S) a horizontal section, we have, with
respect to a suitable metric:
DY(DP) = —1
DISU+[T2](D2) =_9
DY(D*) = —16

The second stage is to prove theorem 4.3 through explicit calculations in the
moduli spaces of stable vector bundles over S with the appropriate Chern classes.
Here we must point out that the proof of Dgu+[T2](D2) = —2 has already been

carried out by Donaldson in [9].
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4.2 Proof of theorem 4.2

The proof of theorem 4.2 is very simple, but it gets rather messy because we have
to be very careful in keeping track of the signs for different w’s.
Recall that S,,(m1, mz) denotes the elliptic surface with p, = n—1 and multiple

fibres of (coprime) multiplicities my and my. We introduce the following notation:

o A, will be a tubular neighbourhood of a multiple fibre of multiplicity m.
This is always diffeomorphic to A = T? x D2,

e B, =5, —int(Ay) is the closure of the complement of a tubular neighbour-

hood of a non-singular fibre in 5,,.
e B,(m)=S,(m)—int(A).

We have S,(m) = B, Uy A,, and S, (my,my) = B,(m1) Uy A,,,. Each of the
pieces A,,, B,, etc. has a natural elliptic fibration and all the unions preserve
the elliptic fibration. We have the following facts:

1. Any 2-homology class D € Hy(X) can be decomposed as D = Dy + Dy with
D; € HE(X;,0X;) (recall subsection 2.3.2). We also have D? = D? + D32.

2. From remark 2.18, HI(A,0A) contains a subgroup Q[F] & Q[A]. When
X, = A,,, adding a multiple of [F'] to Dy and arranging things conveniently
we can suppose that Dj is a multiple of [A]. Then ¢¥(A,,, D) only depends
on w € H*(A,;Z) = Z[A] and F - D,. Also note that D} = 0, D? = D?
and ['- Dy =F-Dy=F-D.

3. Let X = S5 be the K3-surface and w € H?*(X;Z). One has dy = —w?—6 =
0 (mod 2). For D € Hy(X;Z) and x the class of the point, we have
o 25 (2)] ,
Dy(D¥a) = (-1 120 B 2y
‘!
when 2i+2j = —w? —6 (mod 4) and zero otherwise. This was first proved
by O’Grady [46] in the case of w = 0 and 7 = 0. There is a complete

calculation in [38], but it was well-known before that. If w-F =1 (mod 2)
(see subsection 1.1.4) then

w, I 7 7 (QZ)’ 7
DYDY = (=)* e (D).
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4. For the rational surface X = 5; we have the following easy fact. Let V
be a stable bundle. Then V' is simple [24, page 323], so H°(Endy(V)) = 0.
Since — Ky is effective, H*(Endo(V)) = H°(Endo(V) @ Kx) = 0. So the
moduli spaces of stable bundles for X are always generic. In particular, the
zero-dimensional moduli space is a collection of points counting positively

for the natural complex orientation. So the invariant D% (D°) is of sign

e(w).

Stage 1 For the K3-surface, put X = Sy = By Uy By and fix w € H*(Xy;7Z)
being symmetrical (the restriction to both pieces B; are the same) and w - F' =
1 (mod 2). Write ¢! = ¢ (By, D;) with D = Dy + D,. Then with T = F,

proposition 4.1 gives

1= =Dy = ¢4
—D? = DYDY = G- R bl 4
3(D*)? = —DY(DY) = ol dE 460k 62+ bk B

From where either ¢ = 1, ¢} = —D7? and & = 3(D3?)? or the opposite signs.
Fixing a choice of signs is equivalent to fixing an orientation of the generator of
Floer homology. We choose the signs as above.

For A, write ¢; = qu»A](A, [A]). Then S = T?x CP' = AUy A and theorem 4.3

implies

1 _ —DEQPl] C]:FDI]O) _ do - do
9 — _Dgpl]+[T2]([CP1]2) = o py+ b2 o
16 = —DIFNCPYY) = o dat 62 s+ bs- o

from where either ¢g =1, ¢y = 1 and ¢4 =5 or ¢y = —1, ¢ = —1 and ¢4 = —5.
We have the same invariants for ¢£2a+1)[A](A, [A]) (but the sign actually might
depend on «a).

Now for the rational elliptic surface X = S = B; Uy Ay, with w = wy; +
(2a + 1)A and D = Dy + (F - D)A, we have for w? =1 (mod 4) the invariant
D;U’T)(DO) = ¢(w) = (—1)*. This forces the invariants qbgza—l_l)[A](A, [A]) to be of

sign (—1)*"!. So finally we get
DY (DY) = e(w)
DY (D) = e(w+ F)(D* = (F-D)?)
DYDY = e(w)(B(F - D) —6(F - D)’ D* + 3(D*)?)
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Stage 2 Now we pass on to prove, by induction on n, that for general B,, and w

with w|y = S! we have, for D € HE(B,,dB,) with D a multiple of S*,

¢o(n) = ¢5(Bn, D) = s, (w)
$a(n) = ¢y(Bn, D) = es,(w+ F)(D*+ (n— 1)(F- D))
$a(n) = @Y (Bn, D) = es,(w)(3(D*)* +6(n — D*(I'- D)* +

+(3n* — 8n + 5)(F - D))

where w € H?*(S,;Z) is any element restricting to the given w € H*(B,;Z) for
S, = B,UAj, and w? =n (mod 4). From this we get that the invariants for S,
are of the desired form.

First, the assertion is true for B; as noted in stage 1. For the induction step,
note that B, U B, = B, U Ay, so obviously ¢g(n) = (—1)""! = eg, (w) for all

n. Now

(—1)" " a(n) + (=1)"ga(n') = —ga(n +n') — (=)™ ~L(F - D)?
(=1)" " ga(n) + 6 ¢a(n) - da(n’) + (=1)"gu(n’) =
= —ds(n+n')—6d(n+n')- (F- D) — (—1)”"’”/_15 (F-D)*

So suppose the result true for some n. Then

Galn+1) = —an) — (~1)(D3 + (F- DY)
= (=1 (D* 4 n(F - DY)
da(n+1) = (=1)"B3(D})?+6(n —1)D}(F-D)*+ (3n* —8n +5)(F - D)* +

D? 4+ n(F - D?)(F-D)? —5(F- D)) =
= (=1)"(3(D*)* +6nD*(F - D)* +
+(B(n+ 1) =8(n+1)+5)(F - D)*)
as required. The invariants of 5, will be
DG(D%) = e(w)
DGDY) = e(w+ F)(D* + (n = 2)(F - D)?)
DY (DY) = e(w)(3(D*)? +6(n —2)D*(F - D) + (3n* — 14n + 16)(F - D)*)

Now for general w € H?*(B,;Z) with w-F =1 (mod 2) (but maybe not
w|y = S') and general D € HE(B,,dB,), we use B, U B, = S,;;. From the
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invariants of 5,11, which we have already computed, and those of By, we get that

QbBU(Bn?D) = _65n+1(w)
¢y (Bn, D) = —es,p,(w+ F)(D* + (n = 1)(F- D)?)
O (B, D) = —es,5,(w)(3(D*)* +6(n — ) D*(F- D)* +

+(3n* —8n + 5)(F - D)*)

where w € H?*(S,41;Z) is any element restricting to the given w € H*(B,;Z)
with w? =n +1 (mod 4).

The case of F'-w = 2a 4+ 1 is in everything analogous to this one and we
get an extra factor (—1)* for ¢;(n) (the invariants for 5, and hence the last set

of formulae remain unchanged). Also note that (—1)%g,(w) = —eg, ., (w) =

(_1)(n—1)(a+1)‘

Stage 3 Now for introducing multiple fibres, one has that S,(m) = B, Uy A,
with A,, in fact diffeomorphic to T? x D?. As seen in section 3.2, the gluing
between the boundaries is different for different m, but it always preserves the
elliptic fibration. Therefore, the class F' € Hy(B,) is equivalent, as an element
of Hy(S,.(m)) to the class m[T? € Hy(A,,) = Hz(T?). Call f € Hy(S,.(m)) the
homology class corresponding to [T? € Hy(A,,). Now choose w € H?(S,(m))
with f-w =1and D € Hy(S,(m)) decomposed as D = D; + A for the horizontal
class A € HE(A,,,0A,,). Then m odd implies w; - ' = m = 2a + 1.

DSIND") = =68 (Bay D1) - 5 (A, A) = (—1) ") = e(w)
DYDY = ¢y (B, Dy) — (=)0 4, ) =
= _(_1)(n—1)(a+1)(D2 +(n—1)(F - D)2 _ %(F . D)Q)
= —c(w)(D* + (p, — —)(F - DY)
Dg:’(fn))(Dél) = c(w)(3(D*)* +6(py — %)D2 (F-D)?+
+(3p; —2p, —6p, % + %)(F - D)"Y

If f-w # 1 but it is still odd, we can work out the same expression. Now putting
Sa(m) = A1 U B,(m), we can calculate

@5 (Ba(m), D) = =g, 41 (m)(w)
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@5 (Bu(m), D) = _65n+1(m)(w + F)(D2 + (py — % + (L D)z)
G (Bu(m), D) = —es,41(m)(w)(3(DY)* +6(p, +1 - %)Df (F-D)* +
-r@p§+4pg+1-6@@+4)£§4-£%xF-Lm%

where f-w = 1, w € H*(S,11(m);Z) extends w € H?*(B,(m);Z) and has
w?=n+1 (mod4). If f-w =1+ 2a we have to multiply the above expressions
by a factor (—1)*. In the general case, S, (my,mz) = A, U B,(m1), mp and mo
both odd and w - F' = 2a + 1. We obtain

w)

D(w7T) )(DO) — @

Sn (ml 312

pth (DY) = ¢

Sn (ml 7m2)

(
(w+ F)(D +@fu—;%—%?wﬂm%=
— (wt F)(D* 4 C\(F- D)

(

DED DY = w)(BD2R 46 (p, 41—~ — )

S, m1,Mm
n( ) 2 2

“F- D) +
) 11

+(3Pg+4pg+1—6(pg+1)(m—%+m—%
5 5 6

2420 % D

tod T g T 0 =

= (w)(3(D*)? +6C,D*(F-D)? 4+ (3C2—20C,)(F- D))

)+

as required. [

We tried to push these arguments to handle the case of multiple fibres of even
multiplicity, but at some stage we needed the invariants for S, when w - F =
0 (mod 2). One would need to use the deep results of [38] relating the invariants
for different w € H*(X;Z).

4.3 Proof of theorem 4.3

For proving theorem 4.3 we need to study the moduli spaces of dimensions 0, 4 and
8 of ASD connections for S = CP! x T2 This manifold has Betti numbers b; = 2,
by = 2, bt =1 and therefore we have a chamber structure. We fix some notation.
F = [T? € Hy(S) will stand for the homology class representing the fibre and

= [CP'] € Hy(S) for the horizontal section. The invariants that we want to
calculate are with respect to a suitable metric, i.e. metrics having its period point

in the chamber containing ¥ = T? in its closure (see definition 3.3). We take &y,
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hy fixed Kahler metrics in CP! and T? respectively such that the volumes with
respect to these metrics are normalised, that is, have value 1. Then we consider
Kahler metrics of the kind A = Bhy + ahs, whose real part is a Hodge metric g,
representative of a conformal class with period point [w,] = [a D+ F] € H. Then
h corresponds to the polarisation H = oD + SF (strictly speaking, we should
only allow «/f3 be rational, since only in this case can a multiple of H be a true
divisor on 5). Recall from definition 1.9 that once (w, p;) are fixed, the chambers
associated to (w,p;) are labelled by pairs +e € H*(S;Z) with p; < e? < 0 and
e =w (mod 2).

Since S is an algebraic manifold we use proposition 3.1 and study My (¢, ¢2)
for a suitable polarisation H. One can study directly the moduli space MMy (cy, ¢2)
to carry out the computations of the invariants. Although more natural, it is not
very enlightening and very prone to error. Alternatively, and this is the way we
have chosen to develop here, we can use the wall-crossing formulae of section 3.4.
This offers the perfect excuse to include that section and produces much cleaner
arguments. Fixw = [CP'] € H*(S;Z). The formal dimension of the moduli space
is 2d = 8k —3(1 —by +b%) = 8k = —2py, with k = ¢ — ic%. Note that the moduli
spaces My (c1,c2) we will be encountering have natural complex orientations
differing from the orientations of M by a factor €(¢y) = (—1)% We have

the following cases:

1. k=0,¢; =w, ¢ =0,d=0 and p; = 0. The moduli space is of dimension
zero. There are no walls, since py = 0. The moduli space M} consists of
one point, as there is just one flat connection, which is irreducible, on S for
¢; = w. Algebro-geometrically we consider the moduli space My (cy, ¢2) of
stable bundles with ¢; = w and ¢; = 0. It’s easily seen that this moduli

space consists of one point V'

0-0—=V—->0(L)—=0

(recall that L is the determinant).

Furthermore H*(Endo(V)) = H?*(Endo(V')) = 0, so this point is generic and
isolated and counts as 41 for the invariant of the 0-dimensional manifold
with the complex orientation. Keeping in mind that this orientation differs
from the usual one by a factor of e¢(w) = —1, we have the Donaldson

invariant

DY (DY) = —1.
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2. k = %, cio=w+F,cg=1,d =2 and py = —2. The moduli space is of
dimension four. There is one wall of type (w,p) given by ( = D — F. We
denote by Cy the chamber associated to polarisations H = oD + SF with
H - (¢ < 0ie. with §small (say /o < 1), and by Cg the other chamber,

the one consisting of (period points of) suitable metrics.

Since S = CP' x T?is a ruled surface we can apply proposition 2.3 of [54]
(with obvious modifications) to conclude that for polarisations H € Cy the
moduli space My (e, ¢2) of H-stable bundles on S is empty. Therefore for
H € Cr we have

DG (D?) = 85 (Cr. Co)-

By corollary 3.15 with ¥ = D, a = D, Kg = =2F, (- Kg = =2, (* = -2,
(-a=—1,e(w+ F) =1, this term is —2.

3. k=1, =w,ce =1,d =4 and p; = —4. The moduli space is of dimension
eight. There is one wall of type (w,p;) given by ( = D — 2F. We denote
again by Cy the chamber associated to polarisations H = oD + F with
H-( < 0i.e. with /a < 2, and by Cg the chamber consisting of suitable
metrics. In this case, unlike the others, the moduli space M7 is not compact
and has a natural Uhlenbeck compactification My C MY U (MY x S) as
explained in subsection 1.1.1. Let us study the moduli space My (cy, ¢2) in
detail.

Theorem 4.4 Fiz H € Cy and the determinant A = O(L) (for a divisor
L =py x CP'— S. Then the Gieseker-Maruyama compactification of the

moduli space My (c1,c2) is given by the set of non-split extensions
0=M'=sVsAaMeI,—0 (4.1)

with p a point in S and M a line bundle of degree zero (and hence of the
Jform O(D — L) for some D = pt x CP' — §). All such extensions are
stable. There is a space M parametrising all extensions like (4.1) which is

a compactification of a (generically) double cover of My (ecy,cz).

Proof. First, let V be an H-stable bundle. By Riemann-Roch [1, page 21],

we have

Vo0 = Lrrary — 24 L ar o 1o
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But, because of the stability, there is no nontrivial morphism O(L +3F) —
V,and so RA(VRO(F)) = RO(VVRO(—F-2F)) = hi°(VeO(-L-3F)) = 0.
So R°(V @ O(F)) > 0 and thus there is a monomorphism O(—F) — V.
Then there is a divisor C' > 0 such that the morphism above factors through
O(C — F) — V with a torsion free cokernel. The H-stability of V leaves

us only with three cases:
0=20(-F)=V >AR0(F)21; =0

0-0—=V-A®I,—0
0—-0D—-F)=V -A0F—-D)—0

where I is the ideal defining a 0-dimensional subscheme Z of length 2, I, is
the maximal ideal of some point p € S and D = pt x CP! < S. In the first
case there is a divisor M = O(D— L) of degree zero such that 7 is contained
in the divisor that M @ A @ O(F) defines'. Therefore hO(V @ M) > 0 and

hence we can suppose that we are always in one of the cases
0-M'=2V sAMeI,—0

0 M 'OARO(-F) =V M@ O(F) =0
In the second case h°(V @ M~') = 2 so it gets reduced to the first.

For dealing with the issue of uniqueness, we check that whenever 2°(V @
M') > 0 then either (M’)~! factors through M~' — V (and therefore p
and the extension class are uniquely determined) or p belongs to the divisor
defined by A @ M @ M’. This second case happens for a unique M’. So
the space parametrising these extensions 91 looks like a (ramified) double
cover of Mpy(cy,cy). Off the ramification locus (i.e. when p is not in the
divisor defined by A @ M?), h°%(V @ M) = 1 and hence 9 is properly a
double cover of My (1, ¢2). In the ramification locus it might happen (and
actually does) that A%V @ M) = 2, so the map M — My(ci, c2) sends

some lines to points.

We also want to check that all the extensions are stable. Suppose that
hO(V ® N_l) > 0 for some line bundle N. Then either N < M~! of p is

'If Z consists of two points, consider one in F and the other in D. If Z is supported in one

point, consider D + F with D and F' intersecting in the supporting point of Z. In any case
O(-D-F)ClIz.
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contained in an effective divisor defined by A @ M @ N~ If the first case
N is of negative degree. In the second, either A @ M @ N=' = O(D) or
A@ M @ Nt = O(F), i.e. N is homologically trivial or homologically
L — F. This proves the stability of V.

Now we want to construct a space 9 parametrising the extensions. First

we have
0 H'AN'"oM™?) s Ext*(MoA® [, M) = 0,=C =0

So Ext! = C? and we get a fibration CP' — 91 = J x S, where J is the
Jacobian of S (of divisors homologically equivalent to zero) and Mt = P(&)
for &€ = Extl M@atA@ Ia, M), 75 : (J x S) xS = S, myxs :

(J xS)xS ZSJ x S the projections, M — J x S the universal sheaf,
A C S x 5 the diagonal. 9 is obviously of dimension 4 and in every fibre
there is exactly one extension which is not a bundle (the one corresponding
to the extension in H'(A™' @ M~2), not giving a unit in O,). Such V lies

in a diagram with VY'Y € My (cq,0) = pt,

Mt —— V. —s MoA®I,

| J

M>t —s VYWY ——  M@A

J J

Op J— Op

So M is a compactification of (a double cover of) My (e, ¢2). The comple-
ment is a divisor U = J x S. Projection onto the second factor gives a map

U— S =My xS relating the two compactifications of My (cq, ca).

The moduli space 9 is generic since for all V' € M, V is simple as it is
stable. So H°(Endg(V)) = 0 and hence H?*(Endo(V)) = H°(Endo(V) @

Ks) =0 as —Kg is effective. 0O

Let V be a extension like (4.1) and let D = pt x CP* C S. Then restricting

the exact sequence to [ we have that
0—-0p—=V|p—=>0p—0 ifpg D

0— Op(l) = V|p = Op(—1) =0 iftpeD
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So Z., ., (D,0p(—1)) = {V/R°(V @ Op(—1)) # 0} = {V/p € D}. There-
fore u([D])? = 0 and p([D])* = 0. So finally for H € Cp we have

DY(DY) = 654(Cr. Co).

By corollary 3.14 with ¥ = D, a = D, Kg = —2F, (- Ks = =2, (* = —4,
(-a= =2, (w) = —1, we have that this term is —16.

4.4 Basic classes for elliptic surfaces

Here we will use the gluing formulae for a quicker computation of the invariants

of elliptic surfaces. This is by now widely known, but it will be added because

of the simplicity of our argument. Furthermore, in section 4.5 we will extend

the results to cases in which the resulting manifold is not an elliptic surface (not

even a complex manifold), we will allow log-transforms of even multiplicity and

extend the results of [17], since we do not suppose the existence of cusp fibres.

The tool we use is the following proposition from section 1.2.

Proposition 4.5 There exists a vector space V' of dimension 1 with the following

properties

1. Let X be an open manifold with boundary Y = 0X = T? x S! and with

bH(X) > 0. Let D € HXX,Y) and w € H*(X;Z) with w|y odd in
H*(Y;Z). Then we have defined an element ¢*(X,D) = ¢*(X,e'P) €
VIt

. Let X be a closed manifold with bt > 1 which can be written as X = X; Uy

Xy, and let D € Hy(X) and (w,T) an allowable pair. Write D = D1+ Dy,
D; € HE(X,.Y), and w = wy + wy, w; € H*(X;;7Z), then we have

DY (eP) = =" (X1, Dy) - 6 (Xo, D).

Proof. Recall proposition 4.1. Then we put

¢(X. D)

ti
7!

(X, D) =3

i>0

for an open manifold X. In the notation of subsection 1.2.2, we have that V; =

V =HF.(Y), for all i. When X is closed we have

w,T :
Dy (D

: 1.
7!

SCOEDY

i>0
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So the result is equivalent to proposition 4.1. 0O

The K3-surface has series Dy = (—1)”2/2 ¢?/2. Therefore proposition 1.11
yields
Dggu,T)(etD) _ _e—Q(tD)/Z

Y

for any allowable pair (w,T'). We want to prove

Theorem 4.6 ([37][18][17]) Let X = S,.(m1,...,m,) be an elliptic surface with
by =0, p, =n—1> 0 and multiple fibres of multiplicities 1 < my < --- < m,
(we do not suppose them odd or coprime). Let F be the class of the fibre and
a € Hy(X). Then

sinh™(F' - «)
sinh(m%F - a) sinh(m%zF ca)

(4.2)

For the sake of simplicity, we will prove theorem 4.6 when r = 2 (i.e. there
are at most 2 multiple fibres). An application of proposition 1.11 produces the

following

Proposition 4.7 Let X = S,(mq,mz) be an elliptic surface with by = 0, p, =
n —1 >0 and multiple fibres of multiplicities 1 < my < mo. Let F be the class
of the fibre and o € Hy(X). Then the statement of theorem 4.6 is equivalent to
either of the following:

o [fw-F =1 (mod?2) (in particular my, mq are both odd) then

cos"(F - a)

cos(leF-oz) Cos(m%zF-oz)'

DggUyT)(eoz) — Z'3(I(~w—|—n) e—Q(oz)/?

o Ifbothw-——F =1 (mod?2) and m; are even, then

sin(F - «)

cos(m%F - a) cos(m%zF ca)

DggUyT)(eoz) — Z'3(I(~w—|—n)—|—n e—Q(oz)/?

o Ifw- m%F =1 (mod 2), w-m%zF =0 (mod 2) (note that my is even), then

sin(F - «)

D(w7T) ay 3(K-wtn)+n—1 —Q(a)/2 )
(%) =7 ¢ cos(m%F-oz) sin(w%F-oz)

X




64 CHAPTER 4. CONNECTED SUMS ALONG A TORUS

o Ifbothw--—F =0 (mod ?2), then

- in"(F - «a)
D(w7T) oy 3(K-wtn)+n—2 —Q(a)/2 S (
x (e =1 c sin(m%F - a) sin(w%F-oz)’

where K stands for the canonical class.

Proof of theorem 4.6. First we have S, = By Uy B;. Choose any allowable pair
(w,T) with wy = wy € H*(By;Z) (i.e. w is symmetrical), and D € H(S3) also
symmetrical (i.e. D = Dy + Dy, with Dy = Dy € HE(B,,0By)). Then

DED(P) = g (By, Dy) - 6By, Dy) = —e~ QD)2 = _(=Q(tD)/2,-0(D)/2

implies ¢ (By, Dy) = e~ ?P)/2 (a5 there is an indeterminacy on signs, we fix
them in such a way that we get a plus here). Now we have to compute Ds,. We
know by section 3.2 that S3 has an embedded sphere o of self-intersection —3
which intersects the torus T' representing the fibre F' = [T], in one positive point.
Therefore the class [o] +2F can be represented by a genus 2 embedded surface X
of self-intersection 1. The canonical class is Kg, = F' and so wy-¥ =1 (mod 2).
By [23], S3 has big monodromy with respect to Kg, (being a minimal simply
connected elliptic surface). So the invariants can be written as polynomials on
() and K and therefore the basic classes have to be multiples of K. Now by
proposition 1.6, every basic class K; is a lift to integral coefficients of wy and so
K; =rF with r odd. Also2 =29 —2>Y?+|K;-X| =1+]r| sor = +1 and
the basic classes are £F. We conclude Dg, = ceQ?ginh I (sinh since dp is odd)
(

for some constant ¢, i.e. DSZ’T) = ce @%cos I (for w- F =1 (mod 4)). From

the computations in section 4.2 we have ¢ = 1. So
Ds, = e?/?sinh F.

We use S5 = By Uy By, with (w,T) an allowable pair and D € H3(S3). Then

using proposition 4.7 we get
o Ifw-F=1 (mod2)
Dk(s?T)(etD) = —¢" (B, D1) - 9"*(Ba, Dy) = I t3) (=QUD)/2 cos(F -tD)

and ¢"2(By, Dy) = 3 F w2 =1 =Q(tD2)/2 cos(F - tDy).
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e Ifw-F=0 (mod2)
DY (D) = =1 (By, Dy) - 6" (By, Dy) = 2043141 e=QUDN 2 i (1 )
and ¢"2(By, Dy) = 3 Fw2 o=Q(tD2)/2 sin(F'-tDy).

But now Sy = By Uy Ay, from where we get, using w = P.D.[A] € H*(A;Z)
and D € Hf(Al,aAl),

1
YA D)= e L 43
¢4, D) ‘ cos(F -tD) (4:3)
Analogously
1
(2a+1)[A] A D)= —(—1)° —-QtD)/2 ]
¢ (41, D) (=1)%e cos(F -tD)
Theorem 4.8 The manifold S = CP! x T? = A, Uy A, has series
2 1
AT Dy _ _ _—auD)/2 _
5 () c cos?(F -tD)

Recall that the invariants are computed for suitable metrics (those giving big vol-

ume to CP').

For the case 5, = B, U A; = B,_; U By, one proves by induction that, for
w € H*(B,;Z) with w]y =S,

" (B,, Py = (=1)"* e~ QUD)/2 cos" ' (F - tD),
so for w € H*(S,;Z) with w- F =1,
DD () = (1)t e QUPV2 cos" 2 (F - 1 D).

Also for the rational surface 57 = A; U By,
1
cos(F -1D)

Using proposition 4.7, we have proved so far that the statement of theorem 4.6

Dgtf,T) (etD) — e—Q(tD)/2

is true for all elliptic surfaces 5,,, n > 2. Using proposition 4.7 again, we know the
shape of all invariants for S,, n > 2 and all w € H?*(S,;Z). Now for introducing
multiple fibres, one has that X = S5,,(m) = B, Uy A,,, with A,, in fact diffeomor-
phic to D?* x T2 We have a class F' € Hy(B,) which is equivalent, as an element
of Hy(S.(m)), to the class m[T? € Hz(A,) = Hy(T?). Call f € Hy(S,.(m))
the class corresponding to [T? € Hy(A,,). Now choose w € H?*(S,(m)) with
f-w=1and D € Hy(S,(m)) decomposed as D = D; + A for the horizontal
class A € HE(A,,). Then there are two cases:
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e If m is odd, we have ¢“'(B,, Dy) = — 3By wintl) o =Q(tD1)/2 cos" 1 (F -
tDy) (use Sp41 = B, U By and knowledge about S,41). Now K, -w

(n—1)mand Ky -w=(n—2)m+m—1,

Dggu,T)(ea) _ ;3K xwtn) e—Q(oz)/QCOSn_ll(F ) 0‘)‘
cos(—F"- o)

e If m is even, then ¢“'(B,, D1) = — 3By wtndl)an=l  —Q(tDy)/2 sin" (-

tDy). Now Kg ,,-w=(n—1)mand Kx -w=(n—-2)m+m—1,

n+1
coan—1
D?,T)(ea) — 3K xwtn)4n—1 e—Q(a)/2SIH 1(F‘04)7
cos(—F"- o)
and theorem 4.6 is true for all S, (m), n > 2. Analogously we get (for instance

for my and my both odd and w- F =1 (mod 2))

cos"(F'-tD)
cos(mi1 -tD) cos(mi2 . tD)'

w7T X"~w n —
gn(Tf?l,mg)(etD) = (—1)3(I + )e Q(tD)/2

Remark 4.9 The proof above also works forn =1 and w- F =1 (mod 2). So
the expression in the first item of proposition 4.7 is true when n =1 (the metrics

are always suitable in this case).

Remark 4.10 The first three terms of the power series of the first item in propo-
sition 4.7 are the equalities of theorem 4.2. So this proof is a generalisation of

that former proof.

4.5 Fundamental results

In this section we try to gather together the most fundamental results on invari-
ants of connected sums along a torus T2 They are indeed proved in the same
fashion as the proofs of last section. The first one establishes that the manifolds
we are dealing with are always of simple type. The second allows us to compute
the basic classes of the connected sum along a torus. Finally, the third gives
the invariants of a manifold in which we have performed a logarithmic transform
(this was carried out by Fintushel and Stern [17] but only under the assumption

of the existence of a cusp fibre).



4.5. FUNDAMENTAL RESULTS 67

Theorem 4.11 Let X be a manifold with bt > 1 and by = 0 containing an em-
bedded torus T? C X representing an odd homology class and of self-intersection
zero. Then X is of simple type. When bt = 1, X is of w-simple type with re-
spect to the invariants defined by [T?, i.e. DY 2y, for any w € H*(X;Z) with
w-T?*=1 (mod 2).

Proof. Put A for a tubular neighbourhood of F' = T2 Decompose X = X° Uy
A. Then for any D € Hy(X) we put D = Dy + aA, with « = F - D. Now
proposition 4.5 and equation (4.3) yield

w, I w 1
DYjr () = 6"(X1. D) -

DY (2% = 4)e'P) = —¢"(X1, D1)o" (A, (2F — 4)e' ),

We have examples of simple type fulfilling the conditions of the statement (for
instance the K3 surface) with non-trivial invariants. This forces ¢“(A, (z* —
4)e!*®) = 0, whence the result. [

Theorem 4.12 Let X1 and X, be two four-manifolds with bt > 1 and containing
embedded tori F; C X; representing odd homology classes and of self-intersection
zero . Let X = X1# 51X, be their connected sum along F' and call F; € Hy(X) the
class induced by F; € Hy(X;). Consider w € H*(X;Z) with F'-w =1 (mod 2).
Then for D € Hy(X) with Dy = aS' € H(Y), we put D = Dy + Dy and
D; = D; + a\, so we have

DY (EP) = =D (eP) - D) (eP2) - cos(tFy - Dy) cos(tFy - D).

Proof. From proposition 4.5 and equation (4.3) we have

1

D ( ) ¢"(X1, D) cos(tFy - Dy)

X0IA)

and analogously for X,. The result is immediate from proposition 4.5 (recall from
subsection 2.1.3 that bT(X) > 1). O

Theorem 4.13 Let Xy and X, be two four-manifolds with bt > 1 and by = 0
and containing embedded tori I; C X; representing odd homology classes and of
self-intersection zero. By theorem 4.11, they are of simple type. Let Dy, and
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Dy, be their invariants, respectively. Then X = X145 X, is of simple type and
calling F; € Hy(X) the class induced by F; € Hy(X;), one has for D € Hy(X)
with D|y = aS* € H,(Y) (put D = Dy + Dy and D; = D; + aA),

DX (tD) = DX (tDl) . DX2 (tDQ) Siﬂh(tFl . Dl) Siﬂh(tFQ . Dg)

1

Proof. Note first that by(X) = 0, bT(X) > 1 from section 2.3. This is a for-

mal consequence of the previous theorem. We write Dy, = €92 a; e’ so
T Kw w? — _ .
D%’F) = 0 (X)e=Q/2 57 (1) o a;e'™i and analogously for X, with Dy, =

e?/25"b.els. From the formula in the previous theorem

Dy (tD) = LQD)/2 Z Qjiaibjet(l(,'-l-L]j:Flj:FQ)D

with

_ _ L K;+L,+F +Fy)- 2
o _'do(X)—do(Xl)—do(Xg) _1 Ky w21+w1+ Jw§+w (K + St 1;: b) w4 w
€y = —1 (=1)

(P £F)w

which is —(—=1)" 2, since wi + w3 = w®* (mod 2) and —%(1 + b%) be-
haves additively for connected sums along tori. (In the expression of Dx there
might be in principle different basic classes corresponding to the same exponential
et Rt Ly 2P £F2)-D ht all of them contribute with the same sign to ¢;;). O

If we want to deal with other homology classes D € Hy(X'), we should consider
closings of X; with B; instead of A.

Theorem 4.14 Let X; and X, be two four-manifolds with bt > 1 and by = 0 and
containing embedded tori F; C X; representing odd homology classes and of self-
intersection zero. Lel X( = X;#7r 51 and let Dy, o and D) be their invariants,
respectively. Then X = X 1#r X, is of simple type and, callmg F; € Hy(X) the
class induced by F; € Hy(X;), one has for D € Hy(X) (put D = Dy + Dy and
D, € HQ(XZ'(l)) restricting to D; in X; with D? = D?),

Dy (tD) =Dy y(tDy)-D

Proof. Note that X and both Xl(l) have by = 0, b* > 1 and are of simple type.
We want to get
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and work then as in theorem 4.13. This is analogous to theorem 4.12 but now

DU () = —64(X,, Dy)

Theorem 4.15 Let X be a manifold with bt > 1 and by = 0 containing an
embedded torus T? < X representing an odd homology class F' of self-intersection
zero. Perform a logarithmic transform of degree p on I and call X (p) the resulting
manifold. Suppose by(X(p)) = 0. Then for D € Hy(X(p)) and D € Hy(XM)
agreeing on X°, and with D* = D?,

_ 1
Dx ) (tD) =Dxw (1D) - Snh(tD - 1F)
P

where F' € Hy(X(p); Z) denotes the class induced by F € Hy(X;Z) on X(p).

Proof. Straightforward. [

Application to prove a result of [30]

Consider a Dolgachev surface X; with one multiple fibre of (odd) multiplicity
p1, i.e. X1 = Si(p1), which is diffeomorphic to the rational surface S;. Let F
be the homology class of the fibre, which is an odd class. Consider X, another
Dolgachev surface with one multiple fibre of (odd) multiplicity ps, and let F
be the homology class of the fibre. Then we can consider the connected sum
X1# 1 X,, under different identifications. We have, for (pilF) cw = 2a+ 1,

1
. Qe Lo
A (=1)%e cos(}%F-oz)

=4
&
=
—~
o]
Q
~—
Il

1. We glue with the preferred holomorphic identification of proposition 2.9 and
the discussion preceding it. Then the classes [’ from both pieces correspond
canonically and give the class of the fibre of the natural fibration for X =
X1#r Xy = Sao(p1, p2), which is the elliptic surface with p, = 1 and two
multiple fibres of multiplicities p; and py. The invariants for X are given

by (for F'-w =1 (mod 2))
cos?(F - o)

DD oy — (_1\BE2 —Q(a)/2 )
x () =(=1) ¢ COS(leF'Oé) COS(p%F'Oé)




70 CHAPTER 4. CONNECTED SUMS ALONG A TORUS

2. We glue with the identification which is the preferred identification com-
posed with a twist in the S* factor. More explicitly, if we identify F' x D?
with the tubular neighbourhood of the fibre ' which we are using for gluing,
in such a way that the holomorphic projection is the projection in the second
factor, then the gluing that we will use is ¢ : 9(F x D*) — 9(X, — F x D?),
inducing ¢, in H,(F x S') with matrix

o O =
—_ = O
_ o O

This gluing is considered in [29] and [30]. Consider a, 3 € Hy(F;Z) some
basis such that a- 3 = 1, ¢.(a) = a and ¢.(8) = S+ [S']. Then the class F
in X; corresponds to the class F'—T,, in X5, with T}, = a@[SY] € Hy(F'xSh).
Call X' = X; Uy Xs, and let F; € Hy(X') be the class induced by the class
Fin X;, fori = 1,2. Then (for F'-w =1 (mod 2))

cos(Fy - ) cos(Fy - av)

COS(leFl - a) cos(p%Fg ca)

DY () = (1) e

In the first case all the basic classes span a one-dimensional subspace of H*(X)
and in the second they span a two-dimensional subspace. Therefore the manifolds
X and X' cannot be diffeomorphic (although they are homeomorphic) which is
the main result of [30]. X’ is a homotopy KA '3-surface and by proposition 2.12, it

is a symplectic manifold.



Chapter 5

Connected sums along Riemann

surfaces of genus 2

5.1 Introduction

In this chapter we carry on studying the behaviour of the Donaldson invariants
under connected sums along Riemann surfaces in the next natural case, i.e. when
the genus of the surface is 2. For this case, the computations can then be carried
out quite explicitly.

We recall first the Floer homology of ¥ = ¥ x S! when ¢ = 2 from sec-
tion 1.2 (see proposition 1.19). Let Py be an U(2)-bundle whose associated
SO(3)-bundle has wy € H*(Y;Zs) dual to the class [S']. Then there is the iso-
morphism HF*(X x SY) 5 Q H*( M) with the quantum cohomology of M2,
the moduli space of rank-2 stable bundles over ¥ with odd determinant. As usual,
the universal bundle yields a map i : H.(X) — H**(M2) given by slanting
with —i times the first Pontrjagin class. In this chapter it will be necessary to
make use of Conjecture 1.22 which states that this corresponds with the g map
in Floer homology for [X] € H2(X) and elements o € Hy(X), but there will be a
correction term for x € Hy(X) (see remark 5.3). Nonetheless some of the results
can be proved independently of the aforementioned conjecture, and we will give
an alternative proof in such cases.

The quantum cohomology of M2 in the case of ¥ of genus 2 was first com-
puted by Donaldson [9]. He uses the fact that for ¥ hyperelliptic there is an
explicit description of M2 as an algebraic manifold [4], which, in the case of

genus 2, gives that M2 is the intersection of two quadrics in CP® [45]. From

71
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this description one can compute the space of lines (rational curves of degree 1)
in M234, This turns out to be the only necessary data for finding the quantum
product. Mg has (real) dimension 6 and has (integral) cohomology equal to Z
in degrees 0, 2, 4 and 6. The generators are 1, h, [ and p which correspond, in
the description of M2 as the intersection of two quadrics in CP?, to the fun-
damental class, a plane, a line and a point. The map p gives an isomorphism
p Hi(Y) — H?(MRY), describing the other non-zero bit of the cohomology of
M2, So far the description of QH*(Mgd) as abelian group. Regarding the

multiplicative structure, we have the following (see [9])

hxh = 4l +4
hxhxh = 4p+12h
hxh+«hxh = 16h*h

ple)# p(B) = (o B)(Ghohosh—h) (5.1)

In general, we will drop the * symbol for denoting the quantum product.
QH* (M) has a natural Z/4-grading given by reducing the Z-grading above.
The standard basis is given by ¢; = k¢, 0 < 1 < 3, and elements u(a;), where
{a;} is a basis of H1(X;Z). Note that the matrix < e;,e; > is

00 0 1
4 00 1 0
01 0 16
1 0 16 0

The pairings < p(a), e; > are all zero, so Q H?(Mgd) is orthogonal to the “even”
part of Q H*(Mg3). This is an important remark since it will allow us to ignore
the “odd” part in later computations.

We recall our set up. Let X; and X, be two manifolds with ¥; C X; embedded
surfaces of the same genus ¢ = 2 and self-intersection zero. Remove a tubular
neighbourhood of ¥; and call the resulting manifold X; (it has boundary ¥ = ¥ x
SY). The (closure of the) tubular neighbourhood removed is always diffeomorphic
to A=Y x D?. Consider some identification ¢ for Y (see definition 2.5) and let
X = X(¢) = X; Uy X3 be the connected sum of X; and X, along ¥.

Our starting hypotheses are that b, = 0 for both X, and that ¥; are odd
in Hy(X;;Z)/torsion (equivalently, the homology class [Y;] is an odd multiple

of a non-torsion primitive class). Therefore there exist w; € H?*(X;;Z) with
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w; - Y; =1 (mod 2). We fix w’s in all the manifolds involved (X, X; and X)
once and for all in a compatible way (i.e. the restriction of w to X; C X coincides
with the restriction of w; to X; C X;) and such that w; - ¥; = 1 (mod 2). We
drop the subindices, so we will not differentiate these w’s, since the context makes
always clear to which manifold they refer.

The series DY («) is determined by its action on:

. o= o1+ ag € Hy(X1) & Hay(X3) C Ha(X). These elements will be called
classes of the first type.

2. elements D € Hy(X) such that D = Dy + Dy with dD; = —3D; being
a multiple of [S'] € Hy(Y). These elements will be called classes of the
second type.

3. elements D., such that D, = Dy + Dy with 0D, = —9D; defining a class
0 # v € Hy(Y) which is not a multiple of [S']. These elements will be called
classes of the third type.

For studying the behaviour on classes of the first type we will use the Floer
homology groups H F.(Y') explained in subsection 1.2.1. When the classes are of
the second and third type we must use the extension of the Floer theory provided
by the Fukaya-Floer homology groups HF F.(Y,~), for loops v, as explained in
subsection 1.2.2.

This chapter is a bit long, but it is naturally divided into sections correspond-
ing to the study of the invariants on classes of first, second and third type. The
fundamental results of each of these sections are theorems 5.6, 5.17 and 5.23, re-
spectively. All throughout sections 5.2 and 5.3 we will be using Conjecture 1.22
(in section 5.3 we use also an extension of it, Conjecture 5.11), and so the re-
sults are in principle dependent on it (except obviously proposition 5.5). In
subsection 5.3.2 we give an alternative way of proving theorem 5.17, completely
independent of Conjectures 1.22 and 5.11. So theorems 5.17 and 5.6 (which is
a consequence of the former) and corollary 5.9 are proved and not conjectural.
Also corollary 5.15 is independent of the conjectures. Finally, our proof of the-
orem 5.16, about the finite type condition of the manifolds we are dealing with,
does depend on Conjecture 5.11.

On the other hand, section 5.4 depends on Conjecture 1.22, since the compu-
tation of the Fukaya-Floer homology groups H F F.(Y,~) is based on our descrip-

tion of u(v), and on Conjecture 5.20, which is another extension of the former
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(nonetheless, Conjecture 5.20 could have been avoided with arguments similar
to those of subsection 5.3.2). So the main theorem in section 5.4, theorem 5.23,
remains as conjectural. We use this theorem to produce some nice explicit results
about basic classes, corollaries 5.9, 5.25 and 5.26.

Let us remark that the three conjectures we are using in this chapter, Con-
jectures 1.22, 5.11 and 5.20, refer to the action of u(X) on HF,(Y), HF F.(Y,S")
and HEF.(Y,v) (with v representing a homology class not a multiple of [S']),
respectively.

We finalise with a section in which we try to give some ideas for generalising

these results to the case g > 2.

5.2 Classes of the first type

Here we suppose g > 2, since the remarks we are going to use now are not specific
for genus 2. We deal with the invariants for classes a € Hy(X;) C Hy(X) and
B € Hiy(X3) C Hy(X). We are going to use Conjecture 1.22 to make explicit
computations.

Fix a set {2} of elements of the shape 2, = Y%y, .- v, € A(Y), where
x corresponds to the class of a point and v, € H;(X), with the property that
the corresponding ¢; = p(X)*u(x)’u(y1) -+ p(7,) form a basis for HF.(M2dd)

(quantum multiplication is understood throughout). Then we have the following

Lemma 5.1 ¢"Y(A, z) = e, after possible renormalisation (see proof of theorem

for explanation of this word).

Proof. From Conjecture 1.22, ¢“(A, z;) = €;¢0"(A,1). It only remains to check
¢V(A, 1) =1. Put e, = ¢"(A,1). Now

%
D((QI}L;H)BE(ZI) =< e461€4, 1 >=< 6361,1 > .

Making z; run through the basis, the left hand side is zero (by dimensionality)
except for the element of degree 6g — 6, in which case it is equal to < €;,1 >
(since the corresponding moduli space is isomorphic to M244). The conclusion is

that €2 = 1. If e, = 1 we have finished, if not we have to renormalise defining

A~

¢“(X, D) = (X, zD)

(obvious meaning for z,). This does not modify any of the arguments of the
chapter and makes qgw(A, z)=¢. O
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For the open manifold X; we write ¢*(X1,2) =3 < ¢“(X1,2), e > €], where
{e7} is the dual basis of {¢;}. Transferring the cycles contained in z; to X; we
get, for z € A(X,),

¢" (X1, 2) Z<¢w (X1,2),0%(A,20) > ¢f =

:Z<¢w(X17ZlZ)7¢ ( >€l ZD Z[Z
l

Then
D () = ), 8" (X, ) >=

¢ (X
—ZDwz toy DEZ )(e m) < €], e > (5.2)

Therefore the series for X is determined by the series for both sides. We can
work out Dy (« + ) adding the class of the point to either side, and we get

DY 0+ 8) = 30 DY (o) D () < e, >

Note that on cycles of the type T, = v x S C ¥ x S! the series ¢¥(X;, eT7)
is constant (since T, represents the zero homology class in X;). This agrees
with the case when X is of simple type, where tori of self-intersection zero have
intersection zero with all basic classes (and so the series is constant on such tori).

Before going further, let us prove a simple lemma.

Lemma 5.2 For g = 2 one has p(X) = th and p(x) = $h? — 2. In particular
w(z)* —4=0.

Proof. Take X to be a K3 surface blown-up in two points. Consider a tight
surface S of self-intersection 2 (and therefore of genus 2) in the K3 surface (whose
existence is guaranteed by [38]). Let E; and F3 be the exceptional divisors in X
and let ¥ be the proper transform of the tight surface, i.e. ¥ =5 — E; — E;. Put
w= Fy,s0w-Y =1 and X has genus 2 and self-intersection zero. X is of simple
type and DY = —e?/2cosh Fysinh E,. So DY (1) = — cosh ¢sinh¢. The moduli
spaces of connections on X are of dimensions 2d = 2dy =6 (mod 8). From these

remarks we have
w 34+4ny\ _ 244n
Dy (X7 = =2

Write X = X; Uy A. Then p(X) is a multiple of h, say ah. Now, for n =
1 (mod 4),

DY (370 =< ¢ (X, B7), (ah)® >=< (X1, 57), a® 162h% >= a* 162 Dy (X"+?)
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from where a = :I:%. There is an indeterminacy in the sign coming from choosing
an orientation of generators of C'F,(X x S'). We make choices such that u(X) =
+h. For computing p(z), we put p(z) = ah® + b. From proposition 1.11 and

remark 1.12 we have

1 1
D) () = —eQ<a>/2§ sinh((Ey + E2) - o) + e—Q<a>/2§ sin((Ey — ) - a)

1 1
D) (ze) = —QGQ(Q)/% sinh((F£) + Fa) - o) — 2€_Q(a)/2§ sin((fy — £3) - a)

Now D;U’E)(:Jcetz) =< ah® + b,¢"(X1,e™) >= aDg;"U’E)(ZLZQetE) + ng;"U’E)(etE)
yields the equation

) 1, 1.
—sinh(2t) = 4aﬁ(—§ sinh(2t)) + b(—§ sinh(2t)),
from where 16a + b = 2. Now put § = —F; + Es, so X = 0 and use the
same argument with o = ¢4 + sX. This yields b = —2, so a = i. Note that
w(z)? —4 = (16a* — 4a)h* = 0. O

Remark 5.3 Note that u(X) = () € QH*(ME™). Instead p(z) = 1—1, so
f(x) = 1 € QHY (M) and there is a correction term —1 € QHO( M) (we
recall that | = Yh U h is the generator of QH* (M),

Corollary 5.4 Let X have by = 0, b* > 1 and an embedded surface ¥ of genus
2 and self-intersection zero which represents an odd homology class (as supposed
so far). Let w € H*(X;7Z) with w-X =1 (mod 2). Then Dg%l(xzz) =4D% (2)
for every z € A(X) C A(X,). The same statement is true for b* = 1 if we use

the invariants with respect to [X].

Proof. Let 2d be the degree of z. Suppose for instance that w -3 = 1. If
2d # 2dy (mod 8), then both sides vanish. Otherwise

Dy, (¢%2) =< ¢ (X1, 2), 6" (A, 2%) >=< ¢3" (X1, 2), plw)” >= 4D (2).
O

We have a simple result about the simple type condition of some of the man-

ifolds we are dealing with from chapter 4.
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Proposition 5.5 Let Xi, Xy have H,(X;;Z) =0, bT > 0 and embedded surfaces
Y of genus 2 and self-intersection zero which represent odd homology classes.

Then X = X #s X, is of simple type.

Proof. The manifold X has by = 0 and bt > 1. It also contains tori 7, €
Hy(Y;Z) C Hy(X; Z) of self-intersection zero and representing an odd homology
class (use remark 2.13 with L; = Hy(¥;Z)). By theorem 4.11, X is of simple
type. 0O

In theorem 5.16 we finalise the proof that a manifold X; with b; = 0 and
an embedded surface of genus 2 and self-intersection zero representing an odd
homology class is always of finite type. For the moment, let us suppose that both
X; have b; = 0, bt > 0 and are of simple type. Then we write

]D)%l /QZazwe D& = /QZb]we

w +I\"l‘~w

Recall that a;,, = (—1)7 2z a;. First note D;%l((l + 5e78) = eQ(a)/QZai(Ki .
¥)e - el Also

Dgzwl,z)(ea) — EQ(2)/2 Z C~LZ.7w€I§'i~cv7 D%’E)(eﬁ) — QP2 Z gﬁweij 8
where
(N f, ) (ai7w, [(i) if [(i Y =2 (mod 4)
A5 py 15 ) = . . .
’ (i7%a; .1 K;) if K;-X =0 (mod 4)

and analogously for (Bj,w,ij). The sign of the exponent is + when K; - ¥ =
2 (mod 4) and — otherwise. Now from formula (5.2), Dggu’z)(ea"'ﬁ) is equal to
AR N7 Gy by (K 2) (£2) (L )7 (£2)" < e €5, >)

t,5,lm
r=r/=0

(5.3)
(recall ¢ = pu(X)*u(z)u(ar) -« p(a,)). Here a, b and r correspond to [ and @/,
b and 1’ correspond to m. It must be r = ' = 0 since by = 0. The £2 are due
to remark 1.12. Using o = t3, f = (1 — t)¥ we see that K; - ¥ = L; - ¥ for
non-zero summands. Moreover, from proposition 1.6, this number is even and
less or equal than 2¢g — 2 in absolute value. Suppose now that X is of simple type.
Then DY (¢*F#) equals

QDN e TR D) (2 (L D) (£2)7 < €€, >),
l,m
r=r"=0

K, -¥=L;-%
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where ¢ = @;ubjw if K;-X =2 (mod 4). If K;-¥ =0 (mod 4) then

_ i—=do(X1)—do(X do (X
Cijuw =1 0(X1)—do(X2)+do( )ai,wb]‘,w-

The genus 2 case

When the genus is ¢ = 2, K; - ¥ has to be —2, 0 or 2. The standard basis has
only elements with b = 0" = 0. Also for the case K;- X = 0 the coefficient in (5.3)

vanishes, so we have:

Theorem 5.6 Let X; be as in section 5.1 with by = 0, b* > 1 and of simple
type. Write ]D)%1 = eQ/QZaLwGK" and ]D)%2 = eQ/ZszweLJ. Let X = X1#5 X,
(for some identification) and suppose X is of simple type. Then for o € Hy(X1)
and 3 € Hy(X2), it is

D% (a —|— ﬁ) — eQ(Ol+ﬁ)/2( Z 32 ai,w bj7w e[x"lwoz-l—LJ.ﬁ —|— Z _32 aLw wa eI‘yl‘.a-I—L‘]'ﬁ)‘
Ki-¥=L;-E=2 K;-X=L;X=—2

Proof. We use the standard basis {¢;} for Q [*(M24) and note that h corresponds

to 2¥ from lemma 5.2. So in the expression (5.3) one has b = b = 0 and

0 < a,d <3. The matrix < e}, e, > is

0 —16 0 1
1] =16 0 1 0
4 o 1 o000

1 0 00

hence for K, - ¥ = 2, the coefficient is computed to be 32 and for K; - ¥ = —2 it
will be —32. O

Remark 5.7 Actually we should say “for an appropriate homology orientation

for X7,

Remark 5.8 The reason for the different signs is easy to work out. First, w?
for X is always congruent (mod 2) with the sum of both of w* for X;. Also
BHX) = B+ (X0) 4+ 07 (%a) + (20— 1), s0 —3(1 + bH(X)) = —3(1 + b*(%4)) —
2(1 +b64(X3)) —3(g—1). Recalling that dy = —w?* — 2(1+b%) and g = 2, we have
do(X,w) = do(X1,w) + do(Xq,w) + 1 (mod 2). Now the sign comes from the
fact that the coefficient for the basic class —r is (—1)%c,, being c, the cocfficient

for the basic class k.
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Corollary 5.9 Let X; have by = 0, bt > 1 and be of simple type. Suppose
that there are embedded Riemann surfaces ¥ C X; of genus 2, self-intersection
zero and odd. Put ]D)%1 = eQ/QZaLweK" and ]D)%2 = eQ/QZwaeLJ. Perform
a connected sum X = X1#x Xy (with some identification) and suppose it is of
simple type. Let D% = e9/2Y ¢, ,e" be ils Donaldson series. Then for any pair
(K,L) € H*(X;Z)® H*(X4;Z), we have

Yo Cew=E32( > aiw)- (Y biw)
{H/H|X1:I(,H|X2:L} IX",‘|X1 =K LJ|X2:L
whenever K|y = Ly = £2P.D.[S']. Otherwise the sum in the left hand side is

ZETO.

5.3 Classes of the second type

Let us now have a homology class D of the second type. Using the extended
homology groups (see subsection 2.3.2), we can write D = Dy + Dy with D; €
HE(X;,0X;) and dD; = —dD; = S' C ¥ x S! (substitute D by a rational
multiple if necessary).

In subsection 5.3.1 we use again Conjecture 1.22 to carry all explicit compu-
tations of the invariants of the connected sum along ¥, for D of second type.
This conjecture tells us the action of u(X) on HF.(Y). We will have to make an
analogous conjecture on the action of p(X) on HFF.(Y,S'), Conjecture 5.11. In
subsection 5.3.2 we will give a short argument to get basically theorem 5.17 (and
hence theorem 5.6 and corollary 5.9) and corollary 5.15 avoiding the conjectures.
This is very nice from the point of view of having our main results proved, but
we lose all the understanding of the way in which the Fukaya-Floer groups H F'F.

enter in the arguments.

5.3.1 Explicit computations

In this section we need to work with the Fukaya-Floer homology version of the
gluing theory. We recall from subsection 1.2.2 that H F'F,(Y,S"') appears as the
limit of a spectral sequence whose Fs term is HF.(Y) ® [:]*(CIF’OO) and whose
differential ds is multiplication by x(S'). Thus all the differentials in the Fj
term of the spectral sequence are of the form Hoga( M) — Heyen(M24) and
Heyon(M2Y) — Hoga(M2). Now the boundary cycle is S! and thus invariant
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under the action of the group Diff*(X) on Y = X x S so the differentials com-
mute with the action of Diff*(X). As there are elements p € DiffT(X) acting as
—1 on HY(Y), we have that p acts as —1 on Hoga( M) and as 1 on Hyen( M249).

Therefore the differentials are zero and the spectral sequence degenerates in the

third term. Hence
¢"(Xi, D) = (b0, b1, ¢2,...) € HE(Y) @ H(CP™),

where we can interpret ¢, = ¢¥(X;, D¥) € QH.(Mg). So we have from theo-
rem 1.24

m

w, % m w 7 w m—1
Dg( )(D ):Z( i )O'(Qb (X1,D1),¢ (X27D2 ))7
or with the invariants in power series form, theorem 1.25 says
DY) = o6 (X1, 1), 6" (Xa, eP2)).

Now we can decompose ¢¥( X, eP1) = ¢¥ (X1, €P1)oven + ¢V (X1, €P1)gqq in com-
pOHthS lylﬂg in HFeven & ]:]*((C[FDOO) and HFodd & ]:]*((C[FDOO)

Lemma 5.10 Suppose that by(X,) = 0 (equivalently, by(X;) =0). Then
qbw(le etDl)odd =0.
Proof. Since b;(X;) = 0, for any v € H;(X) we have

0= DY (ePy) =< " (X1, ™), 67 (A, %) > .

Now v + ¢¥(A, e'®v) is Diff(¥)-equivariant. So the even part of ¢* (A, e'®y) is
zero and the odd part is a combination of the shape A1y + Agi,(v) with Ay, Az €
R and i, denoting contraction with the natural symplectic form w in H;(X)
(everything under the identification p : H,(X) = QH3(Mgd) = HF3(X x SY)).
If (A1, A2) # (0,0) then the image of A1y + Ayiy (), v € Hi(Y), is the total space
H,(Y). From this we conclude ¢* (X, e¢P1),q4 = 0. We still have to rule out the
possibility (A1, A2) = (0,0). Suppose it happens, then it would be ¢¥( A, ¢2v) = 0
and so
DI (ePynma) =< ¢(A, eP1), 6" (A, 0,) >=0.

But DT )u(3192) =< p(m),p(2) >= w(yi, ) # 0 (see equation (5.1)) in
general. This finishes the proof. [
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Now we use the trick of transferring ¥ from X; to X,.

w m m w 7 w m—1
DD Z>:Z(¢) < ¢4(X1, DiT), 64(Xo, DY) >=
m , .
=3 (Z) < DY (D), PsD¥ (D™7") >
The map Py : HFF.(Y,y) = HFF.(Y,v) can be defined at the level of chains
as
Pe:CFE(Y) — CFF_yY)
S Z( ) < ply X RYP2u(S < {to}), M(pr, p1) > pi

for p, € CFi_2a, p1 € CFi_g_33and f > a. Then do Py + Py 0d = 0 and the map
descends to homology, so we get that, for every open manifold X with boundary

Y and D € HE(X,0X) with 9D = ~,
[[ow(X,5D™) = Ps([[¢"(X,D™)).

We recall that ¢"(X,D™) is not a cycle, so the expression ¢¥(X,¥D™) =
Ps (0" (X, D™)) has no meaning. Actually Py can be decomposed regarding at
its action in the F5 term of the spectral sequence as an infinite sum of maps

_I_
(m “) Peo: HE(Y) ® Hyp(CP™) = HFi_g_04(Y) @ Hapyza(CP™).

a

For a = 0, the map is obviously multiplication by (X)) in Floer homology. For
the invariants in exponential form, we have
tm—l—a

Po(Y 68 (X, Dm)%) =3 (mj a) Poalén (X, D) o =

t“f%;a

—Z Z¢w (X, Dm) ) (5.4)

Here we interpret Py, : HFZ(Y) — HF;_5_5,(Y). There is an exponential oper-

ator

Qs =T HFF.(Y,y) = HFF.(Y,7).

We have the following conjecture about the structure of Py which we do not prove
in the thesis (actually it can be regarded as an extension of Conjecture 1.22). In
the next subsection we will give an alternative way avoiding it to prove our final

result, theorem 5.17 and some evidence towards this conjecture.
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Conjecture 5.11 Pgq is quantum multiplication by u(X). Py is the identity on
the +2-eigenspaces of u(X) and minus the identity on the 0-eigenspace of pu(¥).
P, , is zero for a > 2.

From lemma 5.2 we obtain the following expression

h2s —1 sinh 2s — 2s
w® =14 Zpyp % %
c T + 64 ‘

Corollary 5.12 As a consequence of the above conjecture we get (recall ¥-D = 1)

(5.5)

Dggu,E)(esE-l—tD) =< wa(Xl, etD1esE)7¢w(X27 etDz) >—

= P < (X ), ) (X Py > 4
‘|‘€_(52)(tD1) < ¢"(Xi, etDl)a e " (Xo, etDQ)o >,
where " ( Xy, €P2) 1o and ¢ ( Xy, €P?)g are the components of ¢ (X, €P?) in the

+2-eigenspaces and 0-eigenspace respectively.

So the operator above is (for ¥ - D = 1)

ihQ + Sh— 2_3h3) i etS(COShQShQ 4 sinh 2s

16 2 64 16 64

Let us write qbw(le etDl) = (¢07¢17¢27¢3)7 qbw(X?v etD2) = (¢07¢17¢27¢3)
and ¢*(A,e'®) = (ao, a1, az, az) with respect to the standard basis {e;} (recall
that A = pt x D* C ¥ x D* = A). We do not consider the odd part of the Floer
homology thanks to lemma 5.10. We have

esPE — e—ts(l o

K. (5.6)

o
(o
2
s

DY (=) = (o, é1, o, b3) B

0 —-16 0 1
—-16 0 1 0
B(t,s) = - X
0 1 00
1 0 00
e Llse7 L(ecosh2s —e™™) (e sinh2s — 2se7")
. 0 o—ts iets sinh 25 11_6(€t5 cosh 2s — e7%) _
e'® cosh 2s Lets sinh 2s B

2
4e'® sinh 2s e'® cosh 25
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0 —16e7% 0 e s
1| —16e % —8se™t* e s %36_“
4 0 e s ie“ sinh 2s 116 (e" cosh 25 — ¢7%)
—ts 1. _—ts 1 . —ts 1 o —ts
e 5s€ 16(6 cosh 2s — e™") 64(6 sinh 25 — 2se™")

Now we separate according to coefficients corresponding to functions on s in

the expression of Dggu’z)(esz"'m).

coef. of e?%et* do
coef. of e72%¢ts 4, o1 5.7
coef. of e b2
coef. of se™!* &3
where
0 0 (s + 1692) 15 (4epa + ¢bs)
Ay = l 0 %(4#}3 — 16¢2) 1%8(4¢2 ¥s3)

41 s =168 Py — 163 1 — 153 o — 15t
0 5(hs — 169y 0 (1 — 15¢s)

Therefore (e**e', e™2%e's e se™*) Ay = (Yo,v1, 1, ¥3)B. The matrix A,
will correspond to A = ¥ x D?.

0 0 %(4@;), + 16a2) %(4@2 + as)

4 = 1 0 ; (4das — 16asz) 128(4a2 as)
“4] ay—16a;  ag — 16ag a; — 116a3 ag — 11—6a2

0 %(G:), — 16ay) 0 %(al 11—6a3)

Lemma 5.13 The matriz A, is invertible.

Proof. That the determinant vanishes would imply that either a3 = 4 aq, as =
—4ay or a3 = 16a;. The first two cases give that the first or second row of
A, is zero respectively, which is contradictory as there are examples where the
left hand side of (5.7) has non-zero first two entries (see subsection 5.3.2). The
case az = 16a; implies that the series for any such X is always of the form
fi(t)e*se' + fo(t)e e’ + fa(¢)e™". This would also be valid for X = CP' x ¥ =
AUy A (using the invariance under Diff(¥), as in the proof of lemma 5.10, we
get that ¢¥(A, e'P?) 44 = 0 and so the odd part of the Floer homology does not

intervene in the series). Particularising for ¢t = 0, D;U’E)(esz) would be a linear
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combination of e%*, e7%¢

that

and 1. But from lemma 5.1 and equation (5.5) we get

1
D;U’E)(esz) = E(sinh 25 — 23).

Corollary 5.14 The ¢; are determined by the series D%’E)(e@”’sz) where Dy =
Dy + A.

Corollary 5.15 Let X; be of simple type with by = 0, bt > 1 and an embedded
surface X1 of genus 2, self-intersection zero and representing an odd homology
class. Let Xy be an arbitrary four-manifold with an embedded surface ¥4 satisfying
the same conditions as 1. Then for X = X1#xX, and D € Hy(X) of second
type, D% ((z* — 4)e'P) = 0.

Proof. By corollary 5.14, D%’E)((ajz — 4)etPrs5) = 0 implies ¢¥(Xy, (22 —
4)€tD1) = 0, and so D;U’E)((:L‘z _ 4)67517) = 0 for any D € Hy(X) of second

type. 0O

Theorem 5.16 Let X, have by = 0, bT > 1 and an embedded surface ¥, of genus
2, self-intersection zero and representing an odd homology class. Then X; is of
w-fintte type (i.e. Ds%l((:zjz — 4)"e'P) vanishes identically for some n > 0), for
any w € H*(X;Z) with w- X, =1 (mod 2). If we suppose bT = 1, the result

remains true for the invariants with respect to [%4].

Proof. We are going to check that D(}U’E)((:Jc2 —4)%2etPy = 0, for all D € Hy(Xy).

X1
When D € H3(X;) this is a consequence of corollary 5.4. Suppose now that

D € Hy(X;) has D-%; = 1. Put D = Dy + A. If X; is of simple type, we have

0= D%’E)((l'? . 4)€tD1+sE) — ¢w(X17€tD1)7¢w(A7 (1}2 _4)etA-|—sE) > .

The vectors ¢*( Xy, e'P1) (with X; being of simple type) generate a 3-dimensional

subspace (see subsection 5.3.2). Moreover this subspace is given by the equation
¢3 = 16¢; (see remark 5.18). So ¢*(A, (22 — 4)e'>T*%) is a multiple of (1,0,0,0)

and therefore

< BU(AL (2 = )N (A, (a7 = 4)e'd) = DL ((aF —4)7e ) = 0,

from where ¢*(A, (2% — 4)?¢'®) = 0 and hence the result. [
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Now we invert A, (lemma 5.13) and do the matrix product

D N(EP) =< (o, 61, 62, 65), (o, tr, b, o) >=

7(%_5’2(12)2 0 0 0
0 -2 0 0
(v1)" (254a2) _ (v2) (5.8)
0 0 0 (a3—12a1)2
0 0 (a3—_12a1 )? 32 (ai,2—_1166aa10)3
where
coef. of e?%et*

coef. of e72%¢ts

Vi = —ts
coef. of e

coef. of se™!*

in D%’E)(esz"'mi). When X, is of simple type with b = 0, bt > 1, we can use

D%, instead of D%’E).
Let us suppose D? = 0 (by adding a suitable multiple of X to D we can always
arrange to have this). This does no harm to the argument. We put D; = D; + A.

Also suppose D? = 0. Then we can write

Y et
K, 5=2
Y aj et
K, 5=-2
Z Z'_doa]‘7w€tlkj'D1
K, 5=0

v =

0

When both X; are of simple type with by = 0 and bt > 1, and also X is of simple
type (from subsection 2.3.1, b;(X) = 0, b*(X) > 1), we have

DY (tD) = (5.9)

tL;-D
32 0 I EE: bj,we 1
oD oD Tat4a)? =2
( 2 :ai7w€thl D17§ : ai,wethl Dl) (as+4a2) . J

~ _tL;-D
Kt K- O e S\ 2l
Theorem 5.17 Let X; be as in section 5.1 with by = 0, bT > 1 and of simple
type. Write D%l = eQ/zzai,weKi and ]D)%2 = eQ/sz]‘,weLJ. Let X = X1#+2 X,
(for some identification) and suppose X is of simple type. Let D € Hy(X) be
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of second type with D - = 1. Write D = Dy + Dy, D; € HE(X;,0X;). Put
D; = D; + A, so D* = D? + D2. Then (for appropriate homology orientations)

D% (1D) =

eQ(tD)/Q( Z 32ai7wbj7w e(Bi.Dl +LJ~D2+2)L‘ _I_ Z _32ai7wbj7w e([&’,‘~D1+LJ.D2—2)t)‘
K;-X=L;-%=2 K;-X=L;-X=-2

Proof. The statement is equivalent to proving that the square matrix in equa-

tion (5.9) is
3262t 0
0 —32e2 |

We can again suppose D? = D? = D2 = 0 (in the general case we only have to
add some extra terms e?(tP)/2, eQ(tD")/z). For proving this, it would be enough to
find examples of manifolds X7, X, and X whose basic classes are known. Instead
we use an indirect argument. Since all the manifolds involved can be chosen of
simple type with by = 0, b > 1, the non-zero entries of the matrix are finite

sums of exponentials, i.e.

S e, e 0 0
0 Sid, e™
0 0 0

Now we evaluate the series on tD + riaq + raag, for o € H*(X;;Z), put ¢ = 0
and use theorem 5.6 to get Y" ¢, =32 and >"d, = —32. Let S = CPZ#H)@Q the
rational elliptic surface blown-up once. Denote by FEi,..., Eig the exceptional
divisors and let Ty = C — Ky — -+ — FEg, 1Ty, = C — Fy — -+ — Eg — FEyg, where
(' is the cubic curve in CP2 So T} and T, can be represented by smooth tori of
self-intersection zero and with 7 - T, = 1. We can glue two copies of S along T}.
The result is a K3 surface S#71,.5 blown-up twice. The Ty pieces glue together
to give a genus 2 Riemann surface X, of self-intersection zero which intersects T
in one point. Now set X = (S#1,5)#s,(S#1,5), call ¥ = ¥, and get D piecing
together both T} in S#1,S. So (choose w =Ty on S#7,5)

(D.X); tD+sT tD+5s%)/2 2s+nt —2s+nt
DY 7 (e = cQ(D+s2)/ ( Z cpaib; e 4 Z dyab; e ) =
K;-X=L;-%=2 K- X=L;X=-2

— ets(z Cp, 25—|—nt_|_2 n —25-I—nt
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since T} evaluates 0 on basic classes being a torus of self-intersection zero (the
coefficient {z appears from the explicit computation of the basic classes of the
K3 surface blown up in two points). The trick is now to use the symmetry fact
that X = (S#1,5)#s,(S#1,5) where ¥; comes from gluing together both Tj.
Under this diffeomorphism D = }; and ¥ comes from piecing together both T
in S#7,5. Hence

D%,D)(etD-l—sE) _ ets(z Cn p2ttns _I_Z d, —2t+ns

Both expressions are equal, D&D’E)(em"'sz) DY (D + sY) = D(E D)( D+
(X is of simple type from proposition 5.5). From here we deduce that ¢, = 0
unless n = +2 and d, = 0 unless n = £2. Also ¢c_3 = dy, c3 + c_3 = 32,
dy +d_g = =32, 80 cg — d_y = 64. But ¢ = +d_», so it has to be ¢y = dy; = 0,

whence the result. O

Remark 5.18 Note that when X, is of simple type there is no summand in

Dgzwl’z) corresponding to se~'. Therefore from equation (5.7) with Ay, = A,,

0 = ¢1(as — 16a1) + ¢Ps(a; — Eag) and then (¢35 — 16¢1)(as — 16a;) = 0, so
d3 = 16¢y1. In particular, for any X,, the manifold X = X,#sX, has a series

—ts

without the coefficient corresponding to se™"*. In this case we have

w, % s
DY) =

sinh 2s Cosh 2s
, b2+

= 1(0,(62 — 160)c Ga)e”

(do — P)em 1 (

cosh 2s s sinh 2s Py
16

16 2 61 $3)e’) b =

o _b)et 4 16 sinh 25 4 cosh 2s o))
51 (Vs — 16v1)(1600 = 02) 256(%’%)( Acosh2s  sinh2s )(qbg )

So if both X, and X, are of simple type, we get

ts 16 sinh 2s 4 cosh 2s P
D(w,E) tD+s% _ 6_ 7 )
x e ) 16 (V1 42) 4 cosh2s  sinh2s b2
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5.3.2 Getting around Conjecture 5.11 and Conjecture 1.22

Now we want to give an argument to reach theorem 5.17 without the use of
Conjecture 5.11 about the explicit description of P and also without the use of
Conjecture 1.22. We argue as follows. We have, instead of corollary 5.12,

DR () =< 6" (X, ), Quo” (X, 12 >,

for some symmetric map Qs = Qs(s,1). Write 6*(X1, ¢™1) = (do, b1, b2, ),
qbw(X?v etD2) = (¢07¢17¢27¢3) and ¢w(A7 etA) = (a07a17a27a3) as before, 50

o
(o
2
s

DY (S = (¢, b1, o, b3) Bt 5)

for some matrix B(t, s). Separating according to coefficients of s in the expression
D(}U@) (esE-I—tDl )7

X1
coef. of e?%e’® Do
f‘ f —25 .15
coel. of e *%¢ A1) P (5.10)
coef. of e7'* o))
coef. of g(t,s) b3

where g(¢,s) is a function (to be found later) linearly independent with e**¢’s,

e~%e'* and 7" over the field F(t) of (Laurent) formal power series on ¢. For
proving the invertibility of A, it is enough to find four linearly independent vectors

in F(¢) @ R* for the left hand side of formula (5.10). For this we use the following

set of examples:

o X a A3 surface blown-up twice with F; and Fs the two exceptional divisors,
Y =5 —F — Ey for S a tight surface of genus 2 in K3, w = K, D a
cohomology class coming form the K3 such that D-S =1, D* = 0. We

get Dggu’z)(esz"'m) = —¢* # and therefore the vector (1,—1,0,0).

e X, X, D as before, but now w € H*(K3), with w-S = 1. We will get

w? s —2s
Dggu,E)(esz-HD) =(—1)=¢" # — €7 and the vector (1,1,£2,0).

o X a K3 surface, ¥ a tight torus with an added trivial handle to make it of
genus 2, w € H*(X;Z) such that w-¥ =1 and D with D-¥ =1, D* = 0.
Then D;U’E)(esz"'m) = —e™ " and the vector we get is (0,0, 1,0).
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¢ $=CP'x3, w=PD[CPY, D = CP'. Then D™ (es™+D) has a
summand of the form s + ¢ f(¢,s), since when we set ¢ = 0 there is a
summand which is a multiple of s. So we get a vector with non-vanishing

last component.

So this means that we have the expression of equation (5.10) with ¢g(¢,s) =
s+t f(t,s) and with an invertible matrix A, (lemma 5.13). Having reached this
point we know of the existence of a universal matrix as in (5.8). For the simple

type case we get the expression
DY () = (01)" M(1) v,

with

T
vy = ( > aje ™ P> a6 Zi‘dO(Xl)aj,wem”'Dl) :

K;-2=2 K;-2=—2 K;-£=0

and analogously for vy. The 3 by 3 matrix M(¢) is universal. This matrix
is diagonal since obviously it is always the case K; - ¥ = L; - X, for nonzero
summands. Now consider the case in which both X; and ¥, are as in the third
example above. Then X = X #X, splits off a S? x S%, so its invariants are
zero. Therefore the third diagonal entry in the matrix is zero. The other two
coefficients are computed in the proof of theorem 5.17.

Also, the fact that A, is invertible implies corollary 5.15, so this corollary does
not depend on any conjecture. On the other hand, our proof of theorem 5.16 does
depend on the conjectures.

As promised, we are going to support Conjecture 5.11 with some evidence.

By equation (5.4) one can write

Os = esPe — esP0+stP1+%st2P2+m

Suppose that all maps P; = Py ; leave invariant the 2-eigenspace of Fy, then P,

. Lst2 Agton .
acts as a complex number ); in that subspace and Qy as e?ststhitastAzt Thig

produces a function of that shape in the Donaldson series Dggu’z)(em"'sz). Since

2s+1s i the only one appearing with a 2s summand

we have seen that the term e
in the exponent, it must be Ay = 1 and \; = 0 for ¢« > 2. The same argument

works for the 0-eigenvector, so it is very plausible that Conjecture 5.11 be true.
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5.4 Classes of the third type

In this section we need to use Conjecture 1.22 to compute the Fukaya-Floer
groups HF F.(Y,v) (with [y] not a multiple of [S']). Also we shall need another
conjectural result about the action of p(X) on HF F.(Y,v), Conjecture 5.20. The
results of this section are dependent on them. At the end of the section, we give
some nice applications of our main result, theorem 5.23, which should also be
treated as conjectural.

Consider a homology class D € Hy(X) of third type. Substituting it by a
rational multiple if necessary, one can always write D as D = Dy + Dy with D; €
HE(X;,0X;),0D; = —90Dy = v C ¥ xSt and 4 aloop such that v <= ¥ xSt — %
is an embedding (so the class [y] is primitive and not a multiple of [S']). Now we
need to work out the groups HF F,(Y,~). There is an identification ¥ = ¥ x S§!
carrying v to a loop «; inside ¥. The Ej3 term of the usual spectral sequence is

HF.(Y)® [:]*(CIF’OO) with differential d3 given by
plan) : QHI(ME™) @ Hi(CP™) — QHi—s(MZ™) @ Hjpo(CP™).

From this we write the Fs term of the spectral sequence and see that the dif-
ferential ds, being invariant under the subgroup of diffeomorphisms of ¥ fixing
aq, has to be zero. Hence HFF.(Y,v) is equal to this F5 term. Let us write
it down. Set HFMf =< b2 >, HFF = HF?/ <h® —16h >, Wy = pu(a;)” and
W = p(ar)”/ <plar)>. Then

HFFy(Y,y) = HFy, &0 & HF ¢ 06 HF ¢
HEF(Y,y) = 0 ©0& W S0a 0 o
HFFy)(Y,v) = HFFY @& 0@ HFFEY ¢ 0@ HEFF ¢
HEFy(Y,y) = W, &0& 0 0o W o

So finally we put e = h* € HF' e = h € HF* and e3 = h® — 16h € HIE,.
We have

HEF Foyen = (HFS, @ H(CP™)) @ (< 3 > @Hy(CP™)).

even

There is an intersection pairing for HF'F.(Y,~) induced by the pairing on Floer
homology. For that, we have eg- ey =0, eg-e;1 =4, e;-e; =0 and ¢y - e3 = 0,
€1 - €3 = 0.

For every open manifold X;, D, € HF(X,,0X,) and w € H*(X;Z),

¢w(X17D1) = (¢07¢17¢2, . ) S HFF*(Y77)7
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which we write as ¢*( X1, ¢'P1). We decompose ¢*( X7, eP1) = ¢¥( X1, €'P1)even +
¢* (X1, e'P1)qq in components lying in HF Foyen and HF Foqq. Clearly,

(X1 e = 3 X4 = ot ot A1) 61 + fucs
>0 b
with f3 € Q. We expect that ¢*(X;,eP1) g9 = 0, for any D; € HE(X,,0X)),
whenever b;(X;) = 0, as in lemma 5.10. This is due to the fact that the pair-
ing in HFF,qa(Y,7) is antisymmetric though < ¢ (X, 1), ¢¥( Xy, ') >=<
d*( Xy, e'P2), ¢¥ (X1, e'P1) > (this argument replaces the proof of lemma 5.10).
Consider another pair Xz, Dy, with corresponding (go(t), g1(), g3). The pair-

) ( 9 ) = i(fo% + f190)-
a1

Remark 5.19 If we take an identification ¢ : Y =5 Y, then the induced map on
the even part of the Fukaya-Floer homology is the identity.

ing formula reads

0

=

jam)

1
4

D () = <fo,f1>(

We use again the trick of transferring ¥ from X; to X, and the map Py :
HFF.(Y,v) - HFF.(Y,v), as in the previous section. We have the following
conjecture about the structure of Py analogous to Conjecture 5.11. We also could

avoid using it as in subsection 5.3.2.

Conjecture 5.20 Py g is quantum multiplication by u(X). Ps1 is the identity
on the +2-eigenspaces for the action of (X)) (and preserves the 0-eigenspace
generated by es). Ps, =0, fora > 2.

Corollary 5.21 As a consequence of the above conjecture we get

D%U,E)(esﬁl—l—tD) —< wa(Xh etDl) 6(52)(75D1)€5M(2) % ¢w(X27 etDQ) > .

Y

Clearly e?*®) x e5 = e since () * es =0 and

() o = cosh2s  {sinh2s fo ‘
i 4sinh 2s  cosh 2s fi
Easily we obtain

h2s—1 inh 2
esu(E) — 14 COS 15 co + SIH4 Sel (511)
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Let us write qbw(le etDl) = (vafl) and qbw(X?v etD2) = (90791)‘ Then

i cosh 2s i sinh 2s g\ _

0 4sinh 2s  cosh 2s g1

r o, (D-x) 16 sinh 25 4 cosh 2s 9o
= —e? , ) 5.12
16 (fo, /1) 4cosh2s  sinh2s a1 (5.12)

DY) (5D = (D) (g p)) (

= O

We consider now the following very important example. Let A be the K3
surface blown-up in two points and let F; and F, stand for the exceptional
divisors. Let S C K3 be a tight embedded surface of genus 2 and put ¥ =
S — By — Ey for its proper transform, which is represented by an embedded
surface of genus 2 and self-intersection zero. A will be the complement of a
tubular neighbourhood of ¥ in A. Call X = A#gA the double of A, i.e. the
connected sum of A with itself with the identification which is given by the
natural orientation reversing diffeomorphism of Y = 9A to itself. As in the proof
of theorem 5.17, we choose D to be the embedded surface obtained by piecing
together two fibres of the natural elliptic fibration of A. Then D is a genus 2
Riemann surface of self-intersection zero. Also take w = P.D.[D] € H*(X;Z).

Then
Dg;mz)(etD-l—sE) _ et5(2 p25t2t _ 26—25—27:)‘

We can take a collection a,, 1 <1 < 4, of framed loops in a fibre ¥ C dA, which
together with S* form a basis for H{(Y), such that they can be capped off with
embedded (—1)-discs D; (writing A = S#7, S, as in the proof of theorem 5.17,
we consider the vanishing discs of the elliptic fibration of S with fibre T, see [24,
page 167], since they do not intersect 7T7). Now these discs can be glued to-
gether pairwise when forming X = AUy A, since the framings are respected (see
remark 2.19), to give a collection of (—2)-embedded spheres S; = D; U,, D;. Ev-
eryone of these discs has a dual torus T;, by considering another loop in ¥ C 0A,
say [3;, with a; - 3; = 1, and putting T; = 3; x S* € ¥ x S!. Then the elements
S; 4 T; are represented by embedded tori of self-intersection zero. Since the man-
ifold X is of simple type (proposition 5.5), the basic classes evaluate zero on T;

and on S; + 1;. Our conclusion is
Dg;"u’z)(ea) — 4 R(e)/2 sinh(K - «),

with K € H*(X;Z) being the only cohomology class with
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o K-a=(F + FE)-aforaée Hy(A).
e K- Y=K-D=2.
o K -5, =K T, =0, for all 1.

i.e. K plays the role of the canonical class of X (if it were an algebraic surface).

Now we split K into two symmetric pieces K; C A. The boundary of K; is
OK; = 28" and K? = 2 since K* = 4.

Lemma 5.22 For every framed loop v in Y (withy — Y — ¥ embedding), there
is a D, € HE(A,0A), whose boundary is v and such that (fo, f1) = etDz/z(Z,O)
or etD3/2(0,8) (up to sign). Moreover any such D., satisfy the condition as long
as D, - Ky =0.

Proof. Choose any D, € HI(A,dA) with boundary ~v. If D, - K| # 0, then add
a rational multiple of ¥ to D, to get D, - K; = 0 (possible since Ky - ¥ = 2).
Suppose without loss of generality that Di = 0. Then consider the embedded
surface D = D, + D, € Hy(X), which has D - K =0 and so

D?,E)(GSZHD) = 4 (= D) sinh(2s) =
_ 1 etS(D'E)(fO, ) 16 sinh 25 4 cosh 2s fo 7
16 4 cosh2s  sinh2s f1

where (fo, f1) corresponds to (A, D.). Therefore we have the equations

16/ + fi = 64
dfofi +4fifo = 0

from where either (fo, f1) = (2,0) or (fo, f1) = (0,8). O

Return to the manifold X, and consider any D., € HI(X;,9X;) with bound-
ary v C Y. By the result above, we can cap off D, in X = X1#5A = X, Uy A,
to get D = DW = D, + D,, where Dy - Ky = 0 (this intersection only makes sense
when 0Dy and JK; are disjoint, but we always can suppose that). Suppose for
the calculations that D? = D} = 0. Then

1 16 sinh 25 4 cosh 2s 9o
D(}U,E) sSHtDy _ 1 ts(D-X) : :
X (e ) 16 (Jo, J1) 4 cosh2s  sinh2s g1
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where ¢¥( X1, eP7) = (go,g1). The possibility (fo, f1) = (2,0) yields

coef. of €25t 9o
coef. of e 25115 g1

The possibility (fo, f1) = (0,8) yields

coef. of €25t B 1 9o
coef. of e=2s+ts | —1

Now X, has b > 1 and b, = 0 (since by(X;) = 0). Let us see that it is of
simple type. For this it is enough to prove that ¢“(A, (2% — 4)e'P2) = 0 for D,
of third type. X = A#sA has D(w E)( SEHDY — 4et5(ED) inh(2s) if D - K = 0.
In the same fashion, we find that for Z = A#yA#s A, Z is of simple type and
Dggu’z)(ea) = 169/ 2 cosh(K 7 - ), where K satisfy conditions analogous to
those of K. So D(Zw’z)(esz"'m) = 16e*(P) cosh(2s), whenever D - K7 = 0. This
implies that the vectors (fo, fi) given by A and by X? = X — Ny are linearly
independent. The vector ¢*(A, (22 — 4)e'P2) is orthogonal to both ¢*(A,e!Pr)
and ¢*(X?, e'P1), as X and Z are of simple type, so it is zero. Then we can write

D%l = 9/2 Eétwem for its Donaldson series. So either

Z CNLLw@tKy"'D
9o — l L -1 I;’l‘ =2 _
5 2\ 4 4 Y el

,_.

K; 2=-2
or _
Z di7wetlx’,'~D
4o :l 1 1 K;-2=2 ~
o) 2\ 4 =4 )| e
K; 2=-2

If we have two manifolds X; and X, (with D% = eQ/QZELLweI‘?i and ]D)%2 =
e@/? Zl;jweiﬂ) and consider the connected sum X = X;#5X, along X, let D €
Hy(X) be decomposed as Dy + Dy with D; € HI(X;, 0X;) and consider two
cappings D; in X; as before. Then we use equation (5.12) and the different

possible combinations of the cases above to get (in all cases)

DY) (es=4D) = (5.13)

o o 2 0 ~ bjwe
_ S+tD)/2 ~ tK;-D ~ tK;-D L;%=2
— eQ(S )/ ( Z a27w€ B 17 Z a27w€ B 1) Coe J - -

R',wE:? I;’,wE:—?
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1~ ~ oy T T 1~ > Dy LD
— eQ(sE—I—tD)/Q( Z _ai,wbj,wet(IXl.Dl—l—L] -Do)+2s Z _ai7wbj7wet(lxl.D1—I—LJ.DQ)—QS)‘

K;-2=[;5=2 K;Z=L;5==2
The choice of signs in lemma 5.22 does not matter for this final result. Also if we
do not suppose D? = 0 we get the same expression.
We also want to remark that the formula remains valid for any o € Hy(X).
For this it is enough to consider D + ra with « of the first or second type and
make ¢ — 0 while keeping rt = 1.

Theorem 5.23 Let X; be two manifolds with by = 0 and Riemann surfaces
¥ C X; of genus 2, self-intersection zero and representing odd homology classes.
Consider X; = X;#s A, which are of simple type. Put D% = eQ/QZELLweK" and
D%z) = eQ/ZE(N)LweEJ. Let X = X #x X, (for some identification). Then X is of

stmple type. For every D € Hy(X), consider any cappings DZ e H, )N(Z with the
pee LYp ) s Yy capping

condition above. Then

DY (tD) = €212 5 %ai7wz§j7wet<fi’i~ﬁl+ij~D2)_ 3 %ai7w5j,wet<fi'i~131+i]~D2))_

I§'i~E:[~/]~E:2 I;’,‘E}:i/]il:—?

Proof. The only remaining point is to prove that X is of simple type. This is
proved as in corollary 5.15, using that (fo, f1) is determined by D%’E)(emﬁsz)
(analogue of corollary 5.14). O

Corollary 5.24 Under the conditions of theorem 5.23, X has no basic classes r
with k- % = 0.

Now we pass on to give some nice and simple applications of theorem 5.23.
Probably, many results like the following can be obtained in the same fashion.

We only want to give some examples to show its usefulness.

Corollary 5.25 Let X; and X, be two manifolds with by = 0 and embedded
i C X; of genus 2 and odd. Let ¢ and 2 be two different identifications for
Y = ¥ x St and consider the two different connected sums along ¥, X(é) and
X(¢). Suppose that ¢. = . : Hi(Y) — H1(Y'). Then there is an (non-canonical)
isomorphism of vector spaces H*(X(¢)) = H*(X (1)) sending the basic classes of
X (@) to those of X(10) such that the rational numbers attached to them coincide.

Proof. First we observe that we have a natural identification of the images I,

of Hy(X1) @ Hy(Xz) — Hy(X(6)) and I, of Hy(X1) & Ha(Xz) — Hy(X(¥))



96 CHAPTER 5. CONNECTED SUMS FOR GENUS 2

since the kernels coincide. Now consider a splitting Hz(X(¢)) = Im(ly) & V
with V' = Hy(Y). Choose an integral basis {a} for Hi(Y;Z). For every a
we have an element D, € Hy(X(¢)) which can be split as D, = Dy + Dy, for
D; € HE(X;,0X;) with 9D, = v, —9D; = ¢(7) and a = [y]. Now we leave D,
(and D, € Hg()N(l)) fixed and modify Dj to glue it to Dy in Hy(X (). Write
Dy = Dy + D5 € Hg()N(z). The loops ¢(v) and () are homologous and hence
there is homology €' =S! x [0,1] = ¥ C ¥ x S* between them. Consider

D}y = [ D Uy C Uygey (#(3) % [0,00))] +nE € HE(A,0A)

D}y = [ Dy Uggy) (—=C) Uygry (=b(7) x [0,00))] = nT € H(X5,0X5)

where n is chosen so that D4-K; = 0. So D} = D,+ D). Consider I/, = D+ D/, €
Hy(X(2)). The map D, — D’ gives the sought isomorphism H*(X(¢)) —
H*(X(¢)), since Dy = D). O

This corollary says that although in principle X(¢) and X () might not
be diffeomorphic (and probably in many cases this happens), they can not be
distinguished by the number and coefficients of their basic classes. Still the
polynomial invariants can differentiate both manifolds (maybe the intersection
matrix of the basic classes could help). It would be desirable to find examples
when this happens. The identifications to try out could be Dehn twists, as

mentioned in remark 2.4.

Corollary 5.26 Let X; and X, be two manifolds with by = 0 and embedded
Y C X; of genus 2 and odd. Let ¢ and +p be two different identifications for
Y = ¥ x St and consider the two different connected sums along ¥, X(é) and
X (). Suppose that X(¢p) has only two basic classes +r. Then the same is true
for X(1) and the coefficients coincide (up to sign). Also if the invariants of X(¢)

vanish (no basic classes), so do the invariants of X ().

Proof. We do the case of two basic classes. The other one is analogous. Suppose
¢ = Id, put X = X(¢) and let £« be the two basic classes, with k- ¥ = 2. Let
Cnw be its coeflicient. We now want to prove that this implies that there is only
one basic class K; with K; - Y = 2 and only one basic class f/j with f/j <Y =2
The result is obvious from that applying theorem 5.23.

Suppose that we can find S; € Hz(X;) with a = S1N[Y] = =S N[Y] €
Hi(Y;Z) such that all the values K; - S, are different among them, and all the
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values f/j - Sy are also different among them (where K; and f/j run through all
the basic classes in )N(l and )N(z evaluating 2 on ). Then reorder the subindices

in such a way that

K-S <Ky S < <K, -5

Ly Sy <Ly -8y<- <Ly, -5
We can easily arrange D; € HI(X;,0X;) with 0D, = —0D, = v € FQ(Y) with
[v] = @ such that D;=S:;. Set D=D,+D, € H3(X) and apply equation (5.13).
We have

cmwem'D _ Z ldtw[;j’wet(ﬁy’"sl +L;-52)
K;-s=0;%=2

Considering the exponentials with the smallest and with the largest exponents,
we get that it has to be [%1 -S; + El <5y = Rnl -S; + f/m - Sy, from where the
result.

To find the required collection of 5;, we consider all the differences o;; =
K;—K;, Bij=Li—L;,i# j. Consider a € H,(Y;Z) such that a-a;; # 0 for any
a;; which happens to be in the image of the homomorphism H'(Y) = Hy(Y) —
Hg()N(l) &~ Hz()N(l), and «a - §;; # 0 when 3;; is in the same condition with X,
replacing X,. Now we can choose S; € Hg()N(l) with S; N [Y] = « such that
a;j - S1 # 0 (indeed the bad set is a finite union of hyperplanes). Analogously we
choose S,. O

5.5 The case of higher genus

We propose the following (see corollary 5.9)

Conjecture 5.27 Let X; have by = 0, bT > 1 and be of simple type. Suppose that
there are embedded surfaces ¥; C X; of genus g > 3, representing odd homology
classes of self-intersection zero. Form X = Xi1#x X, with some identification.
Then X is of simple type and every basic class k of X intersects Y in n[S!]
where n is an even integer with —(2g — 2) < n < (29 — 2). Moreover the sum
of the coefficients c., of the different basic classes k agreeing with (K, L) €
H*(X;Z) @ H*(X3;Z) (ie. k|lx, = K and k|x, = L) is zero unless K|y =
Lly = (29 — 2)P.D.[S"]. In this latter case, it is £2797° times the product

(D i) (D biw),

IX",‘|X1 =K LJ|X2 =L
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where a; ., are the coefficients of the basic classes K; of X1 (and similarly for b; .,

L; and X,).

The factor £27979 is the one agreeing with section 7.3. Here we propose a

way of tackling this Conjecture. Call
HF, = HF*(Z X Sl) = Q[—[(69—6)—*(]\4§dd)7

and let v = p(pt), h = p(¥) and I' = 3 p(ag)p(azipr) be the generators of
the invariant part of HF, ({o;} is a basis of Hy(X) with ay; - az;11 = 1 and the
other pairings zero). Actually this invariant part is generated as a vector space
by u'h’T? with i +2p < g and j + 2p < ¢ [33]. Now we define I to be the ideal
in HF generated by the image of H'(X) under u. The space HF/I is generated
by elements of the form u‘h’ with 7 < g, 7 < ¢ (in principle they might not be
linearly independent). Consider V' any subspace of H F' containing the orthogonal
complement [~ of I such that it has generators e;; = u‘h? (mod 1),7 < g, j <g.
The dimension of V' is N = g*. We decompose HF, = VW with W =V~ C I.
Obviously, we intend to get rid of the part W corresponding to the 1-homology.

Now we write
E = eshtiutel — 7 fii(s, A, a)u'hiT?.

We have that for every relation R(h,u,I') = 0 it is R(Z,%, -2)E = 0 and so

0s? 9N do
o 9 9 o o 2 ¥ .
R(&, E3Y %)fi]‘p = 0. Note also that ERICVIE P i'j'p'(()? 0, 0) = (SZ/Jﬁp/ for 1 + 2p <

g and 7 4 2p < ¢g. So the fi;;, are linearly independent functions. £ defines
a map from V to V (which we keep on calling £) by multiplication followed
by orthogonal projection. This map is of the form N.g.(s, A, o), where N, are
constant endomorphisms of V, ¢ = (4,7), 0 < 4,7 < g and g.(s, A, ) are linearly
independent functions.

Let now X be an open manifold with boundary ¥ = ¥ x St and D &
HE(X,0X) with 9D = S Then ¢¥(X,D) € HFF.(Y,SY) = HF, ® ]:]*(CIF’OO)
has components ¢ (X, D)y in V and ¢“(X, D)w in W. When b;(X) = 0 one
expects to have ¢ (X, D)w = 0, as in lemma 5.10. Hence it would be

DY () =< ¢ (X1, e )y, 6" (Xa, eP2)y > |

So if either of X; has b, = 0, then Dggu’z)(em"'sz"'”) = Dggu’z)(etD"'sz"'M"'aF) is

equal to

ets < qbw(Xl,etDl)V,eij > (< €ijy €itjr >)_1 < eilj/,E * ¢w(X2,€tD2)V > .
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Write ¢, = ¢,(t) for the components of ¢*(X;,eP1) in V and v, = ¢,(¢) for the
components of ¢¥( Xy, e'P?). Then

DE;U,E) (etD-I-SE"'/\x) = ets qba(t) Mabc ¢b(t) 90(87 )\7 a>’

for some universal matrices M,;. depending only on Y. Now we can decompose
Dggu’z)(em"'sz"'”) =" Dx.g.(s,\, @) s0 Dx. = ¢ (Mupep) (note that we can
choose the g. corresponding to non-vanishing Dx . to be independent of «).

When X, = A = D? x X, we put a;, = ;. So we have constructed a map

VeaFlt) — RYeF{)
(Pa)a = (Pa Mape ap)e

where F(t) is (for instance) the field of (Laurent) formal power series. Essentially,
the map sends the “relative invariants” of X; to the “closed invariants” of Xj,
that is ¢ (X1, eP1) is mapped to D%’E)(e@l“z"’”) (more accurately to Dy, )
To see that Dy, determines ¢, we need to prove the injectivity of this linear map
between vector spaces of the same dimension (or equivalently the surjectivity).

Obviously,

Lemma 5.28 Suppose we find a collection of N = g* quadruples (X, ¥, w, D)
consisting of closed manifolds with embedded surfaces ¥ C X of genus g, self-
intersection zero and representing odd homology classes with D - =1, D* = 0,

such that the functions e~'* Dy (e'PT*5+2%) are linearly independent over F(t).

Then the map above is an isomorphism.

If this were proved, we could mimic the argument of section 5.3 to obtain the
existence of some N by N universal matrix P whose coefficients depend on ¢ and
A such that

w, X T w, % D, w,% D,

Dg( )(etD-I—/\ ) — (Dgzha)(etD ))(Pab(ta)\))(Dgz27b)(etD ))

When X is of simple type, Dg;“”’z)(etD-l—sE-l—Ax)
functions eMelH4s (—[2H] < n < [$2]) and e (—[§] <n < [5FH)

remark 1.12. So these functions are among the g. (or they are combinations of

is a linear combination of the
, see
them) and without loss of generality we can suppose they are the first 2g—1 of the
lot. With the same sort of arguments and one non-trivial example of the gluing

where the basic classes were known, we would get the corresponding (2¢g — 1) by
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(29 — 1) minor to be (conjecturally)

coef - ¥E2) 0 e 0
0 coef - 7220 ...
0 0 e 0

We can further obtain more information from X = ¥ x CP', but this gives us

a total of (2g) times (2g) coefficients (very far from the ¢ times ¢* we seek for).
g g Yy g g



Chapter 6

Seiberg-Witten invariants

Since their introduction in late 1994, the Seiberg-Witten invariants have proved to
be at least as useful as their close relatives the Donaldson invariants. When 6% >
1, these provide differentiable invariants of a smooth oriented 4-manifold, whose
construction is very similar in nature to the Donaldson invariants. Conjecturally,
they give the same information about the 4-manifold, but they are much easier
to compute in many cases, e.g. algebraic surfaces (see [63][25]). They have been
used very successfully to obtain information about the differentiable structure of
4-manifolds [47][25] and about submanifolds of 4-manifolds [39][19]. Also Taubes

has used them to prove strong theorems about symplectic manifolds [57][58].

The classification problem of simply connected 4-dimensional manifolds can
not be solved with these invariants, but they may be the key for understanding
the subcategory of symplectic 4-manifolds (see [57]). In any case it is intriguing to
compute them for a general 4-manifold. The first step towards it is obviously to
relate the invariants of a manifold with those of the manifold which results after
some particular surgery on it. Some cases have been dealt with [63][17]. We are
interested in the behaviour of this Seiberg-Witten invariants under a connected
sum along a Riemann surface, as we have studied the behaviour of Donaldson
invariants under the same operation and this can be a testing ground for the

conjecture that both set of invariants are equivalent.

Also we would like to mention that Morgan, Szabé and Taubes [44] have
carried out very similar work independently. This was pointed out to me by

Szabd, who provided me with a copy of their work [44].

101



102 CHAPTER 6. SEIBERG-WITTEN INVARIANTS

6.1 Seiberg-Witten invariants

We start off by recalling the definition of the Seiberg-Witten invariants. Let X
be a smooth compact oriented four-manifold with 6% > 0 (we will suppose later
that by = 0). We furnish it with a Riemannian metric g.

The Spin©(n) group is
Spin©(n) = Spin(n) xz, U(1).

A Spin® structure ¢ on a Riemannian n-manifold is a lifting of the principle
SO(n) tangent bundle to a principle Spin®(n)-bundle. There is a morphism
Spin© — U(1) given by [B,(] — (2. Accordingly, every Spin® structure ¢ has
an associated complex line bundle L called its determinant line bundle. In
general, the first Chern class of the determinant line bundle ¢ = ¢ (L) is a lift
of wy(X) to integer coefficients (we call that a characteristic cohomology
class). Conversely, for any such a lift ¢, the possible Spin® structures with
ci(L) = ¢ are parametrised by the 2-torsion part of H*(X;Z). Therefore, if X
is simply connected the Spin®” structures are determined by ¢, which may be any
characteristic class. Said otherwise, the set of Spin® structures is an affine space
modelled on H*(X;Z), and fixing ¢q with determinant line bundle Ly, the other
Spin® structures are ¢ = ¢y @ p, p € H*(X;Z), with determinant line bundle
L=Ly® /,Lz.

In dimension four, there is an exact sequence
Spin©(4) — U(2)y x U(2)- — U(1),

where the last map is (A, B) — det(A) det(B)~'. So a Spin® structure has asso-
ciated U(2)-bundles W+ = WF and W~ = W . These are the two inequivalent
irreducible Spin® bundles and L = A2W* = AW~ is the determinant line bundle

of ¢. Clifford multiplication consists of a couple of maps
p: At — Home(WE, W),
They induce a map on two-forms
p: AL — Home(WE, WH).

If we consider an orthonormal basis e1,...,eq of T7X, we have p(e; A ;) =

pleple;), 1 # j. We have that the map p splits as two homomorphisms

p:(AL)c — Home (W%, W),
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We can choose the map p to act as
1 — 0
5(61/\€2+€3/\€4) — . )

1 0 —
5(61 A €3 — €9 A 64) — i

1 0 —1
5(61/\€4+€2/\€3) — )

so p 1 (AL)c — sl(WT), taking the real forms into su(W*) and the imaginary
form to self-adjoint operators.

FEvery connection A on L induces a Dirac operator P4 : T(W*t) — I'(W™)
when coupled with the Levi-Civita connection on the tangent bundle of X. The
monopole equations introduced by Seiberg and Witten [63] for a pair (A, ®) of
connection A on the line bundle L and section ® € T'(WT) are

{pA(I):O

o(F1) = (8 0 7)o (61)

where ®* € (W+)* = W+ is the conjugate of ® obtained using the hermitian
metric and (® @ ®*)g € s[(W) is the trace-free part of (® @ ®*) € End(W™).

The gauge group G = C(X,S') acts on the configuration space A(L) x
L(WT) by o(A,®) = (A — 207 do,c®) with quotient B (here we need to use
suitable Sobolev completions). A solution (A, ®) is reducible (i.e. has non-trivial
stabiliser) if and only if ® = 0. Let B* denote the subset of irreducible pairs.
The cohomology ring of B* is H*(CP*;Z) @ A*H'(X;Z). When b; = 0, it will
be generated by an element u of degree two. If we consider evaluation in one
point G =% S!, denote the kernel by G°. Then B° = A*/G° and B° — B* is a
U(1)-bundle whose first Chern class is p.

The moduli space of solutions of the equations (6.1) sits in B and will be

denoted by Wx ,4(c). It has expected dimension

? — (2x + 30)

d= ,
4

where y is the Euler characteristic of X and o its signature. The moduli space
is always compact. Whenever b* > 0 and ¢;(L) is not torsion, reducibles can

be avoided for a generic metric. For obtaining a smooth moduli space we have
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to perturb the equations by adding a self-dual 2-form to F'{ [39]. As a self-dual
2-form is always the self-dual projection of a closed two form, we consider the
equations
{ Pa2 =0 (6.2)
p((Fa+in)") = (@ 7)o

for n a closed real two-form. The moduli space of solutions is denoted by
Wx ,,(c). For generic perturbation n there are no reducible solutions. Also
this moduli space is smooth for generic perturbation (moreover we can suppose
it is supported in a small ball). Both statements are also valid when ¢;(L) is
torsion.

The moduli space is orientable and an orientation is determined by a choice
of homology orientation for X (see [63]).

Let X be a compact, oriented 4-manifold endowed with a Riemannian metric
g. Fix a homology orientation of X. Then for generic closed two forms 5, the
moduli space Wx ,,(c) is smooth, compact, oriented, free of reducibles and of

dimension the expected dimension d. So if d < 0, it will be empty.

Definition 6.1 We define the Seiberg- Witten invartant SWx , ,(c) for the
Spin® structure ¢ to be zero if d < 0 or if d is odd and to be

SWx yq(c) =< /~‘d/27 [Wx gn(c)] >

Jor d even. Note that d is even when b% is odd (since by = 0). When d = 0,
SWx gn(c) is the number of points of Wx 4.,(¢) counted with signs. When bt > 1

this number is independent of metrics and perturbations and is denoted SWx(c).

When b7 = 1 we have to deal with reducibles that appear for generic paths of
metrics and perturbations . Let b =[] € H*(X;R). For fixed ¢ with ¢;(L) = ¢
there are reducibles when F4 +in is ASD, i.e. when [c+ 5-b]-w, = 0, for [w,] € H
the period point of g. So for every b € H?*(X;R) there is at most one wall. There
are two possible invariants' SW§(c) depending on whether +[c 4+ Lb] - w, > 0.

Definition 6.2 Let ¢ be a characteristic cohomology class. We define SWx(c)
to be the sum of SWx(c) over all Spin® structures ¢ with determinant line bundle
with first Chern class ¢ (note that there are a finite number of them).

'We have to choose a component of the cone {x € H?*(X;R)/2? > 0} and then ask the

period point of every metric to lie in it. We suppose that this has always been done.
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Definition 6.3 Let X be a compact, oriented 4-manifold with by = 0, bt > 1
and odd. Then we say that a characteristic cohomology class ¢ € H*(X;Z) is a

Seiberg- Witten basic class (or a basic class for brevity) for X if ¢ = 2x+ 30
and SWx(c) # 0.

One important remark in place is the fact that the set of classes with non-

vanishing Seiberg-Witten invariant is always finite [63].

Definition 6.4 For X compact, oriented 4-manifold with by = 0 and b* > 1
and odd, we say that it is of (Seiberg-Witten) simple type if SWx(c) =0
whenever d = (¢* — (2y + 30))/4 > 0.

In this chapter and the next, basic class will always refer to Seiberg-Witten
basic class and simple type to Seiberg-Witten simple type.

Witten has proved [63] that every Kahler surface is of simple type and ideas
of Kronheimer and Mrowka give the basic classes explicitly (see [36]). Moreover
Taubes [57] [58] has proved that for a symplectic four-manifold (X, w) with b* > 1
the canonical class K = —¢(T'X) is a basic class and that for any other basic

class k # £ K, one has |k - [w]| < K - [w].

6.2 Seiberg-Witten equations for a three-mani-

fold

Our main interest is the study of the behaviour of the Seiberg-Witten invariants
under elementary surgeries. This amounts to splitting X along an embedded
3-manifold Y C X. So we have X = X; Uy X,, where X; and X; are manifolds
with boundary. We orient Y so that 9X; = Y and 90X, = Y, Y with reversed
orientation. We will have to consider families of metrics giving longer and longer
necks. So we need to study the equations (6.1) for cylinders Y x R.

The simplest cases are those for which Y admits a metric of positive scalar
curvature. For instance, for Y = S? (i.e. X is a connected sum) we have that the
hypothesis b7 (X;) > 0 for both X, leads in a straightforward way to the vanishing
of all the invariants for X [63]. The case bT(X;) = 0 and b7(X3) > 0 is also of
interest and we have, for instance, the following theorem about the behaviour of

the Seiberg-Witten invariants under blowing-ups [19]
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Proposition 6.5 [f X is of simple type and {K;} is the set of basic classes of
X, then the blow-up X = X#(C—IF’2 is of simple type and (denoting by E the
exceptional divisor) the set of basic classes are {K; + E'}.

If we are interested on the study of equations (6.1) for a manifold X = X; Uy
X3, the standard technique in Donaldson theory is to pull apart X; and X, so
that we are led to consider metrics giving X; a cylindrical end and L?-solutions
of the equations in these open manifolds. So we will have to use an analogue of
this process in the Seiberg-Witten setting, first introduced in [39].

First we need to study the equations on the cylinder Z =Y xR. Let 7 : Z —
Y be the projection. The coordinate on R will be . Choose a product metric,
ie. g =7m*h + dt @ dt, for a metric h on Y.

The Spin® structures on Z correspond to Spin® structures on Y by pull-
back (this corresponds to the natural morphism Spin®(3) < Spin®(4) induced
by SO(3) — SO(4)). Given a Spin® structure ¢y on Y, there is only one spin
(irreducible) bundle Wy up to isomorphism. This is a rank two hermitian complex
vector bundle with determinant line bundle Ly. If ¢ is the corresponding Spin®
structure on Z then its determinant line bundle is L = 7*(Ly). Also W+ = o Wy
and the restriction of the action of the Clifford algebra Cl1(Z) on W™ to its even

part corresponds with the action of CI(Y") on Wy under the isomorphism

FCY) = Clo(2)
oag+oy — ag+ Oéldt (63)

There is also an isomorphism
Ay — AL
1
a 5(& A dt + xya) (6.4)

Under this isomorphism, p : Aj — su(Wy ) is given by (we denote e4 = dt)
0 —1
€1
1 0
= 0 1
e
’ i 0

i
€
° 0 i
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Now for every pair (A, ®) of connection on L and section of W+, there is a
gauge transformation putting A in temporal gauge. So we can suppose that
A does not have component with dt. We can interpret this pair as a path
(A(t), (1)), t € R, in the configuration space A(Ly) x I'(Wy ). The gauge group
for Y will be Gy = C>=(Y,S"') and the quotient By. It is worth noticing that the
gauge transformations preserving the temporal gauge conditions are pull-backs
of elements in Gy, so there is an equivalence between points in B and paths in
By. Again, the irreducible set will be denoted By.

Now let us rewrite equations (6.1) in this set up.
ﬁA(I) = Zei . Veiq) + €q - Ve4<I> € F(W_)

Multiplying by €4 we get — > €64V, ® — V., ® € I'(WT), which corresponds to

- Zei . Veiqb(t) - aa—f € F(Wy)

Also Fy = Fyuy — %A(t) dt, so 't = L(F 4 «I") corresponds to the one-form
*Fq ) — %. Equations (6.1) read

{ dp/dt = — Pawo(t) (6.5)

dA/dt = *FA(t) — ZT(qb)

where we have written 7 : Wy — A} for the quadratic map 7(¢) = —ip™'((¢ @
®*)o). The solutions of equation (6.5) are the downward gradient lines of the

functional

1 1
CSW(A,qb):8?</YFAO/\a—|—§/Ya/\da—|—/Y<¢,ﬁA¢>dvol),

where A is a fixed connection on L and A = Ap+a (changing the base connection
changes the functional by addition of a constant). To prove this we have to

compute
VCSWiay(a,d) =

_
82

where we have used that @4 is self-adjoint. The 1/2 appears because A is the

(/YFA/\CL—I—/Y<¢,%a-¢>—I-/Y(<5,ﬁAqb>—|—<ﬁA¢,5>)dvol),

induced connection on the determinant line bundle by the connection on Wy and

L = AN*Wy.
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Lemma 6.6 For ¢ € Wy and a € iAy purely imaginary form, one has < ¢, a -
¢ >= —2 < a,iT(¢) > (the first is a hermitian product, the second is a bilinear

one).

Proof. This is a calculation in a local basis at every point « € Y. Choose an

orthonormal basis ;. We only have to use that the map 7 : Wy — su(Wy ) — A}

is given by
( ®o ) o ( %(|¢0E— [P117) 1 b0, ) =
h1 Do se1* —1dol?)
— —Im(¢0$1)61 — Re(¢0$1)62 + M@g.
0
So finally,
VOSWiap(a,d) = 81?(_ < —(xF4 —17(9)),a >12 +2Re <P 40,0 >12),

and the gradient of CSW (with respect to a metric in A(Ly) x I'(Wy ) which is
the L? metric on imaginary forms and twice the real part of the hermitian metric
on spinors) gives equations (6.5).

Now we have an exact sequence 0 — Gy — Gy — H'(Y;Z) — 0, where Gy is

the component of the identity of Gy. For an element o € Gy
CSW(r(A,6)) = CSW(A, é)+ < [o], () >

So C'SW takes values in R/Z. The universal cover of By is By = A(Ly) %
['(Wy)/Go. Then By = By/Hl(Y;Z). Therefore C'SW can be lifted to a well
defined functional on By (up to a constant).

The critical points of C'SW correspond to translation invariant solutions on
the tube Z =Y x R. They are solutions to

Pap =0
{ «Fy =1i7(0) (6.6)

The reducible solutions are those for which ¢ = 0 and therefore £y = 0. So they
only appear when ¢;(Ly) = 0.
We consider a perturbation as in (6.2) given by a closed real two-form 5. We

suppose it to be translation invariant and with no dt-term, i.e. the pull-back of a
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two-form on Y. Then n* = %(77—|—>|<y77/\dt) = %(*yp—l—p/\dt) and so 1t corresponds

to a real coclosed one-form p = *yn on Y. The equations we are led to are

Padp=0
{ «Fy =1i7(0p) — ip (6.7)

For any perturbation with [*p] # —2m¢(L) there are no reducibles. For generic
perturbation, the moduli space is zero-dimensional [40, lemma 2.4] and therefore
is a finite collection of points. So reducibles can be ruled out when b,(Y) # 0.
The space of perturbations giving a finite collection of irreducible points is path
connected whenever b1(Y") > 2. The perturbed functional is
CSW,(A, ) = CSW(A, )+ 81? /Y i%xpha.

Remark 6.7 The functional above is not full gauge invariant. Actually

CSW,(a(A,6)) = CSW, (A, d)+ < [o],er(L) > + < [;—Z] o] .
Since we are interested in small p, and we have to let it vary, the functional CSW
will have a gauge behaviour dependent on the perturbation. To get around this
problem we need to consider more general perturbations. For instance, we might
try the following: take a neighbourhood of the singular set of C'SW small enough
such that the preimage under By — By is a collection of disjoint open sels.
We fix one of them and consider a perturbation which is of the form (6.7) in a
smaller neighbourhood and zero in the complement of the original neighbourhood.
We define the perturbation in the other open sets by requiring the same gauge
behaviour as CSW. Now we should prove that for a generic small perturbation of
equations (6.6) like this, the moduli space of solutions on Y is finite and generic,

and the deformed CSW functional does have a good gauge behaviour (this is not

meant to be a proof).

We also have to define an index ind(A, ¢) associated to every (deformed)
solution (A, ). This is done fixing one of them and considering the spectral

flow of the relevant operator as in [40]. The index is defined modulo N, where

< e (L), H (Y;Z)>= NZ,since
ind(o(A, ¢)) =ind(A, o)+ < [o],e1(L) > .

For proving this, we should consider the mapping torus of o, i.e. a line bundle
L =Y xSt with ¢;(£) = e;(L) 4 2[o] @ [S'] (the factor 2 is due to the factor 2
in the action of ¢ on A). So the index will be d = ¢;(£)?*/4 =< [o],c1(L) >.
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6.3 Seiberg-Witten equations for Y =3 x S!

We are interested in the computation of basic classes of connected sums along
Riemann surfaces. First we are going to recall briefly the set up from chapter 2.
X; are two smooth oriented four-manifolds and ¥ is a Riemann surface of genus
g > 1 such that we have embeddings ¥ < X; with image ¥;, representing a
non-torsion element in homology, whose self-intersection is zero. We form the
connected sum X = X;#xX, by removing tubular neighbourhoods N; of ¥; in
both X; and gluing the boundaries Y and Y with some identification ¢. We put
X;=X,—N;,s0 X =X, Uy X2. The boundaries are diffeomorphic to ¥ x S
The diffeomorphism type of the resulting manifold depends on the isotopy class

of ¢ (see subsection 2.1.2). There is an exact sequence
0— HY(Y;Z)— H*(X;Z) > G HY (S Z),

with G the subgroup of H*(X1;Z)/Z[¥1)® H*(X2; Z) | Z[%,] consisting of elements
(a1, a2) such that aq -1 = ay-Y,. The cokernel is a finite group (so it is torsion).
There are two interpretations for this. The first one (reading the exact sequence in
homology through Poincaré duality) says that the 2-homology of X is composed
out of the 2-homology of Y plus those cycles which restrict to X; and X, having
the same boundary 1-cycle in Y (here to be in 77!() means to have intersection
with Y = ¥ x S a multiple of [S']). The second interpretation says that a line
bundle in X comes from gluing two line bundles in X; and X, and that the
possible gluings are parametrised by H'(Y;Z).

Now we pass on to study equations (6.6) for Y = ¥ x S*. Call p: Y — ¥ the
projection and put @ for the S! coordinate. We choose a metric for Y which is
rotation invariant, i.e. h = p*gy +df @ df, with gs a metricon X. Let L — ¥ x St
be a line bundle. We pull it back to ¥ x [0, 1] under the map identifying ¥ x {0}
with ¥ x {1}, and denote it by L. Then this line bundle is topologically the pull-
back of some line bundle Ly on Y. Clearly ¢;(Ly) is the restriction of ¢ (L) to X
and L is obtained by pulling back Ly to ¥ x [0,1] and gluing with some gauge
transformation g € Gy, = C*(X,S'). The homotopy class of g is the component
of ¢;(L) in HY(X;Z) @ H'(S';Z) under the isomorphisms

S HY (S Z2) =2 HY (S;Z2) 0 HY(SY Z),

where the last one is product with the fundamental class of the circle.



6.3. SEIBERG-WITTEN EQUATIONS FORY =¥ x S! 111

Any connection A on L gives a connection A on L. This A has a representative
in its gauge equivalence class with no df component. This is unique up to constant
gauge transformation (i.e. a gauge pulled-back from ¥). So giving A (up to
gauge) is equivalent to giving a family Ag, § € [0, 1], of connections on Ly (up to
constant gauge) with the condition A; = ¢g*(Ap), with ¢ € Gy in the homotopy
class determined by L.

Suppose now that we have a Spin® structure ¢ on Y, which is determined
uniquely by its determinant line bundle L (since H*(Y;Z) has no two-torsion).
The Spin® structure ¢ induces a Spin® structure on ¥ with determinant line
bundle Ly. This latter one has two (irreducible) spin bundles, S* and S, which
are U(1)-bundles. If Ky denotes the canonical bundle,

ST=ANap ST =A" e,

where © = (Ky ® Lz)l/z. So Ly = K3' @ p?. For a connection A on Ly the

induced Dirac operators are
(V2)04 : Q55 ) = Q%135 p0)

and its adjoint (v/2)9% : QoM u) — Q°(X; i). When restricting to every fibre
Y x pt C ¥ xSt Wy splits as ST & S~ ((¢o, ¢1) corresponds to ¢g + ¢y - %,
as |dz| = v/2) and the action of the Clifford algebra CI(Y') corresponds with the
action of CI(X) under the inclusion.

We interpret every pair (A, ¢) of connection on L and section of Wy as a
path (Ag, &), 0 € [0,1], in the configuration space A(Lx) x I'(ST @ S7). We
again denote By, for the quotient of this space with Gy, and Bs, for the subset of
irreducible pairs. Writing ¢y = ag + B € T'(ST @ S7), we have that the Dirac
operator @4 : I'(Wy) — I'(Wy) is identified with (we denote e3 = df)

Pad =€ Ve +es- Veds = [(V2)0aa + (V2)3;8] + %(m —ia).

Recall that the connection Ay is on the bundle Ly and induces uniquely a
connection By on the bundle p. Actually Fy, = 2Fp, — Fk,,, where Fi is the
curvature of the Levi-Civita connection on Kx.

By the proof of lemma 6.6, ¢ = a 4+ 3 = ¢o + ¢1 - % corresponds to

|ol* —lén”
[9ol” = 117

7(¢) = —Im(¢od, )er — Re(dogy ez + 5 _



112 CHAPTER 6. SEIBERG-WITTEN INVARIANTS

- - 2 2
_ —i¢02¢1dz—|-i¢(;¢1dz—|— |0l . e _

Y Y 2 2 ol? 2

S PRN PR TN 8- A SO
since * 1s complex linear and dz = e; + 1€z, dz = ¢; —1ey. Now *Fy = AFy e3+
*x(%7).

Lemma 6.8 Let (A,¢) € A(Ly) x I'(Wy). Consider the family (Ag, ¢g), 8§ €
[0,1], determined by the pair and write ¢y = (g, 35) € Q°(u) & Q% (w). Then
the solutions of (6.6) correspond to solutions of:

2_3 = _i\/?éjleﬁ
85 == i\/_aAQOé

f“e = —i(af + fa)
2iAFy, = —|af” + |8

(6.8)

In the third equation af + fa € Q' is a real two-form. Recall that the
connection Ay is equivalent to the holomorphic structure d,4,, so we can rewrite
third line as either

d = i d —
%(aﬁle) = ——=ap or %(aﬁle) = _ﬁaﬁ-
Proposition 6.9 Let (o, 8) € Q°(u) @ Q% () and Ag, 0 € [0,1], such that
55 = —V2i 05,0
2= \/2 Oagr (6.9)
%(aﬁle) = _ﬁaﬁ
Then Ay, a and 3 are constant and either a = 0 and 520[3 =0o0r =0 and
6A00é =0.

Proof. We work out the following expression (using 10* = A9 in (0, 1)-forms and
B* = —iAB A B)

O cun 0O . 0B
STB) =~ (i00)5 07
with the given equalities to get
1 0%a 1 - e
—EW = ZAﬁOéﬁﬁ — 8 (—@\/58&),
9a

—5 T alB* 4+ 2070a = 0,
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where we drop subindices for convenience of notation. Take scalar product with

a and integrate along ¥ by parts to get, for every 6 € [0, 1],

D« 21 912 a 12
_/E<W7a>+/2|a| |6| ‘|‘2/E|80é| —0

This equation makes sense in S, since the values for § = 0 and # = 1 coincide.

Then we can integrate again by parts to get
120l + llas|? +2/jall* = 0
00 ’

The result is immediate from this. O

Now the fourth equation in (6.8) is constant. From lemma 6.8, ¢;(L]y) =
= Je(Ja]* = |B[*). So a = 0 when ¢;(L]g) < 0 and 3 = 0 when ¢(L]g) > 0.
When ¢;(L|x) = 0 it must be o = # = 0 and the solution will be reducible.

Corollary 6.10 [fthe line bundle L admits any solution to (6.6) then L is pulled-

back from Y. Any solution is invariant under rotations in the S* factor.

Now let L be a characteristic line bundle on Y which is the pull-back of a line
bundle in ¥. Since ¥ - ¥ = 0 we have that ¢;(L) - ¥ is even. Consider the Spin®

structure ¢y with determinant line bundle L. Then we have

Corollary 6.11 ([27]) Suppose that ¢;(Lx) > 0. Then the solutions of equa-

tions (6.8) are equivalent to the solutions of

éAOé =0
6.10
{ QZAFA = —|oz|2 ( )

on Y. These are the typical vortex equations. The solutions are parametrised by
the smooth algebraic variety My, = s*X (the k-th symmetric product of 3), where
ci(Ly) =29 —2—=2k. If e1(Lx) > 2g — 2 this space is empty.

Theorem 6.12 Let X have by = 0 and bt > 0 and odd. Suppose we have X C X
of genus g > 1 with self-intersection zero and representing a non-torsion class in
homology. LetY be the boundary of a tubular neighbourhood of . If SWx (L) # 0
then |ei(L) - ¥ <29 —2 and Ll|y is a line bundle pulled back from 3.

Proof. This is a direct consequence of corollary 6.10 and the fact that the func-
tional C'SW is bounded when we stretch the neck into an infinite tube ¥ x R, as
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proved in [44, section 7.1] (they use the tube R x Y, which has opposite orienta-
tion, so in their case the functional is increasing for solutions on the tube). We
can give a more direct proof, as suggested by Paul Seidel. For a closed manifold
X and a pair (A, ®) of connection and spinor as in section 6.1, we have, as in [11],

the functional
2, 1 2, 1 2 2
Ex(A,0) = [ (IVA0F + {|F4 + (10 +5)) dvol,
where s is the scalar curvature. This can be rewritten as

1 1
Ex(4,0)= [ (| PAS + SIFf — (@ 0 7)ol §52) dvol — 71 (L),

The Seiberg-Witten solutions minimise this functional to —m2c;(L)? + [y %. For
Z =Y x[0,T], we have the same functional, but when rewriting it there is an
extra boundary term 1(CSW(A(0),(0)) — CSW(A(T),#(T))).

Now consider X = X; U (Y x [0,7T])U X;. Then

Ex = Ex, + Eyypm + Ex,.

For solutions to the Seiberg-Witten equations on X, EFx < [y % + K (with K a
constant), Eyxo,11 = Jy o1 % + (CSW(A(0),¢(0)) — CSW(A(T),#(T))) and
always Fx, > 0. From here we deduce the boundness of the functional C'SW.
O

Corollary 6.13 Let X; be smooth oriented manifolds with by = 0 and bt > 0
and odd. Suppose we have X; C X; of the same genus g > 1 with self-intersection
zero and representing a non-torsion class in homology. Construct X = X1#+X,
(choosing an identification). Then the intersection of the basic class with Y is
n[SY]. Moreover, n is an even integer between —(2g — 2) and (2g — 2). In other

words, every basic class of X lies in 7' () (see exact sequence (2.2) for definition

of w).

Remark 6.14 We can paraphrase corollary 6.13 by saying that any basic class is
orthogonal to H\(X;7Z) @ Hi(SY Z) — Hy(Y;Z)— Hy(X;Z). We can prove that
using the adjunction inequalities. For every torus T, C'Y (see definition 2.14),

T, has self-intersection zero and hence K - T, = 0 for any basic class K.
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To deal with the case of ¢;(L|x) = 0 we have to introduce perturbations. In
this case the moduli space of solutions of (6.8) consists uniquely of reducibles
and is isomorphic to the Jacobian of line bundles of degree ¢ — 1 over ¥. The
perturbation we use is a real closed two-form 1 on Y which is S'-invariant (i.e.
of the form 27tw, for w the symplectic form of ¥), such that < [n], P.D.[S!] >=
27t > 0 and equation (6.10) becomes

daa =0
4 (6.11)
2Ny = —|al? + 4mt

The solution space for these equations is s/~!'¥. Now C'SW, takes values in
R /tZ. We can further choose another extra (small) perturbation with a two-form
not S-invariant to make the moduli space zero-dimensional, but we should do
this without destroying the behaviour of C'SW, under gauge transformations, as
in remark 6.7.

When bt =1, ¢;(L)-X # 0, one has to consider the Seiberg-Witten invariants
corresponding to a metric with a long tube, i.e. to a metric with a period point
w, € H close to [S]. So we consider SWE(L) for ¢,(L) - ¥ > 0. When bt = 1,
c1(L) - ¥ = 0, and we have chosen a perturbation of the form n = 2ntw (plus
a second small perturbation), we always refer to the invariant SWi (L), since

] - X > 0.



Chapter 7

Seiberg-Witten gluing theory

7.1 Seiberg-Witten-Floer homology

In the Seiberg-Witten context there is a parallel of the usual Floer theory for
the Donaldson invariants developed in section 1.2. At the moment this topic is
under development. Some nice few remarks about the case relevant to us appear
in [11] and details have been carried out in [40] [62]. Wang [62] has studied the
case of a homology 3-sphere and Marcolli [40] has analysed the case of a gen-
eral three-manifold with a line bundle of non-zero first Chern class. Nonetheless,
Seiberg-Witten-Floer theory must be considered still under construction while all
the checking of details has to be completed. In this sense, this chapter is an appli-
cation of this theory and relies upon the results of [11] [40] [62] which, although
expected to be true, might require eventually minor modifications. Therefore this
chapter is rather speculative and some of the results conjectural.

In general, for a three-manifold Y and a line bundle Ly on Y, we perturb the
Seiberg-Witten equations in the three-manifold as in equation (6.7). We will only
have a finite number of solutions which are non-degenerate and irreducible. The
problem with this perturbation is that the functional C'SW, is not well-defined, so
we have to consider a more general perturbation as in remark 6.7. The solutions
of the perturbed equation will be the generators of CF.SW.(Y; Ly ). There is also
an index ind(a) attached to every translation invariant solution a = (A, ¢) (which
is defined up to addition of a constant). We recall that this index is defined only
in Z/NZ with N such that < ¢;(Ly), H'(Y;Z) >= NZ (so when ¢;(L) = 0,
the index is an integer). For generic perturbations (they might need to be more

generic than in equation (6.7) or remark 6.7), the moduli spaces M(a,b) are of

116
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dimension ind(b)—ind(a), and they admit a free R-action, with quotient My(a, b).

These moduli spaces are also orientable!, so we can define the boundary map as

0:CFSW,(Y) — CFSW,_4(Y)
a — > #Mo(a,b)b

b
ind(a)=ind(#) -1

Then 9* = 0 and one defines the Seiberg-Witten-Floer homology groups
HFSW.(Y; Lly) as the homology of this complex. Whenever ¢; (L) is not torsion,
these groups are independent of metrics and of (small) perturbations. When ¢;(L)
is torsion, this is true as long as b; > 2, since the space of perturbations giving
rise to reducibles is of codimension at least two.

Actually we could have defined these groups a bit more generally for every
Spin® structure ¢y on Y.

The cohomology groups HFSW*(Y'; Ly ) are defined similarly out of the dual
complex and are naturally identified with the homology groups of ¥ with reversed

orientation. We have a natural intersection pairing
o: HFSW.(Y)® HFSW._.(Y) — Z,

for some constant c.
Let X; be an open manifold with cylindrical end Y. For a line bundle L over
X whose restriction to Y is Ly, the limit values of solutions to the (deformed)

Seiberg-Witten equations give an element
H( X1, L) =D #M(Xi,a)a € CFSW.(Y; Ly).

This element is actually a cycle and defines a Floer-Seiberg-Witten homology
class which is independent of metrics and deformations under the conditions
above. When we have two open manifolds X; and X5, which we want to glue
along the common boundary Y (with a fixed diffeomorphism of the boundaries),
and line bundles L; — X; with L;|y = Ly, there is an indeterminacy for choosing
the identification of the line bundles over Y resulting in different line bundles for

X = X, Uy X, as it was explained in subsection 2.3.1.

Theorem 7.1 For every compact oriented three-manifold Y and every charac-
teristic line bundle Ly, with either ¢;(Ly) # 0 or by > 2, there are well-defined

!The problem of giving orientations is analogous to the case of instanton Floer homology.
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Seiberg- Witten-Floer homology groups HF SW.(Y'; Ly ) (graded modulo N ) inde-

pendent of metrics and perturbations, with the following properties:

1. Let X be an open manifold with boundary Y and b > 0. Let L be a
characteristic line bundle on X restricting to Ly on Y. Then there is a

well-defined a homology class ¢(X, L) € HFSW.(Y; Ly).

2. Let X be a closed manifold with bt > 1 which can be written as X =
Xi Uy Xy and let L; be characteristic line bundles on X; with L;|ly = Ly.

Then we have the following pairing formula

o(d(X1, 1), 0(Xa, La)) = > SWx(L)

{L/L|Xl =L, i:172}

If bt = 1 then the invariants refer to the chamber given as in the end of
chapter 6.

In the case by (X;) = 0 for both i, the possible L are parametrised by H*(Y; Z).
For Y = ¥ x S! we only need to consider characteristic line bundles L whose
restrictions to Y have ¢;(L|y) = 2m[S'], for |m| < g—1, as already established in
theorem 6.13. Fix m, i.e. the topological type of L|y, and put k = (¢ — 1) — |m|.
Then (after a perturbation in the case m = 0), the moduli space of translation

invariant solutions is My = s*¥. We have the following

Conjecture 7.2 ([11]) For ¢i(Ly) = 2m[S'], k = (g9 — 1) — |m|, we have the

following isomorphism
HESW.(Y; Ly) 5 H.(s"Y),
where the grading is reduced modulo N = 2|m| =2(g — 1 — k).

Remark 7.3 Actually, Morgan, Szabé and Taubes [/4] have developed the ana-
lytical details for the case k =0, g > 2 of the above conjecture, proving it in that

case, and using it to get a proof of the Thom conjecture for symplectic manifolds.

Corollary 7.4 Let Xy be a compact oriented four-manifold with bt > 0 such
that there is an embedded Riemann surface of genus g > 2 and self-intersection

zero representing a non-torsion homology class. Let L be a line bundle with
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(L)X =2m#£0, |m| <g—1. Let A=Y x D?. Then there exists an element
a=¢(A,L|s) € Hos*Y) such that

Yo SWx (L) =< ¢(X1, Llx, ), o >,
{Lfer (L)=er (L) +nZ}
where ¢(X1, Llx,) € H.(s*Y) is the relative Seiberg-Witten invariant for X;.
When X is of simple type at most one of the L' can appear in the sum above,

since at most one of them has ¢;(L')? = 2y + 30.

When bt =1, ¢;(L)-X # 0, one has to consider the Seiberg-Witten invariants
corresponding to a metric with a long tube, i.e. to a metric with a period point

w, € H close to [¥]. So we consider SWE(L) for ¢(L) - % > 0.

7.2 Computations of basic classes

Now we state the gluing theorem about basic classes for a connected sum. Let
us suppose g > 2. The different cases to be treated correspond to the possible
restrictions of L to ¥. The easiest case is when ¢1(L) - ¥ = +(2¢ — 2) and
the situation gets more and more complicated as k = (g — 1) — L|¢i(L) - X gets
bigger. Morgan, Szabé and Taubes have worked out the case ¢;(L)-X = +(2g—2),
carrying out the analysis explicitly and using perturbations as in equation (6.7).
We deem that the analysis would be probably easier for perturbations as in

remark 6.7, but details are yet to be carried out.

Theorem 7.5 ([44]) Suppose that X; have by = 0, b* > 1 and are of simple
type, and g > 2. Fiz k; € H*(X;;Z) characteristic with k? = 2xx, + 30x,, such
that k; - ¥; = £(29 — 2). Then

> SWx (L) = (£1)7'SWx (k1) - SW, (k2),

L|Xl‘:Hi|Xl‘7 22172
for appropriate homology orientations.

Proof. In the case ¢;(Ly) = (29 — 2)[S"], one has k = 0 so My = s°Y is a point
and H.(My) = Z. Fix line bundles L, — X, and L4 — A that are isomorphic to
Ly when restricted to the boundary. Put o = ¢(A, L4). Then

SWX (lil) = O-(Qb(XH Ll)v Oé) =z qb(XH Li)av

B
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where . = o(1,1) € Z and L; = x;|x,. Now for CP' x ¥ with a metric giving CP*
long volume, one has only the basic class (2(g — 1)CP!—2X) with Seiberg-Witten
invariant 1. So za? = 1 and it must be = 1 and o = £1. Therefore the sum
in the left hand side above is

Y. SWx(L)=oa(é(X1, L1), ¢( Xz, L)) = SWx, (k1) - SW, (k2).

Llx,=I1
Llx, =Lz

For the case ¢;(Ly) = —(2g — 2)[S'], we have that CP' has only the basic class
—(2(g — 1)CP! — 2%) with Seiberg-Witten invariant (—1)?~!, responsible for the
sign. O

The sign above can be checked as in remark 5.8, since do(X) = do(X;) +
do(X2) —3(g — 1) (mod 2). Now we analyse some examples in which the infor-
mation already gathered in theorem 7.5 is enough to find the basic classes for the

glued manifold.

Proposition 7.6 Suppose that we are in the situation of remark 2.19 and sup-
pose that both X; are of simple type and g > 2. Then X = X1#5s X, is of simple
type and the basic classes k of X such that k- X = £(2g — 2) are in one-to-one
correspondence with pairs of basic classes (k1,k2) for Xi and Xy respectively,
such that ky - X1 = Ky - Xy = £(29 — 2). Moreover, k is determined in an explicit

way.

Proof. By remark 2.19 we have a primitive lattice V' C Hy(X;Z) generated by
homology classes represented by tori of self-intersection zero. The basic classes
vanish on all of these homology classes (see for instance theorem 6.12). So if & is
a basic class for X, we have argued that P.D.[x] € V.

Let S be a (—2)-sphere provided by remark 2.19 such that [S] € V and so
L-S =0 whenever SWx (L) # 0. From [19, theorem 1.3], we know that if L is a
line bundle with SWx (L) # 0 and dim Wx (L) > 0 then SWx (L 4+ 25) # 0. But
this is a contradiction as (L +25) -5 # 0. So X is of simple type.

Now let k be a basic class for X with & - Y = 2¢g — 2. Corollary 6.13 tells
us how the image of k under 7 is. From the previous theorem, there are basic
classes k1 and ry in X7 and X, such that k- X = k1 - 31 = k- By = 29 — 2. As
g > 2, we have that k% # (k + nX)? for n # 0, so at most one of the k + nX can
be basic class. Also k is determined as the only class in V™~ agreeing with both

#;|x, and with square k? = 2yx + 30x = k] + k3 + (8¢ —8). O
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Remark 7.7 In the situation of the last proposition, and under the splittings of

remark 2.20, we have
ki =a; + (29 —2)D; + 3 € W @ Q[ Dy,
for the basic classes k; of X;. The corresponding basic class for X is
k=04+a1+az+29g—2)D+(m+r+2)XeVaoW oW, QX D],
where the coefficient of X is found oul using the requirement on k*. So formally
K =K1+ Ky + 2X. (7.1)

The condition in proposition 7.6 is indeed a very natural condition. For
example if we have a Kahler manifold which is a fibration X — C over a complex
curve (' with fibres being generically genus ¢ Riemann surfaces and if we take
a smooth fibre ¥ C X and a vanishing cycle v C X (see [24, page 167]), then
the vanishing disc is a (—1)-disc (the framings are the natural framings of v
inside ¥). If for instance there is a rational fibre then all the 1-cycles in ¥ are
vanishing cycles and the hypotheses in the theorem above are satisfied. As a
consequence, when we glue two of these fibrations along a fibre we get the same
Seiberg-Witten invariants for basic classes £ with & - ¥ = 4+(2¢ — 2), regardless
of the chosen gluing, although in general one expects that only for one particular

gluing the resulting manifold is a Kahler surface.

Remark 7.8 Suppose both X; are symplectic manifolds and X; are symplectic
submanifolds. Then from recent work of Taubes [59], X; are of simple type. Now
X = X #x X, can be given a symplectic structure by proposition 2.12 (regardless
of the homotopy class of the chosen gluing ¢). Taubes [57] [58] has proved that
the canonical class K = —e¢i(TX) is a basic class and that for any other basic
class k # £ K, one has |r - [w]| < K - [w], with w the symplectic form. Since
T, - [w] = 0, none of the K + > n,T, can be basic classes unless all n, = 0.
Hence in the formula of theorem 7.5 only one term appears in the sum. Notice

that Taubes also proves that this number s +1.

The result of the last remark falls very short since it does not even tell us
about the other basic classes that might appear when we glue two basic classes

K; for X; with K; - ¥ = 2¢g — 2 but K, are not the canonical classes. In some
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situations we get more: suppose that (both) X; have b+ > 1 and are the blow-
up of some symplectic manifolds M; of simple type at points on X! — M, (and
Y, is the proper transform of ¥!) and that the cohomology class defined by the
/

] (i.e. [Xf] are ample classes).

symplectic forms in both M; are Poincaré dual to [¥!

Then one has |#; - [X]| < K - [¥] = 29 — 2 for every basic class «; in X;. So we
conclude that the only basic classes with k- ¥ = +(2¢g — 2) for X are k = £ K.
Suppose now the case when the manifolds involved are complex surfaces and
Y; are embedded complex curves. If the holomorphic normal bundles to ¥; are
(orientation reversing) isomorphic then there is a preferred identification as ex-

plained in section 2.2.

Proposition 7.9 Suppose that both X; are Kihler manifolds with embedded com-
plex curves ¥; of self-intersection zero. Suppose that X is an algebraic surface
which is deformation equivalent to the variety X, Us Xy with a normal crossing
along ¥. Then the basic classes k of X such that k-X = £(2g —2) are in one-to-
one correspondence with pairs of basic classes (K1, k2) for X1 and X, respectively,

such that k1 - X1 = Ky - Yo = £(29 — 2).

Proof. Recall from proposition 2.9 that X has the diffeomorphism type of the
(preferred) connected sum of X; and X, along Y. First, it is known after
Witten [63] that all K&hler manifolds with 6% > 1 are of simple type. Also
by proposition 2.9, X = X;#xX,. As in the proof of proposition 7.6, we
just need to prove that if x is a basic class for X and T' = Y ngls # 0 in
Hy(Y;Z) C Ho(X;Z) = H*(X;Z) then £ + T is not basic class. In the Kahler
case we know that the basic classes are in H''!, so it is enough to show that
T ¢ H"'. But T* = 0 and T - [w] = 0, for the symplectic form w. If T were in
HY'n H*(X;Z), it would represent a divisor with 7% = 0 and orthogonal to an

ample class, but this is impossible. [

The case of k =1

The following natural case to pursue is ¢;(Lyx) = £(2¢g—4), with ¢ > 3. Obviously
this corresponds to k = (g—1)— e (Lg)| = 1. So HFSW.(E xS, Ly ) = H.(X),
with the grading being modulo N = g — 2. Every open manifold X with 6t > 0
and boundary 90X = Y, and line bundle L — X with ¢;(L|y) = (29 — 4)[S"],
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defines a class
qb(Xv L) = (f07f17f2) € H*(Z)

For a closed manifold X with b7 > 1 which can be written as X = X; Uy X,
and L; characteristic line bundles on X; with L;|ly = Ly, we put ¢(Xy, L) =
(vaflvf?) and ¢(X27L2) — (90791792)- Then

Z SWx(L) = fo-ga+ fa g0+ f1-g1-
{L/Llx,=Ls, i=1,2}

If we have that for different identifications the sum in the left hand side
remains unchanged, then f;-¢.(g1) is constant, for all ¢ € Diff(¥), which forces
either f; = 0 or gy = 0. For example, for A = ¥ x D? one has X = AUsA = ¥ x
CP! and the invariants SWx (L) = 0 for any line bundle L with ¢;(L)-¥ = 2g—4
(in the chamber given by [X]), as there are no zero-dimensional non-empty moduli
spaces with that condition. So writing ¢(A, L4) = (ao, a1, az), it must be a; =0
and either ag = 0 or az = 0. Let us suppose (ag, as,az) = (0,0,1). Then for every
closed manifold of simple type X = X° Uy A and characteristic line bundle L
with ¢1(L) = £(2g — 4), one has SWx (L) = fo, where ¢(X?, L|xo) = (fo, f1, f2).

Now one should look to different cappings X, to extract f; and f; from the
Seiberg-Witten invariants of X = X°U X,. We will not say anymore about this,

but it seems very promising and we hope to come back to it for future research.

7.3 Final remarks on the comparison of Donald-

son and Seiberg-Witten theories

Here we would like to point out the close relationship between the results in
both parts of the thesis. Witten [63] has conjectured that for a simply connected
manifold the condition of being simple type and Seiberg-Witten simple type are
equivalent, and that in that case the basic classes are the same as the Seiberg-

Witten basic classes?, the shape of the Donaldson series being
Dy = e?/? Z aZ"weI‘/y",

where
K ~w+w2
2

iy = (—1) 7 220D gy (K,

2Let us remark here that Pidstrigatch and Tyurin [52] have a program to prove rigorously

this relationship in general.
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We have from theorem 7.5 that for X = X;#y X, and basic classes K; for X;
such that K7 - ¥ = K3 - ¥ = 29 — 2 one has

> SWx (L) = SWx, (K,)SWyx, (K).
L|Xi =K; |Xi ,1=1,2
Now we recall that the topological numbers are computed in subsection 2.1.3 and

are Yx = Xx, + Xx, t49 —4and ox = 0%, +0x,. So

1 1 1
2 + ZUXX +1lox) =2+ Z(7XX1 + 1log,)+ 2+ Z(7XXQ + 1log,) + (79 — 9).

When g = 2, this tells us that the sum of the coefficients of the (Seiberg-
Witten) basic classes L such that L|x, 2 K;|x,, ¢ = 1,2, is 32 times the product of
the coefficients of K; and L;. This agrees with corollary 5.9 about the (instanton)
basic classes. We want to remark here that the result in the Seiberg-Witten
context is more general in the sense that we do not impose restriction in the
genus g > 2, but the results in chapter 5 are far more general in the sense that
they also give information about basic classes K with K -Y = 0 and more explicit
information about the structure of the Donaldson invariants. Nonetheless, it is
highly likely that Seiberg-Witten-Floer theory can provide results of this kind.
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