Máster en Nuevas Tecnologías Electrónicas y Fotónicas curso 2024-2025

Ficha de la asignatura		Procesado (Digital de Se Imágenes				-	Código	609231
Materia:	Electróni	ca			s Nuevas Tecr s y Fotónicas	nologías		
Carácter:	Formació	ón Básica		Curs	60:	1º	Semestre:	1º

	Total	Teóricas	Prácticas	Laboratorio
Créditos ECTS	6	3,73	0,93	1,33
Horas presenciales	45	28	7	10

Profesor/a	María José Gói	mez Silva	Dpto.	DACyA
coordinador/a	Despacho:	02.225.0	e-mail	mgomez77@ucm.es

	Teoría / Práctica - Detalle de horarios y profesorado							
Aula	Día	Horario	Profesor Período/fechas		Horas	Dpto.		
Por determinar	М	9:00 - 10:30	Tatiana Alieva	Tatiana Alieva 5 sept - 17 oct, 10 dic	17,5	Óptica		
	J	10:00 - 11:00	María José Gómez Silva	María José Gómez Silva 22 oct - 5 dic	17,5	DACyA		

	Laboratorios – Detalle de horarios y profesorado							
Grupo	Lugar	Sesiones	Profesor	Horas	Dpto.			
A1 y A2	Laboratorio de Fotónica 02.239.A/B (2ª planta, módulo central norte)	15:00 - 20:00, A1: 1/10, A2 8/10	Tatiana Alieva	5	Óptica			
A1 y A2	Laboratorio de Ingeniería de Sistemas y Automática S1.108.0 (sótano, módulo este)	16:30 - 19:00: 12/11 y 19/11	María José Gómez Silva	5	DACyA			

Tutorías – Detalle de horarios y profesorado							
Profesor	Horarios	e-mail	Lugar				
Tatiana Alieva	X de 11:00 a 14:00 on-line J de 16:30 a 19:30	talieva@ucm.es	Despacho O1- 311.0				
María José Gómez Silva	L de 14:00 a 17:00 Online J de 8:30 a 10:00 y de 11:00 a 12:30	mgomez77@ucm.es	Despacho 02.225.0				

Resultados del Aprendizaje (según documento de verificación)

- Capacidad para analizar, evaluar y sintetizar algoritmos de tratamiento de señales.
- Conocimiento de técnicas de filtrado y análisis de señales multidimensionales.
- Conocimiento de técnicas de tratamiento de imagen.
- Conocimiento de aspectos fundamentales de las señales y de los sistemas de tratamiento de señales.
- Capacidad de caracterización de dispositivos y sistemas que intervienen en el procesamiento de señales.

Competencias

CB6-10, CT1-10, CG1, CG2, CG3, CG5, CG10, CG11, CE11, CE12, CE13

Resumen

- Transformada de Fourier de señales continuas y sus propiedades: señales periódicas; teoremas de escala y de desplazamiento; principio de incertidumbre; espectro de potencia y teorema de Parseval. Convolución y correlación. Esquemas ópticos y electrónicos para realización de la transformada de Fourier.
- Sistemas lineales y su caracterización. Respuesta impulsiva del sistema. Sistemas invariantes con respecto de desplazamiento. Función de transferencia de un sistema. Función de transferencia de modulación.
- Procesado óptico de la información: espectro angular; formación de imágenes; filtrado; reconocimiento de patrones; encriptación.
- Proyecciones. Transformada de Radon. Principios de tomografía.
- Transformada de Fourier discreta. Teorema de muestreo. Frecuencia de Nyquist. Aliasing. Procesado digital de imágenes.
- Análisis de señales no estacionarias. Transformada de Fourier con ventana. Espectrogramas. Transformada de wavelet. Escalogramas. Representación en el espacio de fases.
- Procesos aleatorios. Diversos tipos de ruido y sus características estadísticas. Procesos de Markov.
- Filtros óptimos: Wiener, Kalman, Bayes.

Conocimientos previos necesarios

Es aconsejable tener conocimientos de Óptica, Estadística, Programación.

Programa de la asignatura

- Tipos de señales/imágenes y su descripción.
- Transformada de Fourier de señales continuas y sus propiedades: señales periódicas; teoremas de escala y de desplazamiento; principio de incertidumbre; teorema de Parseval. Esquemas ópticos y electrónicos para realización de la transformada de Fourier.
- Convolución y correlación.
- Sistemas lineales y su caracterización. Respuesta impulsional del sistema. Sistemas invariantes con respecto de desplazamiento. Función de transferencia de un sistema. Función de transferencia de modulación.
- Procesado óptico de la información: formación de imágenes; coherencia; filtrado óptico; reconocimiento de patrones, encriptación.
- Transformaciones relacionadas con la transformada de Fourier.
- Principios de tomografía. Transformada de Radon.
- Transformada de Fourier discreta. Teorema de muestreo. Frecuencia de Nyquist. Aliasing.
- Procesos aleatorios. Diversos tipos de ruido y sus características estadísticas.
- Procesado digital de señales e imágenes. Filtros digitales.
- Análisis de señales no estacionarias. Transformada de Fourier con ventana. Espectrogramas. Transformada de wavelet. Escalogramas.
- · Análisis basado en componentes.

Laboratorios:

- 1. Laboratorio de caracterización de un sistema de formación de imagen.
- 2. Laboratorio de procesado óptico de la información: Sistemas ópticos para análisis de Fourier; Filtrado óptico de frecuencias espaciales.

- 3. Laboratorios de procesado digital de señales basado en ordenadores y MATLAB:
- Análisis básico de señales. Tratamiento de imagen.
- Filtrado digital. Análisis de señales no estacionarias.
- Ejemplos de Análisis de Componentes Principales (PCA) e Análisis de Componentes Independientes (ICA)

Bibliografía

Básica

- J. F. James A Student's Guide to Fourier Transforms, Cambridge University Press, (2002).
- S. W. Smith, Digital Signal Processing: a Practical Guide for Engineers and Scientists, Elsevier Science & Technology (2002)
- J. W. Goodman, Introduction to Fourier Optics, Third Edition, Roberts & Company, Englewood, (2005).
- J. M. Girón-Sierra, Digital Signal Processing with Matlab Examples, Springer, (2017).
- J. W. Hoboken, Digital signal processing using MATLAB for students and researchers, NJ, Wiley, (2011)
- J.G. Proakis, D.G. Manolakis, Digital Signal Processing, Prentice Hall, (2006).
- S. Mitra, Digital Signal Processing, McGraw-Hill (2005).
- S. Qian, Introduction to Time-Frequency and Wavelet Transform, Prentice Hall, (2001).

Complementaria

- O. K. Ersoy, Diffraction, Fourier Optics, and Imaging, Wiley Interscience, NJ, USA, (2007).
- D. Voelz, Computational Fourier Optics: a MATLAB tutorial, SPIE Press, Washington USA, 2011.
- A.V. Oppenheim, A.S. Willsky, Signals and Systems, Prentice Hall, (1996)
- H. H. Barrett, K. J. Myers, Foundations of Image Science, Wiley-Interscience, USA (2004).

Recursos en Internet

Asignatura en el Campus Virtual de la UCM.

Enlaces a portales universitarios de procesamiento de señales e imágenes.

Metodología

Se desarrollarán las siguientes actividades formativas:

- Clases de teoría
- Clases prácticas (problemas y laboratorios).
- Tutorías, en las que se discutirán y resolverán dudas de forma personalizada o en pequeños grupos o en línea.

En las clases se utilizarán, a discreción del profesor, la pizarra, proyecciones con ordenador, videos, simulaciones por ordenador, etc.

Evaluación						
Realización de exámenes	Peso	50%				
Examen						
Otras actividades de evaluación	Peso	50%				

Ejercicios entregables: 15%. Informes de los experimentos en el laboratorio (en grupo): 20% Preparación de un póster basado en los contenidos del laboratorio y la literatura

científica: 15%

Calificación final

La calificación final será: NFinal =0.5 x NExámen+0.5 x NOtrasActiv Este criterio de puntuación es válido para las dos convocatorias del curso académico