Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials

Manuel Mañas
(joint work with Amílcar Branquinho and Ana Foulquié-Moreno)

Universidad Complutense \& ICMAT

January 24th, 2023

Banded semi-infinite matrices

Banded matrices

where the extreme diagonal entries are nonzero
with $T=\lim _{N \rightarrow \infty} T^{[N]}$ (inductive limit) a banded semi-infinite matrix

Recursion polynomials

Type I recursion polynomials

$$
A^{(a)}(x)=\left[\begin{array}{ll}
A_{0}^{(a)}(x) & A_{1}^{(a)}(x) \ldots .
\end{array}\right], \quad a \in\{1, \ldots, p\}
$$

- Left eigenvectors:

$$
A^{(a)}(x) T=x A^{(a)}(x), \quad a \in\{1, \ldots, p\}
$$

Recursion polynomials

Type I recursion polynomials

- Initial conditions,

$$
\left\{\begin{array} { c }
{ A _ { 0 } ^ { (1) } = 1 , } \\
{ A _ { 1 } ^ { (1) } = \nu _ { 1 } ^ { (1) } , } \\
{ \vdots } \\
{ A _ { p - 1 } ^ { (1) } = \nu _ { p - 1 } ^ { (1) } , }
\end{array} \left\{\begin{array}{l}
A_{0}^{(2)}=0, \\
A_{1}^{(2)}=1, \\
A_{2}^{(2)}=\nu_{2}^{(2)}, \\
\vdots \\
A_{p-1}^{(2)}=\nu_{p-1}^{(2)},
\end{array} \quad \cdots,\left\{\begin{array}{c}
A_{0}^{(p)}=0 \\
\vdots \\
A_{p-2}^{(p)}=0 \\
A_{p-1}^{(p)}=1
\end{array}\right.\right.\right.
$$

$\nu_{j}^{(i)}$ being arbitrary constants

Recursion polynomials

Type I recursion polynomials

- Initial condition matrix

$$
\begin{gathered}
(p+q+1) \text {-term recursion relation, } A_{-q}^{(a)}=\cdots=A_{-1}^{(a)}=0, a \in\{1, \ldots, p\} \\
A_{n-q}^{(a)} T_{n-q, n}+\cdots+A_{n+p}^{(a)} T_{n+p, n}=x A_{n}^{(a)}, \quad n \in \mathbb{N}_{0}
\end{gathered}
$$

$$
\operatorname{deg} A_{n}^{(a)}=\left\lceil\frac{n+2-a}{p}\right\rceil-1
$$

Recursion polynomials

Type I recursion polynomials

- Initial condition matrix
> $(p+q+1)$-term recursion relation, $A_{-q}^{(a)}=\cdots=A_{-1}^{(a)}=0, a \in\{1, \ldots, p\}$

$$
A_{n-q}^{(a)} T_{n-q, n}+\cdots+A_{n+p}^{(a)} T_{n+p, n}=x A_{n}^{(a)}, \quad n \in \mathbb{N}_{0}
$$

$\geq \operatorname{deg} A_{n}^{(a)}=\left\lceil\frac{n+2-a}{p}\right\rceil-1$

Recursion polynomials

Type I recursion polynomials

- Initial condition matrix
> $(p+q+1)$-term recursion relation, $A_{-q}^{(a)}=\cdots=A_{-1}^{(a)}=0, a \in\{1, \ldots, p\}$

$$
A_{n-q}^{(a)} T_{n-q, n}+\cdots+A_{n+p}^{(a)} T_{n+p, n}=x A_{n}^{(a)}, \quad n \in \mathbb{N}_{0}
$$

$>\operatorname{deg} A_{n}^{(a)}=\left\lceil\frac{n+2-a}{p}\right\rceil-1$

Recursion polynomials

Type II recursion polynomials

$$
B^{(b)}(x)=\left[\begin{array}{lll}
B_{0}^{(b)}(x) & B_{1}^{(b)}(x) \ldots
\end{array}\right]^{\top}, \quad b \in\{1, \ldots, q\}
$$

> Right eigenvectors:

$$
T B^{(b)}(x)=x B^{(b)}(x), \quad b \in\{1, \ldots, q\}
$$

Recursion polynomials

Type II recursion polynomials

- Initial conditions,

$$
\left\{\begin{array} { l }
{ B _ { 0 } ^ { (1) } = 1 , } \\
{ B _ { 1 } ^ { (1) } = \xi _ { 1 } ^ { (1) } , } \\
{ \vdots } \\
{ B _ { q - 1 } ^ { (1) } = \xi _ { q - 1 } ^ { (1) } , }
\end{array} \quad \left\{\begin{array}{l}
B_{0}^{(2)}=0 \\
B_{1}^{(2)}=1, \\
B_{2}^{(2)}=\xi_{2}^{(2)}, \\
\vdots \\
B_{p-1}^{(2)}=\xi_{q-1}^{(2)},
\end{array} \quad \cdots,\left\{\begin{array}{c}
B_{0}^{(q)}=0 \\
\vdots \\
B_{q-2}^{(q)}=0 \\
B_{q-1}^{(q)}=1
\end{array}\right.\right.\right.
$$

$\xi_{j}^{(i)}$ being arbitrary constants

Recursion polynomials

Type II recursion polynomials

- Initial condition matrix

$$
\begin{aligned}
& (p+q+1) \text {-term recursion relation, } B_{-p}^{(b)}=\cdots=B_{-1}^{(b)}=0, b \in\{1, \ldots, q\} \\
& \quad T_{n, n-p} B_{n-p}^{(b)}+\cdots+T_{n, n+q} B_{n+q}^{(b)}=x B_{n}^{(b)}, \quad n \in\{0,1, \ldots\} \\
& \operatorname{deg} B_{n}^{(b)}=\left\lceil\frac{n+2-b}{q}\right\rceil-1
\end{aligned}
$$

Recursion polynomials

Type II recursion polynomials

- Initial condition matrix

> $(p+q+1)$-term recursion relation, $B_{-p}^{(b)}=\cdots=B_{-1}^{(b)}=0, b \in\{1, \ldots, q\}$

$$
T_{n, n-p} B_{n-p}^{(b)}+\cdots+T_{n, n+q} B_{n+q}^{(b)}=x B_{n}^{(b)}, \quad n \in\{0,1, \ldots\}
$$

$\operatorname{deg} B_{n}^{(b)}=\left\lceil\frac{n+2-b}{q}\right\rceil-1$

Recursion polynomials

Type II recursion polynomials

> Initial condition matrix

> $(p+q+1)$-term recursion relation, $B_{-p}^{(b)}=\cdots=B_{-1}^{(b)}=0, b \in\{1, \ldots, q\}$

$$
T_{n, n-p} B_{n-p}^{(b)}+\cdots+T_{n, n+q} B_{n+q}^{(b)}=x B_{n}^{(b)}, \quad n \in\{0,1, \ldots\}
$$

$>\operatorname{deg} B_{n}^{(b)}=\left\lceil\frac{n+2-b}{q}\right\rceil-1$

Recursion polynomials

Characteristic polynomials

For the semi-infinite matrix T we consider the polynomials $P_{N}(x)$, $\operatorname{deg} P_{N}=N$, as the characteristic polynomials of $T^{[N-1]}$

$$
P_{N}(x):= \begin{cases}1, & N=0 \\ \operatorname{det}\left(x I_{N}-T^{[N-1]}\right), & N \in \mathbb{N}\end{cases}
$$

Recursion polynomials

Characteristic polynomials

For the semi-infinite matrix T we consider the polynomials $P_{N}(x)$, $\operatorname{deg} P_{N}=N$, as the characteristic polynomials of $T^{[N-1]}$

$$
P_{N}(x):= \begin{cases}1, & N=0 \\ \operatorname{det}\left(x I_{N}-T^{[N-1]}\right), & N \in \mathbb{N}\end{cases}
$$

Left and right recursion polynomials determinants

$$
A_{N}:=\left[\begin{array}{ccc}
A_{N}^{(1)} & \cdots \cdots & A_{N+p-1}^{(1)} \\
\vdots & & \vdots \\
A_{N}^{(p)} & \cdots \cdots & A_{N+p-1}^{(p)}
\end{array}\right], \quad B_{N}:=\left[\begin{array}{ccc}
B_{N}^{(1)} & \cdots \cdots \cdots & B_{N}^{(q)} \\
\vdots & & \vdots \\
B_{N+q-1}^{(1)} & \cdots \cdots & B_{N+q-1}^{(q)}
\end{array}\right]
$$

$\alpha_{N}:=(-1)^{(p-1) N} T_{p, 0} \cdots T_{N+p-1, N-1}, \beta_{N}:=(-1)^{(q-1) N} T_{0, q} \cdots T_{N-1, N+q-1}$
for $N \in \mathbb{N}$ and $\alpha_{0}=\beta_{0}=1$

Recursion polynomials

Recall that as the entries in the extreme diagonals do not cancel $\alpha_{N}, \beta_{N} \neq 0$. In terms of these objects we found the following important result:

Theorem

Determinantal expressions for the characteristic polynomials

$$
P_{N}(x)=\alpha_{N} \operatorname{det} A_{N}(x)=\beta_{N} \operatorname{det} B_{N}(x)
$$

Founded for $q=1$, in the context of non-mixed multiple orthogonality, in:

E

- Jonathan Coussement and Walter Van Assche, Gaussian quadrature for multiple orthogonal polynomials, Journal of Computational and Applied Mathematics 178 (2005) 131-145.

Associated polynomials

Associated polynomials

$$
Q_{n, N}:=\left|\begin{array}{cccc}
A_{n}^{(1)} & \ldots & \ldots & A_{n}^{(p)} \\
A_{N+1}^{(1)} & \ldots & \cdots & A_{N+1}^{(p)} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \vdots \\
A_{N+p-1}^{(1)} & \cdots & \cdots & A_{N+p-1}^{(p)}
\end{array}\right|, \quad R_{n, N}:=\left|\begin{array}{cccc}
B_{n}^{(1)} & \ldots & \ldots & B_{n}^{(q)} \\
B_{N+1}^{(1)} & \cdots & \cdots & B_{N+1}^{(q)} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \vdots \\
B_{N+q-1}^{(1)} & \cdots & \cdots & B_{N+q-1}^{(q)}
\end{array}\right|
$$

$Q_{N}:=\left[\begin{array}{ll}Q_{0, N} & Q_{1, N} \cdots \cdots\end{array}\right], Q^{\langle N\rangle}:=\left[\begin{array}{ll}Q_{0, N} & Q_{1, N} \cdots \cdots Q_{N, N}\end{array}\right]$
$R_{N}:=\left[\begin{array}{ll}R_{0, N} & R_{1, N} \cdots \cdots\end{array}\right]^{\top}, R^{\langle N\rangle}:=\left[\begin{array}{ll}R_{0, N} & R_{1, N} \cdots \cdots R_{N, N}\end{array}\right]^{\top}$

Associated polynomials

1. $Q_{N+1, N}=\cdots=Q_{N+p-1, N}=R_{N+1, N}=\cdots=R_{N+q-1, N}=0$
2. $\alpha_{N} Q_{N, N}=\beta_{N} R_{N, N}=P_{N}$
3. $(-1)^{p-1} \alpha_{N+1} Q_{N+p, N}=(-1)^{q-1} \beta_{N+1} R_{N+q, N}=P_{N+1}$
4. $Q_{N} T=x Q_{N}$ and $T R_{N}=x R_{N}$

Associated polynomials

1. $Q_{N+1, N}=\cdots=Q_{N+p-1, N}=R_{N+1, N}=\cdots=R_{N+q-1, N}=0$
2. $\alpha_{N} Q_{N, N}=\beta_{N} R_{N, N}=P_{N}$
3. $(-1)^{p-1} \alpha_{N+1} Q_{N+p, N}=(-1)^{q-1} \beta_{N+1} R_{N+q, N}=P_{N+1}$
4. $Q_{N} T=x Q_{N}$ and $T R_{N}=x R_{N}$

Associated polynomials

1. $Q_{N+1, N}=\cdots=Q_{N+p-1, N}=R_{N+1, N}=\cdots=R_{N+q-1, N}=0$
2. $\alpha_{N} Q_{N, N}=\beta_{N} R_{N, N}=P_{N}$
3. $(-1)^{p-1} \alpha_{N+1} Q_{N+p, N}=(-1)^{q-1} \beta_{N+1} R_{N+q, N}=P_{N+1}$ 4. $Q_{N} T=x Q_{N}$ and $T R_{N}=x R_{N}$

Associated polynomials

1. $Q_{N+1, N}=\cdots=Q_{N+p-1, N}=R_{N+1, N}=\cdots=R_{N+q-1, N}=0$
2. $\alpha_{N} Q_{N, N}=\beta_{N} R_{N, N}=P_{N}$
3. $(-1)^{p-1} \alpha_{N+1} Q_{N+p, N}=(-1)^{q-1} \beta_{N+1} R_{N+q, N}=P_{N+1}$
4. $Q_{N} T=x Q_{N}$ and $T R_{N}=x R_{N}$

Associated polynomials

1. $Q_{N+1, N}=\cdots=Q_{N+p-1, N}=R_{N+1, N}=\cdots=R_{N+q-1, N}=0$
2. $\alpha_{N} Q_{N, N}=\beta_{N} R_{N, N}=P_{N}$
3. $(-1)^{p-1} \alpha_{N+1} Q_{N+p, N}=(-1)^{q-1} \beta_{N+1} R_{N+q, N}=P_{N+1}$
4. $Q_{N} T=x Q_{N}$ and $T R_{N}=x R_{N}$
5.

$$
\begin{aligned}
& Q^{\langle N\rangle} T^{[N]}+\left[\begin{array}{lll}
0 \cdots \cdots & \left.T_{N+p, N} Q_{N+p, N}\right]=x Q^{\langle N\rangle}
\end{array}\right. \\
& T^{[N]} R^{\langle N\rangle}+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
T_{N, N+q} R_{N+q, N}
\end{array}\right]=x R^{\langle N\rangle} .
\end{aligned}
$$

Christoffel-Darboux

Theorem (Christoffel-Darboux formulas)

1. For the determinantal polynomials $Q_{n, N}$ and $R_{n, N}$ we get the following generalized Christoffel-Darboux formula

$$
\sum_{n=0}^{N} Q_{n, N}(x) R_{n, N}(y)=\frac{1}{\alpha_{N} \beta_{N}} \frac{P_{N+1}(x) P_{N}(y)-P_{N}(x) P_{N+1}(y)}{x-y}
$$

2. The following generalized confluent Christoffel-Darboux relation is fulfilled

$$
\sum_{n=0}^{N} Q_{n, N} R_{n, N}=\frac{1}{\alpha_{N} \beta_{N}}\left(P_{N+1}^{\prime} P_{N}-P_{N}^{\prime} P_{N+1}\right)
$$

Spectral properties

Assume that P_{N+1} has simple zeros at the set $\left\{\lambda_{k}^{[N]}\right\}_{k=1}^{N+1}$

- Biorthogonal sets of left and right eigenvectors, $\left\{w_{k}^{\langle N\rangle}\right\}_{k=1}^{N+1}$, $\left\{u_{k}^{\langle N\rangle}\right\}_{k=1}^{N+1}$, are given by

$$
w_{k}^{\langle N\rangle}=\frac{Q^{\langle N\rangle}\left(\lambda_{k}^{[N]}\right)}{\beta_{N} \sum_{l=0}^{N} Q_{l, N}\left(\lambda_{k}^{[N]}\right) R_{l, N}\left(\lambda_{k}^{[N]}\right)}, \quad u_{k}^{\langle N\rangle}=\beta_{N} R^{\langle N\rangle}\left(\lambda_{k}^{[N]}\right)
$$

The following expression holds

$$
w_{k, n}^{\langle N\rangle}=\frac{\alpha_{N} Q_{n-1, N}\left(\lambda_{k}^{[N]}\right)}{P_{N}\left(\lambda_{k}^{[N]}\right) P_{N+1}^{\prime}\left(\lambda_{k}^{[N]}\right)}, \quad u_{k, n}^{\langle N\rangle}=\beta_{N} R_{n-1, N}\left(\lambda_{k}^{[N]}\right)
$$

Spectral properties

Assume that P_{N+1} has simple zeros at the set $\left\{\lambda_{k}^{[N]}\right\}_{k=1}^{N+1}$

- Biorthogonal sets of left and right eigenvectors, $\left\{w_{k}^{\langle N\rangle}\right\}_{k=1}^{N+1}$, $\left\{u_{k}^{\langle N\rangle}\right\}_{k=1}^{N+1}$, are given by

$$
w_{k}^{\langle N\rangle}=\frac{Q^{\langle N\rangle}\left(\lambda_{k}^{[N]}\right)}{\beta_{N} \sum_{l=0}^{N} Q_{l, N}\left(\lambda_{k}^{[N]}\right) R_{l, N}\left(\lambda_{k}^{[N]}\right)}, \quad u_{k}^{\langle N\rangle}=\beta_{N} R^{\langle N\rangle}\left(\lambda_{k}^{[N]}\right)
$$

- The following expression holds

$$
w_{k, n}^{\langle N\rangle}=\frac{\alpha_{N} Q_{n-1, N}\left(\lambda_{k}^{[N]}\right)}{P_{N}\left(\lambda_{k}^{[N]}\right) P_{N+1}^{\prime}\left(\lambda_{k}^{[N]}\right)}, \quad u_{k, n}^{\langle N\rangle}=\beta_{N} R_{n-1, N}\left(\lambda_{k}^{[N]}\right)
$$

Spectral properties

$>$ We can write $w_{k, n}^{\langle N\rangle}=A_{n-1}^{(1)}\left(\lambda_{k}^{[N]}\right) \mu_{k, 1}^{[N]}+\cdots+A_{n-1}^{(p)}\left(\lambda_{k}^{[N]}\right) \mu_{k, p}^{[N]}$ Christoffel numbers

$$
\begin{aligned}
& \mu_{k, 1}^{[N]}:=\frac{\left|\begin{array}{cccc}
A_{n+1}^{(2)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots \cdots A_{n+1}^{(p)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \ddots \ddots & \vdots \\
A_{n+p-1}^{(2)}\left(\lambda_{k}^{[N]}\right) & \cdots & \vdots & A_{n+p-1}^{(p)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right|}{\beta_{N} \sum_{l=0}^{N} Q_{l, N}\left(\lambda_{k}^{[N]}\right) R_{l, N}\left(\lambda_{k}^{[N]}\right)} \\
& \mu_{k, 2}^{[N]}:=-\frac{\left|\begin{array}{cccc}
A_{n+1}^{(1)}\left(\lambda_{k}^{[N]}\right) & A_{n+1}^{(3)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots \cdots & A_{n+1}^{(p)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \vdots & \ddots \ddots & \vdots \\
A_{n+p-1}^{(1)}\left(\lambda_{k}^{[N]}\right) & A_{n+p-1}^{(3)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots & A_{n+p-1}^{(p)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right|}{\beta_{N} \sum_{l=0}^{N} Q_{l, N}\left(\lambda_{k}^{[N]}\right) R_{l, N}\left(\lambda_{k}^{[N]}\right)} \\
& \mu_{k, p}^{[N]}:=(-1)^{p-1} \frac{\left|\begin{array}{ccc}
A_{n+1}^{(1)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots & A_{n+1}^{(p-1)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \ddots \ddots \ddots & \vdots \\
A_{n+p-1}^{(1)}\left(\lambda_{k}^{[N]}\right) \cdots \cdots & A_{n+p-1}^{(p-1)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right|}{\beta_{N} \sum_{l=0}^{N} Q_{l, N}\left(\lambda_{k}^{[N]}\right) R_{l, N}\left(\lambda_{k}^{[N]}\right)}
\end{aligned}
$$

Spectral properties

$>$ We can write $u_{k, n}^{\langle N\rangle}=B_{n-1}^{(1)}\left(\lambda_{k}^{[N]}\right) \rho_{k, 1}^{[N]}+\cdots+B_{n-1}^{(q)}\left(\lambda_{k}^{[N]}\right) \rho_{k, q}^{[N]}$ Christoffel numbers

$$
\begin{aligned}
& \rho_{k, 1}^{[N]}:=\beta_{N}\left|\begin{array}{ccc}
B_{N+1}^{(2)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots & B_{N+1}^{(q)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \vdots \\
B_{N+q-1}^{(2)}\left(\lambda_{k}^{[N]}\right) & \cdots & B_{N+q-1}^{(p)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right| \\
& \rho_{k, 2}^{[N]}:=-\beta_{N}\left|\begin{array}{cccc}
B_{N+1}^{(1)}\left(\lambda_{k}^{[N]}\right) & B_{N+1}^{(3)}\left(\lambda_{k}^{[N]}\right) & \cdots \cdots & B_{N+1}^{(q)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \vdots & \vdots \\
B_{N+q-1}^{(1)}\left(\lambda_{k}^{[N]}\right) & B_{n+q-1}^{(3)}\left(\lambda_{k}^{[N]}\right) \cdots & \cdots B_{N+q-1}^{(p)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right| \\
& \rho_{k, q}^{[N]}:=(-1)^{q-1} \beta_{N}\left|\begin{array}{ccc}
B_{N+1}^{(1)}\left(\lambda_{k}^{[N]}\right) \cdots \cdots B_{N+1}^{(q-1)}\left(\lambda_{k}^{[N]}\right) \\
\vdots & \vdots \\
B_{N+q-1}^{(1)}\left(\lambda_{k}^{[N]}\right) \cdots & \cdots B_{N+q-1}^{(q-1)}\left(\lambda_{k}^{[N]}\right)
\end{array}\right|
\end{aligned}
$$

Spectral properties

- It holds that

Spectral properties

> Matrices U (with columns the right eigenvectors u_{k} arranged in the standard order) and W and (with rows the left eigenvectors w_{k} arranged in the standard order) satisfy

$$
U W=W U=I_{N+1}
$$

In terms of the diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}^{[N]}, \ldots, \lambda_{N+1}^{[N]}\right)$ we have

$$
U D^{n} W=\left(T^{[N]}\right)^{n}
$$

Spectral properties

- Matrices U (with columns the right eigenvectors u_{k} arranged in the standard order) and W and (with rows the left eigenvectors w_{k} arranged in the standard order) satisfy

$$
U W=W U=I_{N+1}
$$

- In terms of the diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}^{[N]}, \ldots, \lambda_{N+1}^{[N]}\right)$ we have

$$
U D^{n} W=\left(T^{[N]}\right)^{n}
$$

Orthogonality

Step functions

$$
\psi_{b, a}^{[N]}:= \begin{cases}0, & x<\lambda_{N+1}^{[N]}, \\ \rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{k, b}^{[N]} \mu_{k, a}^{[N]}, & \lambda_{k+1}^{[N]} \leqslant x<\lambda_{k}^{[N]}, k=1, \ldots, N \\ \rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{N+1, b}^{[N]} \mu_{N+1, a}^{[N]}, & x \geqslant \lambda_{1}^{[N]}\end{cases}
$$

Finite sums
For $a \in\{1, \ldots, p\}$ and $b \in\{1, \ldots, q\}$, we have

$$
\rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{N+1, b}^{[N]} \mu_{N+1, a}^{[N]}=\left(\xi^{-1} I_{q, p} \nu^{-\top}\right)_{b, a}
$$

Orthogonality

Step functions

$$
\psi_{b, a}^{[N]}:= \begin{cases}0, & x<\lambda_{N+1}^{[N]} \\ \rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{k, b}^{[N]} \mu_{k, a}^{[N]}, & \lambda_{k+1}^{[N]} \leqslant x<\lambda_{k}^{[N]}, k=1, \ldots, N \\ \rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{N+1, b}^{[N]} \mu_{N+1, a}^{[N]}, & x \geqslant \lambda_{1}^{[N]}\end{cases}
$$

Finite sums
For $a \in\{1, \ldots, p\}$ and $b \in\{1, \ldots, q\}$, we have

$$
\rho_{1, b}^{[N]} \mu_{1, a}^{[N]}+\cdots+\rho_{N+1, b}^{[N]} \mu_{N+1, a}^{[N]}=\left(\xi^{-1} I_{q, p} \nu^{-\top}\right)_{b, a}
$$

Orthogonality

Matrix of discrete measures

$q \times p$ matrix of functions: $\Psi^{[N]}:=\left[\begin{array}{ccc}\psi_{1,1}^{[N]} & \cdots & \psi_{1, p}^{[N]} \\ \vdots & & \vdots \\ \psi_{q, 1}^{[N]} & \cdots & \psi_{q, p}^{[N]}\end{array}\right] q \times p$ matrix of discrete Lebesgue-Stieltjes measures supported at the zeros of P_{N+1} :
$\mathrm{d} \Psi^{[N]}=\left[\begin{array}{ccc}\mathrm{d} \psi_{1,1}^{[N]} \cdots \cdots \cdot \mathrm{d} \psi_{1, p}^{[N]} \\ \vdots & & \vdots \\ \mathrm{d} \psi_{q, 1}^{[N]} \cdots \cdots & \cdots \mathrm{d} \psi_{q, p}^{[N]}\end{array}\right]=\sum_{k=1}^{N+1}\left[\begin{array}{c}\rho_{k, 1}^{[N]} \\ \vdots \\ \rho_{k, q}^{[N]}\end{array}\right]\left[\mu_{k, 1}^{[N]} \cdots \cdots \mu_{k, p}^{[N]}\right] \delta\left(x-\lambda_{k}^{[N]}\right)$

Orthogonality

Assume that the recursion polynomials P_{N+1} have simple zeros $\left\{\lambda_{k}^{[N]}\right\}_{k=1}^{N+1}$

Theorem

The following biorthogonal relations hold

$$
\sum_{a=1}^{p} \sum_{b=1}^{q} \int B_{n}^{(b)}(x) \mathrm{d} \psi_{b, a}^{[N]}(x) A_{m}^{(a)}(x)=\delta_{n, m}, \quad n, m \in\{0, \ldots, N\}
$$

Proof.

lt follows from $U W=I$

Orthogonality

From this biorthogonality we get the following:

Corollary

The following discrete type mixed multiple orthogonality for $m \in\{1, \ldots, N\}$ are satisfied:

$$
\begin{array}{ll}
\sum_{a=1}^{p} \int x^{n} \mathrm{~d} \psi_{b, a}^{[N]} A_{m}^{(a)}=0, \quad n \in\left\{0, \ldots, \operatorname{deg} B_{m-1}^{(b)}\right\}, & b \in\{1, \ldots, q\} \\
\sum_{b=1}^{q} \int B_{m}^{(b)} \mathrm{d} \psi_{b, a}^{[N]} x^{n}=0, \quad n \in\left\{0, \ldots, \operatorname{deg} A_{m-1}^{(a)}\right\}, & a \in\{1, \ldots, p\}
\end{array}
$$

Positive bidiagonal factorization

1. We now introduce the very important idea of positive bidiagonal factorization (PBF)
This factorization is very natural for banded matrices as all the subdiagonals may be constructed in terms of simpler bidiagonal matrices

Positive bidiagonal factorization

1. We now introduce the very important idea of positive bidiagonal factorization (PBF)
2. This factorization is very natural for banded matrices as all the subdiagonals may be constructed in terms of simpler bidiagonal matrices

Positive bidiagonal factorization

Positive bidiagonal factorization

We say that a banded matrix T admits a PBF if

$$
T=L_{1} \cdots L_{p} \Delta U_{q} \cdots U_{1}
$$

with $\Delta=\operatorname{diag}\left(\Delta_{0}, \Delta_{1}, \ldots\right)$ and bidiagonal matrices given respectively by

with $L_{k \mid i}, U_{k \mid i}, \Delta_{i}>0$, for $i \in \mathbb{N}_{0}$

Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)
All its minors are positive

Oscillatory Matrix (IITN)
A totally non negative matrix A such that for some n, the matrix A^{n} is totally positive

Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)
All its minors are non-negative and is nonsingular

Totally positive (TP)
All its minors are positive

Oscillatory Matrix (IITN)
A totally non negative matrix A such that for some n, the matrix A^{n} is totally positive

Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)
All its minors are non-negative and is nonsingular

Totally positive (TP)
All its minors are positive

Oscillatory Matrix (IITN)
A totally non negative matrix A such that for some n, the matrix A^{n} is totally positive

Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)
All its minors are non-negative and is nonsingular

Totally positive (TP)
All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix A^{n} is totally positive

Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix
If and only if the elements of the first subdiagonal and superdiagonal are positive, and the leading principal minors are positive

Factorization I

From Cauchy-Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold for TN or oscillatory matrices)

Factorization II
PBF \Rightarrow oscillatory

Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are positive, and the leading principal minors are positive

```
Factorization I
From Cauchy-Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)
```

Factorization II PBF \Rightarrow oscillatory

Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are positive, and the leading principal minors are positive

Factorization I

From Cauchy-Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold for TN or oscillatory matrices)

Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are positive, and the leading principal minors are positive

Factorization I

From Cauchy-Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold for TN or oscillatory matrices)

Factorization II

PBF \Rightarrow oscillatory

Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property
The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Left and right eigenvectors $w^{(k)}, u^{(k)}$ to the k-th largest eigenvalue

$$
U=\left[u^{(1)} \cdots \cdots u^{(n)}\right], \quad W=\left[\begin{array}{c}
\vdots \\
w^{(n)}
\end{array}\right], \quad U W=I
$$

Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

$$
U=\left[u^{(1)} \ldots \cdots u^{(n)}\right], \quad W=\left[\begin{array}{c}
w^{(1)} \\
\vdots \\
w^{(n)}
\end{array}\right], \quad U W=I
$$

Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Left and right eigenvectors $w^{(k)}, u^{(k)}$ to the k-th largest eigenvalue

$$
U=\left[u^{(1)} \ldots \cdots u^{(n)}\right], \quad W=\left[\begin{array}{c}
w^{(1)} \\
\vdots \\
w^{(n)}
\end{array}\right], \quad U W=I
$$

Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing properties of polynomials

```
Translations
Translations of bounded Jacobi matrices are oscillatory matrices
```


Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing properties of polynomials

Translations
 Translations of bounded Jacobi matrices are oscillatory matrices

Oscillatory matrices

Interlacing

Let us assume that T is oscillatory. Then:

1. The polynomial P_{N+1} interlaces P_{N}
2. When $x \in \mathbb{R}$, for the corresponding Wronskian we find $P_{N+1}^{\prime} P_{N}-P_{N}^{\prime} P_{N+1}>0$. In particular,

$$
\left.\left(P_{N+1}^{\prime} P_{N}\right)\right|_{x=\lambda_{k}^{[N]}}>0,\left.\quad\left(P_{N+1} P_{N}^{\prime}\right)\right|_{x=\lambda_{k}^{[N-1]}}<0
$$

3. The confluent kernel is a positive function; i.e., $\alpha_{N} \beta_{N} \sum_{n=0}^{N} Q_{n, N}(x) R_{n, N}(x)>0$ for $x \in \mathbb{R}$

PBF implies oscillatory

If T has a PBF then its leading principal submatrices $T^{[N]}$ are oscillatory

Oscillatory matrices

Interlacing

Let us assume that T is oscillatory. Then:

1. The polynomial P_{N+1} interlaces P_{N}
2. When $x \in \mathbb{R}$, for the corresponding Wronskian we find $P_{N+1}^{\prime} P_{N}-P_{N}^{\prime} P_{N+1}>0$. In particular,

$$
\left.\left(P_{N+1}^{\prime} P_{N}\right)\right|_{x=\lambda_{k}^{[N]}}>0,\left.\quad\left(P_{N+1} P_{N}^{\prime}\right)\right|_{x=\lambda_{k}^{[N-1]}}<0
$$

3. The confluent kernel is a positive function; i.e., $\alpha_{N} \beta_{N} \sum_{n=0}^{N} Q_{n, N}(x) R_{n, N}(x)>0$ for $x \in \mathbb{R}$

PBF implies oscillatory
If T has a PBF then its leading principal submatrices $T^{[N]}$ are oscillatory

Oscillatory matrices

Interlacing

Let us assume that T is oscillatory. Then:

1. The polynomial P_{N+1} interlaces P_{N}
2. When $x \in \mathbb{R}$, for the corresponding Wronskian we find $P_{N+1}^{\prime} P_{N}-P_{N}^{\prime} P_{N+1}>0$. In particular,

$$
\left.\left(P_{N+1}^{\prime} P_{N}\right)\right|_{x=\lambda_{k}^{[N]}}>0,\left.\quad\left(P_{N+1} P_{N}^{\prime}\right)\right|_{x=\lambda_{k}^{[N-1]}}<0
$$

3. The confluent kernel is a positive function; i.e., $\alpha_{N} \beta_{N} \sum_{n=0}^{N} Q_{n, N}(x) R_{n, N}(x)>0$ for $x \in \mathbb{R}$

PBF implies oscillatory
If T has a PBF then its leading principal submatrices $T^{[N]}$ are oscillatory

Oscillatory matrices

Interlacing

Let us assume that T is oscillatory. Then:

1. The polynomial P_{N+1} interlaces P_{N}
2. When $x \in \mathbb{R}$, for the corresponding Wronskian we find $P_{N+1}^{\prime} P_{N}-P_{N}^{\prime} P_{N+1}>0$. In particular,

$$
\left.\left(P_{N+1}^{\prime} P_{N}\right)\right|_{x=\lambda_{k}^{[N]}}>0,\left.\quad\left(P_{N+1} P_{N}^{\prime}\right)\right|_{x=\lambda_{k}^{[N-1]}}<0
$$

3. The confluent kernel is a positive function; i.e., $\alpha_{N} \beta_{N} \sum_{n=0}^{N} Q_{n, N}(x) R_{n, N}(x)>0$ for $x \in \mathbb{R}$

PBF implies oscillatory

If T has a PBF then its leading principal submatrices $T^{[N]}$ are oscillatory

Darboux transformations

Darboux transformations

Let us assume that T admits a bidiagonal factorization (not necessarily positive). For each of its truncations $T^{[N]}$ we consider a chain of new auxiliary matrices, called Darboux transformations, given by the consecutive permutation of the triangular matrices in the factorization

$$
\left\{\begin{aligned}
\hat{T}^{[N,+1]} & =L_{2}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} \\
\hat{T}^{[N,+2]} & =L_{3}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} L_{2}^{[N]} \\
& \vdots \\
\hat{T}^{[N,+(p-1)]} & =L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} L_{2}^{[N]} \cdots L_{p-1}^{[N]} \\
\hat{T}^{[N,+p]} & =\Delta^{[N]} U_{q}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} L_{2}^{[N]} \cdots L_{p}^{[N]}
\end{aligned}\right.
$$

Darboux transformations

Darboux transformations

$$
\left\{\begin{aligned}
\hat{T}^{[N,-1]} & =U_{1}^{[N]} L_{1}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \cdots U_{2}^{[N]} \\
\hat{T}^{[N,-2]} & =U_{2}^{[N]} U_{1}^{[N]} L_{1}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \cdots U_{3}^{[N]} \\
& \vdots \\
\hat{T}^{[N,-(q-1)]} & =U_{q-1}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} L_{2}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]} U_{q}^{[N]} \\
\hat{T}^{[N,-q]} & =U_{q}^{[N]} \cdots U_{1}^{[N]} L_{1}^{[N]} L_{2}^{[N]} \cdots L_{p}^{[N]} \Delta^{[N]}
\end{aligned}\right.
$$

Darboux transformations

Darboux transformations are $p+q+1$ banded matrices

Theorem (PBF and Darboux transformations)
Let us assume that the PBF holds. Then,

1. The Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}$, $b \in\{1, \ldots, q\}$ are oscillatory

The characteristic polynomial of the Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}, b \in\{1, \ldots, q\}$ is P_{N+1} If w, u are left and right eigenvectors of $T^{[N]}$, respectively, then
$\hat{w}=w L_{1}^{[N]} \cdots L_{a}^{[N]}$ is a left eigenvector of $\hat{T}^{[N,+a]}$ and
$\hat{u}=U_{b}^{[N]} \cdots U_{1}^{[N]} u$ is a right eigenvector of $\hat{T}^{[N,-b]}$

Darboux transformations

Darboux transformations are $p+q+1$ banded matrices

Theorem (PBF and Darboux transformations)
Let us assume that the PBF holds. Then,

1. The Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}$, $b \in\{1, \ldots, q\}$ are oscillatory
2. The characteristic polynomial of the Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}, b \in\{1, \ldots, q\}$ is P_{N+1} If w, u are left and right eigenvectors of $T^{[N]}$, respectively, then
$\hat{w}=w L_{1}^{[N]} \cdots L_{a}^{[N]}$ is a left eigenvector of $\hat{T}^{[N,+a]}$ and
$\hat{u}=U_{b}^{[N]} \cdots U_{1}^{[N]} u$ is a right eigenvector of $\hat{T}^{[N,-b]}$

Darboux transformations

Darboux transformations are $p+q+1$ banded matrices

Theorem (PBF and Darboux transformations)
Let us assume that the PBF holds. Then,

1. The Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}$, $b \in\{1, \ldots, q\}$ are oscillatory
2. The characteristic polynomial of the Darboux transformations $\hat{T}^{[N,+a]}, a \in\{1, \ldots, p\}, \hat{T}^{[N,-b]}, b \in\{1, \ldots, q\}$ is P_{N+1}
3. If w, u are left and right eigenvectors of $T^{[N]}$, respectively, then $\hat{w}=w L_{1}^{[N]} \cdots L_{a}^{[N]}$ is a left eigenvector of $\hat{T}^{[N,+a]}$ and
$\hat{u}=U_{b}^{[N]} \cdots U_{1}^{[N]} u$ is a right eigenvector of $\hat{T}^{[N,-b]}$

Christoffel numbers are positive for PBF

$$
\Lambda:=\left[\Lambda^{(1)} \cdots \cdots \Lambda^{(p)}\right] \in \mathbb{R}^{p \times p}, \quad \Upsilon:=\left[\begin{array}{c}
\Upsilon_{(1)}^{(1)} \\
\vdots \\
\Upsilon^{(q)}
\end{array}\right] \in \mathbb{R}^{q \times q}
$$

where

$$
\begin{aligned}
& \Lambda^{(1)}:=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \Lambda^{(k)}:=\frac{1}{r_{k}} L_{1}^{[p-1]} \cdots L_{k-1}^{[p-1]}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \\
& \Upsilon^{(1)}:=\left[\begin{array}{llll}
1 & 0 \cdots \cdots 0
\end{array}\right], \quad \Upsilon^{(k)}:=\frac{1}{s_{k}}\left[\begin{array}{llll}
1 & 0 \cdots \cdots
\end{array}\right] U_{1}^{[q-1]} \cdots U_{k-1}^{[q-1]}
\end{aligned}
$$

with

$$
r_{k}:=L_{k \mid 0} L_{k-1 \mid 1} \cdots L_{1 \mid k-1}, \quad s_{k}:=U_{k \mid 0} U_{k-1 \mid 1} \cdots U_{1 \mid k-1}
$$

Christoffel numbers are positive for PBF

Lemma

The matrices Λ and Υ are positive upper and lower unitriangular matrices, respectively

Theorem (Christoffel coefficients positivity)
Let us assume that T has a PBF and choose the matrices of initial conditions as

$$
\nu^{-\top}=\Lambda \mathcal{A}, \quad \xi^{-1}=\mathcal{B} \Upsilon
$$

for some upper and lower unitriangular nonnegative matrices $\mathcal{A} \in \mathbb{R}^{p \times p}$ and $\mathcal{B} \in \mathbb{R}^{q \times q}$, respectively. Then,
$\rho_{k, b}^{[N]}>0, \quad \mu_{k, a}^{[N]}>0, \quad k \in 1, \ldots, N+1, \quad a \in\{1, \ldots, p\}, \quad b \in\{1, \ldots, q\}$

Idea of the proof I

Christoffel numbers in terms of biorthogonal families of right an left eigenvectors:

$$
\left[\mu_{k, 1}^{[N]} \cdots \cdots \mu_{k, p}^{[N]}\right]=\left[w_{k, 1}^{\langle N\rangle} \cdots \cdots w_{k, p}^{\langle N\rangle}\right] \nu^{-\top}, \quad\left[\begin{array}{c}
\rho_{k, 1}^{[N]} \\
\vdots \\
\rho_{k, q}^{[N]}
\end{array}\right]=\xi^{-1}\left[\begin{array}{c}
u_{k, 1}^{\langle N\rangle} \\
\vdots \\
u_{k, q}^{\langle N\rangle}
\end{array}\right]
$$

Idea of the proof I

Christoffel numbers in terms of biorthogonal families of right an left eigenvectors:

$$
\left[\mu_{k, 1}^{[N]} \cdots \cdots \mu_{k, p}^{[N]}\right]=\left[w_{k, 1}^{\langle N\rangle} \cdots \cdots w_{k, p}^{\langle N\rangle}\right] \nu^{-\top}, \quad\left[\begin{array}{c}
\rho_{k, 1}^{[N]} \\
\vdots \\
\rho_{k, q}^{[N]}
\end{array}\right]=\xi^{-1}\left[\begin{array}{c}
u_{k, 1}^{\langle N\rangle} \\
\vdots \\
u_{k, q}^{\langle N\rangle}
\end{array}\right]
$$

Entries of these biorthogonal right and left eigenvectors can be written as $w_{k, a}^{\langle N\rangle}=\left.\alpha_{N} \frac{Q_{a-1, N}}{P_{N+1}^{P_{N}}}\right|_{x=\lambda_{k}^{[N]}}$ and $u_{k, b}^{\langle N\rangle}=\beta_{N} R_{b-1, N}\left(\lambda_{k}^{[N]}\right)$

Idea of the proof I

Christoffel numbers in terms of biorthogonal families of right an left eigenvectors:

$$
\left[\mu_{k, 1}^{[N]} \cdots \cdots \mu_{k, p}^{[N]}\right]=\left[w_{k, 1}^{\langle N\rangle} \cdots \cdots w_{k, p}^{\langle N\rangle}\right] \nu^{-\top}, \quad\left[\begin{array}{c}
\rho_{k, 1}^{[N]} \\
\vdots \\
\rho_{k, q}^{[N]}
\end{array}\right]=\xi^{-1}\left[\begin{array}{c}
u_{k, 1}^{\langle N\rangle} \\
\vdots \\
u_{k, q}^{\langle N\rangle}
\end{array}\right]
$$

Entries of these biorthogonal right and left eigenvectors can be written as $w_{k, a}^{\langle N\rangle}=\left.\alpha_{N} \frac{Q_{a-1, N}}{P_{N+1} P_{N}}\right|_{x=\lambda_{k}^{[N]}}$ and $u_{k, b}^{\langle N\rangle}=\beta_{N} R_{b-1, N}\left(\lambda_{k}^{[N]}\right)$
CD+interlacing leads to the fact that the Christoffel numbers are positive if and only if

$$
\beta_{N} \xi^{-1}\left[\begin{array}{c}
R_{0, N} \\
\vdots \\
R_{q-1, N}
\end{array}\right], \quad \frac{1}{\beta_{N}}\left[Q_{0, N} \cdots \cdots Q_{p-1, N}\right] \nu^{-\top}
$$

are positive vectors at the points $x=\lambda_{k}^{[N]}, k \in\{1, \ldots, N+1\}$

Idea of the proof II

Consider left and right eigenvectors with last entry normalized to 1

$$
\left[\begin{array}{c}
\left.\frac{R_{0, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \\
\left.\frac{R_{1, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \\
\vdots \\
1
\end{array}\right]
$$

(the last entry of any eigenvector is nonzero) Recall that $Q_{N, N}=\alpha_{N}^{-1} P_{N}$, $R_{N, N}=\beta_{N}^{-1} P_{N}$ and that the first eigenvector entries are not zero; i.e., $\left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}},\left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \neq 0$. As the last entry is positive the change sign properties described in the sign Theorem leads to

$$
\begin{aligned}
& \left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0 \\
& \left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0,
\end{aligned}
$$

Idea of the proof II

Consider left and right eigenvectors with last entry normalized to 1

$$
\left[\begin{array}{c}
\left.\frac{R_{0, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \\
\left.\frac{R_{1, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \\
\vdots \\
1
\end{array}\right]
$$

(the last entry of any eigenvector is nonzero) Recall that $Q_{N, N}=\alpha_{N}^{-1} P_{N}$, $R_{N, N}=\beta_{N}^{-1} P_{N}$ and that the first eigenvector entries are not zero; i.e., $\left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}},\left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \neq 0$. As the last entry is positive the change sign properties described in the sign Theorem leads to

$$
\begin{aligned}
& \left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0, \\
& \left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0,
\end{aligned}
$$

Idea of the proof II

Consider left and right eigenvectors with last entry normalized to 1

$$
\left[\left.\left.\frac{Q_{0, N}}{Q_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \frac{Q_{1, N}}{Q_{N, N}}\right|_{x=\lambda_{1}^{[N]}} \cdots \cdots 1\right], \quad\left[\begin{array}{c}
\left.\frac{R_{0, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} \\
\left.\frac{R_{1, N}}{R_{N, N}}\right|_{x=\lambda_{k}^{[N]}} ^{\vdots} \\
1
\end{array}\right]
$$

(the last entry of any eigenvector is nonzero) Recall that $Q_{N, N}=\alpha_{N}^{-1} P_{N}$, $R_{N, N}=\beta_{N}^{-1} P_{N}$ and that the first eigenvector entries are not zero; i.e., $\left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}},\left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \neq 0$. As the last entry is positive the change sign properties described in the sign Theorem leads to

$$
\begin{aligned}
& \left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0 \\
& \left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0,\left.\quad \beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{3}^{[N]}}>0,
\end{aligned}
$$

and so on, alternating the sign

Idea of the proof II

As T is oscillatory and the characteristic polynomial P_{N+1} interlaces P_{N} we have that $\operatorname{sgn} P_{N}\left(\lambda_{k}^{[N]}\right)=(-1)^{k-1}$ so that

$$
\alpha_{N} Q_{0, N}\left(\lambda_{k}^{[N]}\right), \beta_{N} R_{0, N}\left(\lambda_{k}^{[N]}\right)>0, \quad k \in\{1, \ldots, N+1\}
$$

Idea of the proof III

Darboux transform $\hat{T}^{[N, \pm 1]}$ is an oscillatory matrix with characteristic polynomial P_{N+1}. Then, a left eigenvector of $T^{[N,+1]}$ for the eigenvalue $\lambda_{k}^{[N]}$ can be chosen as
$\left[\left.\left.\alpha_{N} \frac{Q_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \quad \alpha_{N} \frac{Q_{1, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \cdots \cdots 1\right] L_{1}^{[N]}=\left[\left.\alpha_{N} \frac{\left(Q_{0, N}+L_{100} Q_{1, N}\right)}{P_{N}}\right|_{x=\lambda_{k}^{[N]}}\right.$
and a right eigenvector of $T^{[N,-1]}$ for the eigenvalue $\lambda_{k}^{[N]}$ can be taken as

$$
U_{1}^{[N]}\left[\begin{array}{c}
\left.\left.\beta_{N} \frac{R_{0, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}}\left[\begin{array}{c}
\left.\beta_{N} \frac{R_{1, N}}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} ^{\vdots} \\
1
\end{array}\right]=\left[\begin{array}{c}
\left.\beta_{N} \frac{\left(R_{0, N}+U_{1 \mid 0} R_{1, N}\right)}{P_{N}}\right|_{x=\lambda_{k}^{[N]}} \\
\vdots \\
1
\end{array}\right] .\right] .
\end{array}\right.
$$

Idea of the proof III

Sign properties of the eigenvectors of an oscillatory matrix:

$$
\begin{gathered}
\left.\alpha_{N} \frac{\frac{1}{L_{1 \mid 0}} Q_{0, N}+Q_{1, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \alpha_{N} \frac{\frac{1}{L_{1 \mid 0}} Q_{0, N}+Q_{1, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0 \\
\left.\beta_{N} \frac{\frac{1}{U_{1 \mid 0}} R_{0, N}+R_{1, N}}{P_{N}}\right|_{x=\lambda_{1}^{[N]}}>0,\left.\quad \beta_{N} \frac{\frac{1}{U_{1 \mid 0}} R_{0, N}+R_{1, N}}{P_{N}}\right|_{x=\lambda_{2}^{[N]}}<0
\end{gathered}
$$

and so alternating sign, and recalling the sign of P_{N} at the zeros of P_{N+1} we get

$$
\left.\alpha_{N}\left(\frac{1}{L_{1 \mid 0}} Q_{0, N}+Q_{1, N}\right)\right|_{x=\lambda_{k}^{[N]}},\left.\beta_{N}\left(\frac{1}{U_{1 \mid 0}} R_{0, N}+R_{1, N}\right)\right|_{x=\lambda_{k}^{[N]}}>0
$$

Idea of the proof IV

Consequently, after repeating this process up to $T^{[N,+(p-1)]}$ and $T^{[N,-(q-1)]}$ we find that

$$
\beta_{N} \Upsilon\left[\begin{array}{c}
R_{0, N} \\
\vdots \\
R_{q-1, N}
\end{array}\right]
$$

$$
\alpha_{N}\left[Q_{0, N} \cdots \cdots Q_{p-1, N}\right] \Lambda
$$

are positive vectors at the points $x=\lambda_{k}^{[N]}, k \in\{1, \ldots, N\}$. Therefore, if the initial condition matrices are tuned as indicated we get the result

Second kind polynomials, resolvent and Weyl functions

From here on we assume that $N \geqslant \max (p, q)$
Given $r \in \mathbb{N}$, we write $\left\{e_{1}^{[r]}, \ldots, e_{r}^{[r]}\right\}$ for the canonical basis of \mathbb{R}^{r} and consider the $r \times(N+1)$ matrix $E_{[r]}:=\left[I_{r} 0_{r \times(N+1-r)}\right]$. Then, we introduce the vectors $e_{a}^{\nu}, e_{b}^{\xi} \in \mathbb{R}^{N+1}$ with

$$
e_{a}^{\nu}:=E_{[p]}^{\top} \nu^{-\top} e_{a}^{[p]}, \quad\left(e_{b}^{\xi}\right)^{\top}:=\left(e_{b}^{[q]}\right)^{\top} \xi^{-1} E_{[q]}
$$

For the matrices U and W we find

$$
\left(e_{b}^{\xi}\right)^{\top} U=\left[\rho_{1, b}^{[N]} .\right.
$$

$$
\rho_{N+1, b}^{[N]},
$$

$$
W e_{a}^{\nu}=\left[\begin{array}{c}
\mu_{1, a}^{[N]} \\
\vdots \\
\mu_{N+1, a}^{[N]}
\end{array}\right]
$$

Second kind polynomials, resolvent and Weyl functions

From here on we assume that $N \geqslant \max (p, q)$
Given $r \in \mathbb{N}$, we write $\left\{e_{1}^{[r]}, \ldots, e_{r}^{[r]}\right\}$ for the canonical basis of \mathbb{R}^{r} and consider the $r \times(N+1)$ matrix $E_{[r]}:=\left[I_{r} 0_{r \times(N+1-r)}\right]$. Then, we introduce the vectors $e_{a}^{\nu}, e_{b}^{\xi} \in \mathbb{R}^{N+1}$ with

$$
e_{a}^{\nu}:=E_{[p]}^{\top} \nu^{-\top} e_{a}^{[p]}, \quad\left(e_{b}^{\xi}\right)^{\top}:=\left(e_{b}^{[q]}\right)^{\top} \xi^{-1} E_{[q]}
$$

For the matrices U and W we find

$$
\left(e_{b}^{\xi}\right)^{\top} U=\left[\rho_{1, b}^{[N]} \cdots \cdots \rho_{N+1, b}^{[N]}\right], \quad W e_{a}^{\nu}=\left[\begin{array}{c}
\mu_{1, a}^{[N]} \\
\vdots \\
\mu_{N+1, a}^{[N]}
\end{array}\right]
$$

Second kind polynomials, resolvent and Weyl functions

Second kind polynomials

For $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, and $\pi_{k}^{[N]}:=\prod_{l \in\{1, \ldots, N+1\}}\left(x-\lambda_{l}^{[N]}\right)$, $l \neq k$ the second kind polynomials, in terms of the adjugate, are given by

$$
\begin{aligned}
P_{N+1}^{(b, a)}(x) & :=\left(e_{b}^{\xi}\right)^{\top} \operatorname{adj}\left(x I_{N+1}-T^{[N]}\right) e_{a}^{\nu} \\
& =\sum_{k=1}^{N+1} \rho_{k, b}^{[N]} \mu_{k, a}^{[N]} \pi_{k}^{[N]}(x) \\
& =\int \frac{P_{N+1}(z)-P_{N+1}(x)}{z-x} \mathrm{~d} \psi_{b, a}^{[N]}(x) \\
& =\alpha_{N+1} \int \frac{\operatorname{det}\left(A_{N+1}(z)\right)-\operatorname{det}\left(A_{N+1}(x)\right)}{z-x} \mathrm{~d} \psi_{b, a}^{[N]}(x) \\
& =\beta_{N+1} \int \frac{\operatorname{det}\left(B_{N+1}(z)\right)-\operatorname{det}\left(B_{N+1}(x)\right)}{z-x} \mathrm{~d} \psi_{b, a}^{[N]}(x)
\end{aligned}
$$

Second kind polynomials, resolvent and Weyl functions

If T has a PBF and the initial conditions are tuned as above then $\operatorname{deg} P_{N+1}^{(b, a)}=N$

The moments of the $p q$ discrete measures $\mathrm{d} \psi_{b, a}^{[N]}$ are linked to the components of the powers of $T^{[N]}$:

Theorem (Discrete moments)
For $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, the discrete moments we have

$$
\int x^{n} \mathrm{~d} \psi_{b, a}^{[N]}(x)=\sum_{k=1}^{N+1} \rho_{k, b}^{[N]} \mu_{k, a}^{[N]}\left(\lambda_{k}^{[N]}\right)^{n}=\left(e_{b}^{\xi}\right)^{\top}\left(T^{[N]}\right)^{n} e_{a}^{\nu}
$$

Second kind polynomials, resolvent and Weyl functions

If T has a PBF and the initial conditions are tuned as above then $\operatorname{deg} P_{N+1}^{(b, a)}=N$

The moments of the $p q$ discrete measures $\mathrm{d} \psi_{b, a}^{[N]}$ are linked to the components of the powers of $T^{[N]}$:

Theorem (Discrete moments)
For $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, the discrete moments we have

$$
\int x^{n} \mathrm{~d} \psi_{b, a}^{[N]}(x)=\sum_{k=1}^{N+1} \rho_{k, b}^{[N]} \mu_{k, a}^{[N]}\left(\lambda_{k}^{[N]}\right)^{n}=\left(e_{b}^{\xi}\right)^{\top}\left(T^{[N]}\right)^{n} e_{a}^{\nu}
$$

Second kind polynomials, resolvent and Weyl functions

Proof.

We have that $\left(e_{b}^{\xi}\right)^{\top}\left(T^{[N]}\right)^{n} e_{a}^{\nu}=\left(e_{b}^{\xi}\right)^{\top} U D^{n} W e_{a}^{\nu}$ so that

$$
\left(e_{b}^{\xi}\right)^{\top}\left(T^{[N]}\right)^{n} e_{a}^{\nu}=\left[\rho_{1, b}^{[N]} \cdots \cdots \rho_{N+1, b}^{[N]}\right] D^{n}\left[\begin{array}{c}
\mu_{1, a}^{[N]} \\
\vdots \\
\mu_{N+1, a}^{[N]}
\end{array}\right]
$$

Second kind polynomials, resolvent and Weyl functions

Resolvent

The resolvent matrix $R^{[N]}(z)$ of the leading principal submatrix $T^{[N]}$ is

$$
R^{[N]}(z):=\left(z I_{N+1}-T^{[N]}\right)^{-1}=\frac{\operatorname{adj}\left(z I_{N+1}-T^{[N]}\right)}{\operatorname{det}\left(z I_{N+1}-T^{[N]}\right)}
$$

Weyl's functions

For $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, the Weyl functions are

$$
\begin{aligned}
S_{b, a}^{[N]} & :=\left(e_{b}^{\xi}\right)^{\top} R^{[N]} e_{a}^{\nu} \\
& =\frac{P_{N+1}^{(b, a)}(z)}{P_{N+1}(z)}=\sum_{k=1}^{N+1} \frac{\rho_{k, b}^{[N]} \mu_{k, a}^{[N]}}{z-\lambda_{k}^{[N]}}=\int \frac{\mathrm{d} \psi_{b, a}^{[N]}(x)}{z-x}
\end{aligned}
$$

Second kind polynomials, resolvent and Weyl functions

Interlacing

If T has a PBF for tuned initial conditions the polynomial $P_{N+1}^{(b, a)}$ is interlaced by P_{N+1}

Recursion polynomials and resolvent

$$
\begin{aligned}
& \sum_{a=1}^{p} \int \frac{\mathrm{~d} \psi_{b, a}^{[N]}(x)}{z-x} A_{n-1}^{(a)}(x)=\left(e_{b}^{\xi}\right)^{\top} R^{[N]}(z) e_{n} \\
& \sum_{b=1}^{q} \int B_{n-1}^{(b)}(x) \frac{\mathrm{d} \psi_{b, a}^{[N]}(x)}{z-x}=e_{n}^{\top} R^{[N]}(z) e_{a}^{\nu}
\end{aligned}
$$

Second kind polynomials, resolvent and Weyl functions

Interlacing

If T has a PBF for tuned initial conditions the polynomial $P_{N+1}^{(b, a)}$ is interlaced by P_{N+1}

Recursion polynomials and resolvent

$$
\begin{aligned}
& \sum_{a=1}^{p} \int \frac{\mathrm{~d} \psi_{b, a}^{[N]}(x)}{z-x} A_{n-1}^{(a)}(x)=\left(e_{b}^{\xi}\right)^{\top} R^{[N]}(z) e_{n} \\
& \sum_{b=1}^{q} \int B_{n-1}^{(b)}(x) \frac{\mathrm{d} \psi_{b, a}^{[N]}(x)}{z-x}=e_{n}^{\top} R^{[N]}(z) e_{a}^{\nu}
\end{aligned}
$$

A path to mixed Hermite-Padé

Helly's tools

1. Helly's Selection Principle: for any uniformly bounded sequence $\left\{\psi^{[N]}\right\}_{N=0}^{\infty}$ of non-decreasing functions defined in \mathbb{R}, there exists a convergent subsequence converging to a non-decreasing function ψ defined in \mathbb{R}

$$
\begin{aligned}
& \text { Helly's second theorem: Let us assume a uniformly bounded } \\
& \text { sequence }\left\{\psi^{[N]}\right\}_{N=0}^{\infty} \text { of non-decreasing functions on a compact } \\
& \text { interval }[a, b] \text { with limit function } \psi \text {, then for any continuous function } \\
& f \text { in }[a, b] \text { we have } \lim _{N \rightarrow \infty} \int_{a}^{b} f(x) \mathrm{d} \psi^{[N]}(x)=\int_{a}^{b} f(x) \mathrm{d} \psi(x)
\end{aligned}
$$

Helly's tools

1. Helly's Selection Principle: for any uniformly bounded sequence $\left\{\psi^{[N]}\right\}_{N=0}^{\infty}$ of non-decreasing functions defined in \mathbb{R}, there exists a convergent subsequence converging to a non-decreasing function ψ defined in \mathbb{R}
2. Helly's second theorem: Let us assume a uniformly bounded sequence $\left\{\psi^{[N]}\right\}_{N=0}^{\infty}$ of non-decreasing functions on a compact interval $[a, b]$ with limit function ψ, then for any continuous function f in $[a, b]$ we have $\lim _{N \rightarrow \infty} \int_{a}^{b} f(x) \mathrm{d} \psi^{[N]}(x)=\int_{a}^{b} f(x) \mathrm{d} \psi(x)$

Favard theorem

As the submatrices $T^{[N]}$ are oscillatory, we know that $P_{N+1}(x)$ strictly interlaces $P_{N}(x)$ so that the positive sequence $\left\{\lambda_{1}^{[N]}\right\}_{N=1}^{\infty}$ is a strictly increasing sequence and $\left\{\lambda_{N+1}^{[N]}\right\}_{N=1}^{\infty}$ is a strictly decreasing sequence. As well, for bounded operators, $\|T\|_{\infty}<\infty$, we have $\left\|T^{[N]}\right\|_{\infty}<\|T\|_{\infty}<\infty$. Therefore, there exists the limits $\zeta:=\lim _{N \rightarrow \infty} \lambda_{N+1}^{[N]} \geqslant 0$ and $\eta:=\lim _{N \rightarrow \infty} \lambda_{1}^{[N]} \leqslant\|T\|_{\infty}$. We call $[\zeta, \eta] \subseteq\left[0,\|T\|_{\infty}\right]$ the true interval of orthogonality, that is the smallest interval containing all zeros of the characteristic polynomials P_{n}, i.e. the eigenvalues of the leading principal submatrices of T

Favard theorem

Theorem (Favard spectral representation)

Let us assume that

1. The banded matrix T is bounded and there exist $s \geqslant 0$ such that $T+s I$ has a PBF.

The sequences $\left\{A_{n}^{(1)}, \ldots, A_{n}^{(p)}\right\}_{n=0}^{\infty},\left\{B_{n}^{(1)}, \ldots, B_{n}^{(q)}\right\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices ν and ξ, respectively, such that $\nu^{-\top}=\Lambda \mathcal{A}, \xi^{-1}=\mathcal{B} \Upsilon$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a nonnegative upper unitriangular matrices and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a nonnegative lower unitriangular matrix.

Then, there exists $p q$ non decreasing positive functions $\psi_{b, a}, a \in\{1, \ldots, p\}$ and $b \in\{1, \ldots, q\}$ and corresponding positive Lebesgue-Stieltjes measures $\mathrm{d} \psi_{b, a}$ with compact support Δ such that the following biorthogonality holds

$$
\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d} \psi_{b, a}(x) A_{k}^{(a)}(x)=\delta_{k, l}, \quad k, l \in \mathbb{N}_{0}
$$

Favard theorem

Theorem (Favard spectral representation)

Let us assume that

1. The banded matrix T is bounded and there exist $s \geqslant 0$ such that $T+s I$ has a PBF.
2. The sequences $\left\{A_{n}^{(1)}, \ldots, A_{n}^{(p)}\right\}_{n=0}^{\infty},\left\{B_{n}^{(1)}, \ldots, B_{n}^{(q)}\right\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices ν and ξ, respectively, such that $\nu^{-\top}=\Lambda \mathcal{A}, \xi^{-1}=\mathcal{B} \Upsilon$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a nonnegative upper unitriangular matrices and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a nonnegative lower unitriangular matrix.

Then, there exists $p q$ non decreasing positive functions $\psi_{b, a}, a \in\{1, \ldots, p\}$ and $b \in\{1, \ldots, q\}$ and corresponding positive Lebesgue-Stieltjes measures $\mathrm{d} \psi_{b, a}$ with compact support Δ such that the following biorthogonality holds

$$
\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d} \psi_{b, a}(x) A_{k}^{(a)}(x)=\delta_{k, l}, \quad k, l \in \mathbb{N}_{0}
$$

Favard theorem

Theorem (Favard spectral representation)

Let us assume that

1. The banded matrix T is bounded and there exist $s \geqslant 0$ such that $T+s I$ has a PBF.
2. The sequences $\left\{A_{n}^{(1)}, \ldots, A_{n}^{(p)}\right\}_{n=0}^{\infty},\left\{B_{n}^{(1)}, \ldots, B_{n}^{(q)}\right\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices ν and ξ, respectively, such that $\nu^{-\top}=\Lambda \mathcal{A}, \xi^{-1}=\mathcal{B} \Upsilon$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a nonnegative upper unitriangular matrices and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a nonnegative lower unitriangular matrix.

Then, there exists $p q$ non decreasing positive functions $\psi_{b, a}, a \in\{1, \ldots, p\}$ and $b \in\{1, \ldots, q\}$ and corresponding positive Lebesgue-Stieltjes measures $\mathrm{d} \psi_{b, a}$ with compact support Δ such that the following biorthogonality holds

$$
\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d} \psi_{b, a}(x) A_{k}^{(a)}(x)=\delta_{k, l}, \quad k, l \in \mathbb{N}_{0}
$$

Favard theorem

Proof.

The shift in the matrix $T \rightarrow T+s I$ only shifts by s the eigenvalues of the truncations $T^{[N]}$, so that they are positive, and the dependent variable of the recursion polynomials, but do not alter the interlacing properties of the polynomials and the positivity of the corresponding Christoffel numbers. We know that the sequences $\left\{\psi_{a, b}^{[N]}\right\}_{N=0}^{\infty}, a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$ are positive, uniformly bounded and nondecreasing. Consequently, following Helly's results there exist subsequences that converge when $N \rightarrow \infty$ to positive nondecreasing functions $\psi_{b, a}$ with support on $[\zeta, \eta]$ and that the discrete biorthogonal relations lead to the stated biorthogonal properties

Favard theorem

Corollary (Mixed multiple orthogonal relations)

In the conditions above, the mixed multiple orthogonal relations are fulfilled
$\begin{array}{ll}\sum_{a=1}^{p} \int_{\zeta}^{\eta} x^{n} \mathrm{~d} \psi_{b, a}(x) A_{m}^{(a)}(x)=0, \quad n \in\left\{0, \ldots, \operatorname{deg} B_{m-1}^{(b)}\right\}, & b \in\{1, \ldots, q\} \\ \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{m}^{(b)}(x) \mathrm{d} \psi_{b, a}(x) x^{n}=0, \quad n \in\left\{0, \ldots, \operatorname{deg} A_{m-1}^{(a)}\right\}, & a \in\{1, \ldots, p\}\end{array}$

Favard theorem

Theorem (Spectral representation of moments and Stieltjes-Markov functions)

In the conditions above and in terms of the spectral functions $\psi_{b, a}$, $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$ we find the following relations between entries of powers or the resolvent of the banded matrix and moments or the Cauchy transform of the measures, respectively:

$$
\begin{aligned}
\left(e_{b}^{\xi}\right)^{\top} T^{n} e_{a}^{\nu} & =\int_{\zeta}^{\eta} x^{n} \mathrm{~d} \psi_{b, a}(x) \\
\left(e_{b}^{\xi}\right)^{\top}(z I-T)^{-1} e_{a}^{\nu} & =\int_{\zeta}^{\eta} \frac{\mathrm{d} \psi_{b, a}(x)}{z-x}=: \hat{\psi}_{b, a}(z)
\end{aligned}
$$

Favard theorem

Theorem (Normal convergence of Weyl functions)

For $a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, and in the conditions above, the Weyl functions converge uniformly in compact subsets of $\overline{\mathbb{C}} \backslash[\zeta, \eta]$ to the Stieltjes-Markov functions, i.e.,

$$
S_{b, a}^{[N]}(z)=\frac{P_{N+1}^{(b, a)}(z)}{P_{N+1}(z)} \Longrightarrow \hat{\psi}_{b \rightarrow \infty}(z)
$$

Gauss quadrature formulas

Degrees of precision

The degrees of precision or orders $d_{b, a}(N), a \in\{1, \ldots, p\}, b \in\{1, \ldots, q\}$, are the largest natural numbers such that

$$
\left(e_{b}^{\xi}\right)^{\top} T^{n} e_{a}^{\nu}=\left(e_{b}^{\xi}\right)^{\top}\left(T^{[N]}\right)^{n} e_{a}^{\nu}, \quad 0 \leqslant n \leqslant d_{b, a}(N)
$$

with

$$
d_{b, a}(N)=\operatorname{deg} A_{N}^{(a)}+\operatorname{deg} B_{N}^{(b)}+1=\left\lceil\frac{N+2-a}{p}\right\rceil+\left\lceil\frac{N+2-b}{q}\right\rceil-1
$$

Gauss quadrature formulas

Theorem (Mixed multiple Gaussian quadrature formulas)
The following Gauss quadrature formulas hold

$$
\int_{\zeta}^{\eta} x^{n} \mathrm{~d} \psi_{b, a}(x)=\sum_{k=1}^{N+1} \rho_{k, b}^{[N]} \mu_{k, a}^{[N]}\left(\lambda_{k}^{[N]}\right)^{n}, \quad 0 \leqslant n \leqslant d_{b, a}(N)
$$

Here the degrees of precision $d_{b, a}$ are optimal (for any power largest than n a positive remainder appears, an exactness is lost)

