

Guía Docente: ANÁLISIS AVANZADO DE REACCIONES Y REACTORES

FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2019-2020

I.- IDENTIFICACIÓN

CARÁCTER:

NOMBRE DE LA ASIGNATURA: Análisis Avanzado de Reacciones y

Reactores Obligatoria

MATERIA: Análisis Avanzado de Reacciones y

Reactores

MÓDULO: Ingeniería de Procesos y Productos TITULACIÓN: Master en Ingeniería Química:

Ingeniería de Procesos

SEMESTRE/CUATRIMESTRE: Anual (primer curso)

DEPARTAMENTO/S: Ingeniería Química y de Materiales

PROFESOR/ES RESPONSABLE/S:

Teoría Seminario Tutoría	Profesora: Departamento: Despacho: e-mail:	VICTORIA EUGENIA SANTOS MAZORRA Ingeniería Química y de Materiales QP-104. Planta 1ª Planta Piloto Químicas. vesantos@ucm.es
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	MIGUEL LADERO GALÁN Ingeniería Química y de Materiales QA-B64. Planta baja Edificio A mladerog@ucm.es
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	JOSE MANUEL TOLEDO GABRIEL Ingeniería Química y de Materiales QA-B61. Planta baja Edificio A jmtoledo@ucm.es
Teoría Seminario Tutoría	Profesor: Departamento: Despacho: e-mail:	EMILIO GÓMEZ CASTRO Ingeniería Química y de Materiales QP-114. Planta 1ª Planta Piloto Químicas. emgomez@ucm.es
Seminario Laboratorio	Profesor: Departamento: Despacho: e-mail:	MARIA ISABEL GUIJARRO GIL Ingeniería Química y de Materiales QA-B70.A Planta baja Edificio A migg@ucm.es

II.- OBJETIVOS

OBJETIVO GENERAL

El objetivo principal de la asignatura es dotar al estudiante de conocimientos avanzados y aplicados referentes a reacciones y reactores químicos, así como de herramientas que le permitan resolver problemas de cinética aplicada de sistemas complejos y diseñar reactores multifásicos. Para ello, se partirá de conceptos fundamentales de estequiometria, termodinámica química, cinética química aplicada y diseño de

reactores, introduciendo la complejidad propia de sistemas multifásicos y autocatalíticos en los que tienen lugar múltiples reacciones. También se considerarán reactores donde se utiliza una forma de energía impulsora como electroquímicos, fotoquímico y nucleares.

■ OBJETIVOS ESPECÍFICOS

- Conocer y saber aplicar la metodología de estudio de redes de reacciones: estequiometría, termodinámica y determinación y validación de modelos cinéticos.
- Ser capaz de analizar la cinética y la fenomenología de transformaciones químicas complejas de diversa naturaleza: catalíticas, poliméricas, bioquímicas, electroquímicas, fotoquímicas, sonoquímicas, nucleares.
- Ser capaz de obtener datos experimentales de transformaciones químicas complejas y ser capaz de formular modelos cinéticos a partir de dichos datos.
- Ser capaz de elaborar informes técnico-científicos tanto a partir de información obtenida de fuentes bibliográficas como de la elaborada por el propio alumno.
- Saber elegir y diseñar los reactores adecuados para las transformaciones químicas complejas en función de su naturaleza.

III.- CONOCIMIENTOS Y REQUISITOS PREVIOS

■ CONOCIMIENTOS PREVIOS:

Conocimientos básicos de cinética química aplicada y de diseño de reactores químicos. Haber cursado asignaturas básicas de introducción a la ingeniería química, de fenómenos de transporte y de fundamentos de ingeniería de la reacción química.

IV.- CONTENIDOS

■ BREVE DESCRIPCIÓN DE LOS CONTENIDOS:

Reacciones múltiples y reactores multifásicos G-L y G-L-S. Reacciones enzimáticas y microbianas. Bioprocesos y reactores enzimáticos y con microorganismos y células. Procesos y reactores de polimerización. Reacciones y reactores electroquímicos, fotoquímicos y sonoquímicos. Reactores nucleares y residuos radiactivos.

■ PROGRAMA:

Tema 1: Bases del diseño de reactores químicos.

Análisis de las reacciones químicas. Sistemas bifásicos y multifásicos. Reactores químicos: tipos. Principios de diseño y de cambio de escala.

Tema 2: Análisis de Redes de reacciones químicas.

Estequiometría y Termodinámica. Modelos cinéticos. Métodos de cálculo de parámetros. Discriminación de modelos cinéticos.

Tema 3: Reacciones y reactores gas-líquido y líquido-líquido.

Modelos para la descripción del transporte de materia. Coeficiente volumétrico de transporte: Correlaciones empíricas y predicción teórica. Principios de diseño de reactores fluido-fluido. Casos en estudio.

Tema 4: Reacciones y reactores gas-líquido-sólido y líquido-líquido-sólido.

Modelos para la descripción del transporte de materia. Coeficiente volumétrico de transporte: correlaciones empíricas. Principios de diseño de reactores trifásicos.

Tema 5: Análisis de bioprocesos y biorreactores.

Biotecnología: aplicaciones. Tipos de bioprocesos y de biorreactores. Fenomenología. Principios de desarrollo de bioprocesos. Cambio de escala.

Tema 6: Procesos enzimáticos.

Mecanismo de las reacciones enzimáticas. Inmovilización de enzimas: métodos y fenómenos de transporte asociados. Modelos cinéticos para reacciones enzimáticas. Mecanismos y modelos de desactivación. Casos en estudio.

Tema 7: Procesos con microorganismos y células.

Procesos con microorganismos. Metabolismo celular, transporte entre fases y en la membrana. Stress hidrodinámico y oxidativo. Condiciones y formas de operación. Modelos cinéticos para transformaciones microbianas. Transporte y consumo de oxígeno. Acople de fenómenos. Stress hidrodinámico, oxidativo y daño celular.

Tema 8: Diseño de biorreactores

Reactores enzimáticos: tipos. Diseño de reactores discontinuos y continuos. Lechos con enzimas inmovilizadas. Biorreactores microbianos. Diseño de reactores discontinuos, semicontinuos (fed-batch) y continuos. Tanques agitados y columnas de burbujeo (airlift). Casos en estudio.

Tema 9: Reacciones y reactores de polimerización.

Procesos de polimerización: tipos y aplicaciones. Características de los polímeros: Distribución de pesos moleculares y de longitud de cadena. Fenomenología de las reacciones de polimerización. Estequiometría, Termodinámica y Cinética de las reacciones de polimerización. Diseño de reactores de polimerización.

Tema 10: Reacciones y reactores electroquímicos, fotoquímicos y sonoquímicos.

Procesos electroquímicos. Aplicaciones. Cinética de los procesos electroquímicos. Fenomenología de los procesos electroquímicos. Tipos de reactores electroquímicos. Células de combustible. Procesos fotoquímicos. Aplicaciones. Catálisis fotoquímica. Cinética de los procesos fotoquímicos. Fenomenología de los procesos fotoquímicos. Diseño de reactores fotocatalíticos. Procesos sonoquímicos. Aplicaciones. Cinética de los procesos sonoquímicos. Fenomenología de los procesos sonoquímicos. Tipos de reactores sonoquímicos.

Tema 11: Reactores nucleares.

Producción de energía eléctrica. Otras aplicaciones de la energía nuclear. Tipos de reactores nucleares. Diseño de reactores nucleares. Residuos radiactivos: gestión.

V.- COMPETENCIAS

GENERALES:

- CG1 Capacidad para aplicar el método científico y los principios de la ingeniería y economía, para formular y resolver problemas complejos en procesos, equipos, instalaciones y servicios, en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la industria química y de otros sectores relacionados entre los que se encuentran el farmacéutico, biotecnológico, materiales, energético, alimentario o medioambiental.
- CG2 Concebir, proyectar, calcular, y diseñar procesos, equipos, instalaciones industriales y servicios, en el ámbito de la ingeniería química y sectores industriales relacionados, en términos de calidad, seguridad, economía, uso racional y eficiente de los recursos naturales y conservación del medio ambiente.
- CG5 Saber establecer modelos matemáticos y desarrollarlos mediante la informática apropiada, como base científica y tecnológica para el diseño de nuevos productos, procesos, sistemas y servicios, y para la optimización de otros ya desarrollados.
- CG10 Adaptarse a los cambios, siendo capaz de aplicar tecnologías nuevas y avanzadas y otros progresos relevantes, con iniciativa y espíritu emprendedor.
- CG11 Poseer las habilidades del aprendizaje autónomo para mantener y mejorar las competencias propias de la ingeniería química que permitan el desarrollo continuo de la profesión.

■ ESPECÍFICAS:

- CE1 Aplicar conocimientos de matemáticas, física, química, biología y otras ciencias naturales, obtenidos mediante estudio, experiencia, y práctica, con razonamiento crítico para establecer soluciones viables económicamente a problemas técnicos.
- CE2 Diseñar productos, procesos, sistemas y servicios de la industria química, así como la optimización de otros ya desarrollados, tomando como base tecnológica las diversas áreas de la ingeniería química, comprensivas de procesos y fenómenos de transporte, operaciones de separación e ingeniería de las reacciones químicas, nucleares, electroquímicas y bioquímicas.
- CE3 Conceptualizar modelos de ingeniería, aplicar métodos innovadores en la resolución de problemas y aplicaciones informáticas adecuadas, para el diseño, simulación, optimización y control de procesos y sistemas.

 CE8 Dirigir y gestionar la organización del trabajo y los recursos humanos aplicando criterios de seguridad industrial, gestión de la calidad, prevención de riesgos laborales, sostenibilidad, y gestión medioambiental.

■ TRANSVERSALES:

- O CT1 Desarrollar el trabajo de forma autónoma.
- O CT2 Trabajar en equipo fomentando el desarrollo de habilidades en las relaciones humanas.
- CT3 Desarrollar sensibilidad y responsabilidad sobre temas energéticos, medioambientales y éticos.
- CT4 Demostrar razonamiento crítico y autocrítico en busca de la calidad y rigor científicos
- CT5 Elaborar y escribir informes y otros documentos de carácter científico y técnico.
- CT6 Aplicar a entornos nuevos o poco conocidos, dentro de contextos multidisciplinares, los conceptos, principios, teorías o modelos relacionados con la Ingeniería Química
- O CT7 Gestionar información científica, bibliografía y bases de datos especializadas y otros recursos accesibles a través de Internet.
- o CT11 Desarrollar la capacidad de organización y planificación

VI. – HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD

■ PRIMER CUATRIMESTRE:

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos
Clases teóricas y seminarios	30	45	3,0
Actividades formativas: visitas	4	6	0,4
Tutorías	2	3	0,2
Actividades prácticas	18	27	1,8
Exámenes y Trabajos dirigidos	6	9	0,6
Total	60	90	6

■ SEGUNDO CUATRIMESTRE:

Actividad	Presencial (horas)	Trabajo autónomo (horas)	Créditos
Clases teóricas y seminarios	15	22,5	1,5
Actividades formativas: visitas	-	-	-
Tutorías	-	-	-
Actividades prácticas	12	18	1,2
Exámenes y Trabajos dirigidos	3	4,5	0,3
Total	30	45	3

VII.- METODOLOGÍA

Los contenidos de la asignatura se presentan a los estudiantes mediante clases teóricas, seminarios, tutorías programadas, trabajos dirigidos y actividades prácticas, como visitas a empresas.

Las **clases teóricas** consistirán, esencialmente, en lecciones magistrales en las que se expondrá de forma ordenada el temario completo de la asignatura, incluyendo el desarrollo avanzado de aspectos puntuales de la asignatura como, por ejemplo, los casos en estudio. En el desarrollo de las clases de teoría se utilizará material audiovisual para una óptima comprensión de cada tema. Los esquemas, tablas, figuras y cualquier otro tipo de material y/o información necesaria se pondrán a disposición de los alumnos en soporte papel o informático utilizando principalmente el espacio del Campus Virtual.

Los **seminarios** consistirán en el desarrollo completo y detallado de un conjunto de problemas seleccionados, cuyos enunciados se distribuirán con suficiente antelación para que el alumno los intente resolver por su cuenta. Además, se darán **conferencias** relacionadas con los contenidos de la asignatura y orientadas a la aplicación de dichos contenidos en algunos procesos industriales y comerciales de interés.

Las **tutorías programadas** se desarrollarán en grupos reducidos. Las tutorías serán el marco donde al estudiante se le plantearán cuestiones teóricas, cuestiones prácticas abiertas y ejercicios numéricos a plantear y/o a desarrollar y resolver en grupos reducidos. Estos ejercicios prácticos cubrirán, en cada sesión, un determinado número de temas, estando los estudiantes informados con la suficiente antelación de los temas a tratar. En estas sesiones, el estudiante contará con la orientación del profesor encargado.

En las **prácticas de laboratorio** y los **trabajos dirigidos** se planteará el trabajo en grupos reducidos. Los **trabajos dirigidos** se centrarán en el estudio de redes de reacción en casos de interés industrial, con un estudio exhaustivo de aspectos tales como la estequiometría, la termoquímica y la cinética química aplicada. Los alumnos tendrán asignado un tutor/a que les convocará en varias ocasiones para comprobar su progreso y orientarles en cada una de las etapas del trabajo. Los estudiantes harán una presentación final de su trabajo. En cuanto a las **prácticas de laboratorio**, estas se dividen en un trabajo experimental a realizar en el

laboratorio y el cálculo e interpretación de resultados que se llevará a cabo en aula de informática. Cada estudiante realizará dos prácticas y presentará un informe por práctica.

Además de las **tutorías clásicas** (consultas) a las que el estudiante tiene derecho, se utilizará el **Campus Virtual** para permitir una comunicación fluida entre profesores y estudiantes y como instrumento para poner a disposición de los estudiantes el material que se utilizará en las clases tanto teóricas como de problemas. También podrá utilizarse para la apertura y gestión de **foros** en el que se presente material complementario y se planteen discusiones y reflexiones sobre el contenido de la asignatura.

VIII.- BIBLIOGRAFÍA

Al principio de curso se comentará la bibliografía recomendada, indicando los aspectos más relevantes de cada texto y el grado de adecuación a la asignatura. No se va a seguir un libro de texto concreto para el desarrollo de la asignatura.

■ BÁSICA:

- o Fogler, H.S. "Elements of Chemical Reaction Engineering", 3^a ed. Prentice-Hall, 2006.
- o Salmi, T.O., Mikkola, J-P, Warma, J.P. "Chemical Reaction Engineering and Reactor Technology". CRC Press, 2010.
- o Tiscareño, F. "Reactores Químicos con Multireacción". Ed. Reverte, 2008.
- o Doran, P.M. "Principios de Ingeniería de los Bioprocesos". Acribia, 1998.
- o Díaz, M. "Ingeniería de Bioprocesos". Paraninfo. 2012.
- McGreavy, C. Polymer Reaction Engineering. Blackie Academia and Professional. Londres, 1994.

■ COMPLEMENTARIA:

- o Ranade, V.V., Chaudhari, R.V., Gunjal, P.R. "Trickle-bed Reactors: Reactor Engineering & Applications". 1ª ed. Elsevier, 2011.
- o Asenjo, J.A. y Merchuk, J.C.: "Bioreactor system Design". M. Dekker, 1995.
- Nielsen, J. y Villadsen, J.: "Bioreaction Engineering Principles". Plenum Press. 1994.
- o Glasstone, S., Sesonske, A.: "Nuclear Reactor Engineering". 4ª ed. Chapman and Hall. 1994.
- o Ramachandran, P.A., Chaudari, R.V. "Three Phase Catalytic Reactors", Gordon and Breach Sci. Pub, Nueva York. 1983.
- Nauman, E.B. "Chemical Reactor Design, Optimization and Scale-up". John Wiley & Sons. Hoboken (NJ, USA), 2008.

Además de los textos básicos y complementarios, puntualmente, se podrá indicar a los estudiantes bibliografía específica para cada tema.

IX.- EVALUACIÓN

Es obligatorio asistir a todas las tutorías dirigidas y a todas las actividades prácticas programadas en grupos reducidos, tanto en lo referente a los trabajos dirigidos como en lo que respecta a las prácticas de laboratorio. Para poder acceder a la evaluación final será necesario que el alumno haya participado al menos en el 70 % de las demás actividades presenciales (clases teóricas y seminarios). El rendimiento académico del alumno y la calificación final de la asignatura se computarán, de forma ponderada, atendiendo a los porcentajes que se muestran en cada uno de los aspectos recogidos a continuación. Este criterio se mantendrá en todas las convocatorias.

■ EXÁMENES ESCRITOS:

70%

Se realizarán dos exámenes: un examen final ordinario y otro extraordinario. Estos exámenes consistirán en un conjunto de cuestiones de desarrollo o aplicación directa de los conocimientos explicados a lo largo de la asignatura y de problemas numéricos similares a los ya comentados previamente.

Para aprobar cada examen, será necesario que el alumno obtenga, al menos, un 4 sobre 10 en cada parte del examen: cuestiones teóricas y problemas numéricos.

A las convocatorias extraordinarias solo podrán presentarse aquellos alumnos que hayan participado y superado el resto de actividades de la asignatura, habiendo satisfecho los mínimos de asistencia antes comentados.

Con los exámenes escritos se valorarán las competencias generales CG1, CG2, CG5 y CG11, las competencias específicas CE1, CE2 y CE3, y las competencias transversales CT1, CT3, CT4, CT6, CT7 y CT11.

■ TRABAJO PERSONAL Y ACTIVIDADES DIRIGIDAS:

30%

La evaluación del trabajo de aprendizaje individual realizado por el alumno y de las actividades dirigidas se hará teniendo en cuenta:

- La destreza del alumno en la resolución de los problemas y ejercicios propuestos, que se recogerán periódicamente en los seminarios.
- La evaluación de las tutorías y actividades prácticas, de asistencia obligatoria, y a las cuales serán citados los alumnos periódicamente a lo largo del cuatrimestre.
- Se evaluará la resolución de trabajos propuestos y de problemas numéricos por parte de pequeños grupos de estudiantes relativos a un número limitado de lecciones del temario. Se evaluará a cada estudiante en función del trabajo de grupo y de su aportación personal durante el desarrollo de las tutorías.
- Se evaluará el trabajo desarrollado y los informes realizados en las prácticas por cada alumno.
- Se evaluará la elaboración y presentación de trabajos encargados sobre temas y casos en estudio relacionados con la materia.

La evaluación de estos aspectos permitirá conocer el grado de consecución de las competencias generales CG1, CG2, CG5, CG10 y CG11, de las competencias específicas CE1, CE2, CE3 y CE8 y de las todas competencias transversales mencionadas en esta guía.

PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
1 Dogge del diseño de maretenes suímicos	Teoría	2	1	1ª semana	1ª semana
1. Bases del diseño de reactores químicos	Seminario	-	-	-	-
2 Apólicio de Dodos de respesienos anímicos	Teoría	2	1	1ª semana	2ª semana
2. Análisis de Redes de reacciones químicas	Seminario	-	-	-	-
2 December and Kanida w Kanida Kanida	Teoría	2	1	2ª semana	2ª semana
3. Reacciones gas-líquido y líquido-líquido	Seminario	1	-	3ª semana	3ª semana
4. Descriptor and Kanida adlida y Kanida Kanida adlida	Teoría	3	1	3ª semana	4ª semana
4. Reacciones gas-líquido-sólido y líquido-líquido-sólido	Seminario	1	1	4ª semana	4ª semana
5 A - (1:-:- 1 - 1: 1:	Teoría	3	1	4ª semana	5ª semana
5. Análisis de bioprocesos y biorreactores	Seminario	-	-	-	-
6. Procesos enzimáticos	Teoría	6	1	5ª semana	7ª semana
o. Procesos enzimaticos	Seminario	2	1	7ª semana	8ª semana
7. Procesos con microorganismos y células	Teoría	7	1	8ª semana	10ª semana
7. Procesos con microorganismos y ceiulas	Seminario	2	1	10 ^a semana	11ª semana
8. Diseño de Biorreactores	Teoría	4	1	11 ^a semana	12ª semana
o. Diseño de Biorreactores	Seminario	4	1	12ª semana	13 ^a semana
O Decesiones y resetures de relimentos sión	Teoría	5	1	14 ^a semana	15ª semana
9. Reacciones y reactores de polimerización	Seminario	1	1	15 ^a semana	15ª semana
10. Reacciones y reactores electroquímicos, fotoquímicos	Teoría	5	1	15 ^a semana	16 ^a semana
y sonoquímicos	Seminario	0	1	-	-
·	Teoría	3	1	17ª semana	17ª semana
11. Reactores nucleares	Seminario	0	1	-	-
	TUTORÍAS	41			17-
	Teoría	1	3		

Tutorías	Seminario	1	3			
----------	-----------	---	---	--	--	--

RESUMEN DE LAS ACTIVIDADES

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría	CG5 y CG11 CE1 y CE8 CT1, CT3, CT4, CT6 y CT7	Exposición de conceptos teóricos.	Atención y participación activa en el desarrollo de la clase.	Exámenes escritos.				
Seminarios	CG1, CG2 y CG5 CE1, CE2 y CE3 CT1, CT2, CT3, CT4, CT6 y CT11	Planteamiento y resolución de ejercicios y problemas. Conferencias.	Discusión y resolución de las cuestiones y problemas propuestos. Elaboración por escrito de problemas numéricos.	Calificación de las respuestas (planteamiento y resultado) realizadas por escrito para la resolución de ejercicios prácticos y problemas numéricos.	45	67,5	112,5	10%
Tutorías programadas y trabajos dirigidos	CG1, CG2, CG3, CG4 y CG11 CE1, CE2, CE3 y CE8 CT1, CT2, CT3, CT4, CT6, CT7 y CT11	Propuesta de trabajos y prácticas de laboratorio. Dirección y supervisión del estudio y actividades del alumno.	Lectura y discusión de artículos técnicos de actualidad. Elaboración por escrito de un trabajo en grupo. Elaboración de informes de práctica individuales.	Valoración de la participación activa y del trabajo realizado por cada estudiante y por el grupo.	36	54	90	20%
Exámenes	CG1, CG2, CG5 y CG11 CE1, CE2 y CE3 CT1, CT3, CT4, CT6, CT7,y CT11	Elaboración, vigilancia y corrección del examen. Calificación del alumno.	Preparación y realización del examen.	Calificación del examen.	9	13,5	22,5	70%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación

ADENDA PROVISIONAL A LA GUÍA DOCENTE

Adaptación	n de la asignatura a la docencia NO PRESEN	NCIAL					
I. PROFESOR/ES RESPONSABLE/S	NO HAY MODIFICACIONES						
IV. PROGRAMA	NO HAY MODIF	FICACIONES					
V. COMPETENCIAS	La adquisición de las Competencias Generales, Específicas y Transversales queda asegurada con las modificaciones que se recogen en esta adenda.						
VI. RESULTADOS DEL APRENDIZAJE	Los Resultados del Aprendizaje quedan asegurados con las modificaciones que se recogen en esta adenda.						
VII. HORAS DE TRABAJO Y DISTRIBUCIÓN POR ACTIVIDAD	Actividad	(horas)	Trabajo autónomo (horas)	Créditos			
(Solo afecta al segundo cuatrimestre)	Clases teóricas y seminarios	15	22,5	1,5			
	Presenciales:	9					
	Virtuales:	6					
	Actividades prácticas	12	18	1,2			
	Presenciales:	6					
	Virtuales:	6					
	Exámenes / Trabajos dirigidos	3	4,5	0,3			

	Presenciales:	3		
VIII. METODOLOGÍA	 Las sesiones de seminario y teoría videoconferencia a través de la herrami Virtual, bien mediante presentaciones d Se habilitará foros en el Campus Virtual participar todos estudiantes. Se utilizarán las aplicaciones Skype, tutorías en función del número de asist herramienta. 	enta <i>Collabora</i> e PowerPoint of para la consult Collaborate, <i>C</i>	ate disponible e con audios. a de dudas en la Google Meet o	en el Campus as que puedan Teams para
IX. BIBLIOGRAFÍA	NO HAY MODIFICACIONES			
X. EVALUACIÓN	 Exámenes: se realizarán dos exámenes fotro en la convocatoria extraordinaria. Queda anulado el segundo parcial de la Decanato de la Facultad para todos los tít Habiendo realizado ya el primer parcia examen liberatorio. Los estudiantes que examinar de la materia correspondient ordinaria (no así en la extraordinaria, dasignatura). 	asignatura, en culos de Grado l de la asigna e lo hayan su e al segundo	línea con lo ind y Máster. tura, éste cobra perado solo se parcial en la	dicado por el a carácter de tendrán que convocatoria

ADAPTACIÓN DE LA PLANIFICACIÓN DE ACTIVIDADES – CRONOGRAMA (30 DE MARZO-29 DE MAYO)

TEMA	ACTIVIDAD	HORAS	GRUPOS	INICIO	FIN
5.1 Cinética aplicada a reacciones de polimerización	Teoría y Seminario	1	1	1ª Semana del 30 de marzo	1ª Semana del 30 de marzo
5.2 Reactores de polimerización	Teoría	1	1	2ª Semana del 14 de abril	2ª Semana del 14 de abril
5.2 Problemas de caracterización/cinética de polímeros	Seminario	1	1	3ª Semana del 20 de abril	3ª Semana del 20 de abril
5.2 Reactores electro-foto-sonoquímicos	Teoría y Seminario	1	1	4ª Semana del 27 de abril	4ª Semana del 27 de abril
6.1. Energía y residuos nucleares	Teoría y Seminario	1	1	5ª Semana del 4 de mayo	5ª Semana del 4 de mayo
6.1. Reactores nucleares	Teoría y Seminario	1	1	6ª Semana del 11 de mayo	6ª Semana del 11 de mayo
Seguimiento a grupos de Redes de Reacción	Actividad práctica	5	6	1ª Semana del 30 de marzo	6ª Semana del 11 de mayo
Exposición oral del trabajo de redes	Actividad práctica	1	6	7ª Semana del 25 de mayo	8ª Semana del 25 de mayo

RESUMEN DE LAS ACTIVIDADES (en horas)

Actividad docente	Competencias asociadas	Actividad Profesor	Actividad alumno	Procedimiento de evaluación	P	NP	Total	C
Clases de teoría y seminarios	No hay modificaciones	No hay modificaciones	No hay modificaciones	No hay modificaciones	9	28,5	37,5	10%
Actividades prácticas	No hay modificaciones	No hay modificaciones	No hay modificaciones	No hay modificaciones	6	24	15	15%
Exámenes	No hay modificaciones	No hay modificaciones	No hay modificaciones	No hay modificaciones	3	22,5	25,5	70%

P: Presenciales; NP: no presenciales (trabajo autónomo); C: calificación

Fecha realización: 6 de abril de 2020 Nº de revisiones: 1 Fecha última revisión: 13 de abril de 2020