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Banded semi-infinite matrices

Banded matrices

TO,0 + o v v re e To,q [0 I 0
Tz;,o
IV _ 0 . -.0
TNTq,N
[0 S 0 TN Nepe o TN N
where the extreme diagonal entries are nonzero

with 7' = lim o, T (inductive limit) a banded semi-infinite matrix
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Recursion polynomials

Type | recursion polynomials

A@(z) = A((]a)(av) A9 ] , ac{l,....p}

> Left eigenvectors:

A ()T = A (g), ac{l,...,p}
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Recursion polynomials

Type | recursion polynomials
> Initial conditions,

(2 _
A(l) -1 AO =0,
0 ) (2) _
A7 =1,
A =w” ) _ o
Ay =y,
A(l—)l (1)1> % p)
P P A;()fl = V;()—)D
Vj(i) being arbitrary constants

AP =,
Ag’_;Q =0,
A;E)p_l - 17
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Recursion polynomials

Type | recursion polynomials
> Initial condition matrix

1 | PRSPPI 0
(1) :
n’ 1 :
V=
0
(1) (p—1)
_Vp—l ............. Vp— 1-
(p + g + 1)-term recursion relation, A(”g — ... = 4&”1) =0,a€e{l,..., p}
1 (a) 4 (a) A (¢
flf, (ITII q,n +-- 44;1 f j,T,, Fp,n — .I';"lE,I). n e N()
deg AR = [nt2=e] _ 3
— - - — y
January 24th, 2023 5/55
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Recursion polynomials

Type | recursion polynomials
> Initial condition matrix

1 Bcocanoocooranaas 0
A1 g
0, st
P> (p+ g+ 1)-term recursion relation, A(_“; = A(_al) =0,a€{l,...,p}
AD Tt A Tripn = 4D, n € Ny
(1(‘{4‘1(,,/” [" /‘j 'ﬂ |
uJanuary 24th, 2023 B 5/;5
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Recursion polynomials

Type | recursion polynomials
> Initial condition matrix

1 0'.. ................ 0
Ze! §
V= .
LI S0y
» (p+ g+ 1)-term recursion relation, A(_“; = A =0 ae{l,...,p}
AD Tt A Tripn = 4D, n € Ny
| 2 degAgla) = [%-‘ —1
uJanuary 24th, 2023 ) 5/51
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Recursion polynomials

Type Il recursion polynomials

B(b)(x) — B(()b)(l‘) ng)(l‘) ..... ] ! , be {1, R ,q}

P Right eigenvectors:

TB® (z) = zB®) (), be{l,...,q}
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Recursion polynomials

Type Il recursion polynomials
> Initial conditions,

BY =0
1 0 )
B(() ) = 1’ B(Z) 1 B(()q) = O,
5O _ W I
= B( ) _ ( ] .
W _ : B‘fq_f )
1 1 . q
B =&y, 2 2 B7 =1,
a- q Bz(> )1 _ 5531, q
fj(.i) being arbitrary constants
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Recursion polynomials

Type Il recursion polynomials
> Initial condition matrix
1 0‘.. ................ Q"
0 1._" :
€=
_5(51_)1 ............. £ 1]
(p + q + 1)-term recursion relation, B((;), =coo= B(;hl) =0,be{l,..., q}
Ve I)B,(,b’)p 4F 000 4F iy o qB,(,b,’) g = .{’B,(,Z’). n e {0,1,...}
deg Bf,m = [%ﬁfﬂ —1

= - - =
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Recursion polynomials

Type Il recursion polynomials
> Initial condition matrix

[ 1 ()... ................ 0]
oo
g=|
: 0
_fél_)l ............. é‘éq__ll)l_

P> (p+ g+ 1)-term recursion relation, Bg’; =...= BS’{ =0,be{l,...,q}

TonpBy + - + TontaBot, = 2BY, ne{0,1,...}

(b) 2
(1(‘{:’ })’,, [” J I)—‘ |
y

= =
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Recursion polynomials

Type Il recursion polynomials
> Initial condition matrix

[ 1 ()... ................ 0]
o
e=|
_fél_)l ............. é‘éq__ll)l_

P> (p+ g+ 1)-term recursion relation, Bg’; =...= BS’{ =0,be{l,...,q}
TonpBy + - + TontaBot, = 2BY, ne{0,1,...}

> deg BY = [%HW 1

)\
C

= =
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Recursion polynomials

Characteristic polynomials

For the semi-infinite matrix 7" we consider the polynomials Py (x),
deg Py = N, as the characteristic polynomials of 7V -1l

Pute) = { & N=0
xXr) =
Y det (zIy — TN-1), N eN

4§ 4 (1) (a)
A ‘.\V """ A N+p—1 B:\Y .......... BA\g
AN = . By = :

() () J L (1) (@) J
LAA\' """ A&\'+ p—1 B N+qg—1" """ B A\{H/f 1
ay = (—1)(1’*”'\'T

p,0 """ TA\'+/J71,,\'7lv ’»/jA\' = (71\’)({[7'1)\'7—‘()11 o T‘h\'fl.ﬁ\'
for N e Nand ag =5y =1

2
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Recursion polynomials

Characteristic polynomials
For the semi-infinite matrix 7" we consider the polynomials Py (x),
deg Py = N, as the characteristic polynomials of 7V -1l

Pae) = { & N=0
xXr) =
Y det (zIy — TN-1), N eN

Left and right recursion polynomials determinants

1 1 1
AD .. aD, B oo B
AN = o y BN -
. 1 . .
A AR BY ,....BY_

ay = (_1)(p*1)NTp’0 o TNgp—1,N-1, BN = (—1)(‘1’1)NT0,q o TN—1,N+q—1
for Ne Nand ag =5y =1

S

v
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Recursion polynomials

Recall that as the entries in the extreme diagonals do not cancel
an, By # 0. In terms of these objects we found the following important
result:

Theorem
Determinantal expressions for the characteristic polynomials

Pn(z) = an det Ay(x) = By det By (x)

Founded for ¢ = 1, in the context of non-mixed multiple orthogonality, in:

lJonathan Coussement and Walter Van Assche, Gaussian quadrature for
multiple orthogonal polynomials, Journal of Computational and Applied
Mathematics 178 (2005) 131-145.
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Associated polynomials

Associated polynomials

AD AP BWM. .. B
1 1
A§v)+1 ........ Agfv’lrl B](Vzrl ........ BJ(\?)H
Qn,N = . 5 , Rn,N = . .
1 N 1 N
Agv)+p L A%)er_ ) B](erq L B](\‘;qu_l
QN =[Qon QiN---- ], Q™) = [Qon Qin- - Qn,N]
Ry = [Rony Rin----] T RN — [Roy Rin---- RN,N]T
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Associated polynomials

i QNnyiNn='=QNyp i N=Byyyn=-=Bnyq-18n=0
an@Qn,N = BNRyN = Py

(*1)’)71(,11\41Q\*ﬂmw = (=1 BN+ ity = S
QNT = 2Qy and TRy = 2Ry

0 11\“#[175\“'(21\“#[),‘\} - ‘17Q<A\r>
0

0

= RN,
TN NitgBRNigN

]
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Associated polynomials

i QNnyiNn='=QNyp i N=Byyyn=-=Bnyq-18n=0
] an@n,N = BNREy N = Py

(1P lan1Qnipn = (1)1 Bni1RNygn = Pri
QNT =2x2Qn and TRy = xRy

0 TN4pN@N4pN] = 2QTV
0

0

= RN,
TN N+gBNigN

]
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Associated polynomials

i QN+1,N
] an@n,N

o =QN4p-1N=RBypin= - =Rnyq-1,8n=0
BnBnN = Py

. (—1)p—1aN+1QN+p,N = (_1)q_15N+1RN+q,N ~ Pyys
QNT =2QpN and TRy = xRy

TA\'.A\'+([]‘)A\'+(1,A\'J

]
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Associated polynomials

i QNnyiNn='=QNyp i N=Byyyn=-=Bnyq-18n=0
] an@n,N = BNREy N = Py

3 (—1)Plan11Qn+pN = (—1)7 ' BN 41RN+q,N = Pni1

@] QNT = 2Qy and TRy = =Ry

Q\\/T\] [() ------ 0 T N+p,N (2 N +p, \} = )Q\\>
]

VRN + | | = =R,
LT\ \+qf! N+q, \J

o & - = Ha
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Associated polynomials

i QN+ N=-"=QNtp-1,N=Bnypin == RNntq-1,n =0
] an@n,N = BNREy N = Py
3 (—1)Plan11Qn+pN = (—1)7 ' BN 41RN+q,N = Pni1

@] QNT = 2Qy and TRy = =Ry

QWMITINI 4 [0 0 TN4pNQN+pN] = zQM
0
TN RN 0 _ R,

TN,N+qRN+q7N
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Christoffel-Darboux

Theorem (Christoffel-Darboux formulas)

. For the determinantal polynomials Q,, n and R, n we get the
following generalized Christoffel-Darboux formula

iQnN(x)RnN(y) _ ! Py 11(2)Pn(y) — Pn(z)Pn11(y)

anfn r—y

. The following generalized confluent Christoffel-Darboux relation is
fulfilled

1
anBy

Banded matrices and orthogonality January 24th, 2023 13 /55



Spectral properties

) N+1

Assume that Pn.1 has simple zeros at the set {AQN]}k;
) . N+1
> sets of left and right eigenvectors, {w,im k; ,

{u,im}kN:ll, are given by

™ _ )
BN Yo QuN (ALN])RLN (ALN])

w ) U;im = ﬁNR(N) (/\I[CN])
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Spectral properties

Assume that Py has simple zeros at the set {\ N]}N+1
> sets of left and right eigenvectors, {wk i\[:ll
{u,im}kN:ll, are given by
Q<N> )\[N]
WM — (s ) — By R (/\ECN])

, U
BN Zf\io QN (ALN])RLN (ALN]) g

» The following expression holds

™ onQuan(A) uf)
Srn T e O pr ()
N( ) N+1( k )

= BNRn1 N(/\ECN])
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Spectral properties

> We can write w,i]’:? = A7(11_)1 (/\LN])/L%} SRR Aflp_)l (AIE:N])NL],\Q
Aﬁl ()\LN]> AAAAAAAA Aglpll ()\ECN])
A8, (8 e, ()
S By S, Quv O Ruw (AF)
AL AT () el ()
A O A () s, )
B Xilo Quv OF) R ()
Agl:l‘{)»l ()\ECN]) R AizPJ:ll) ()\LN])
Hgi]?: (—1)p~1 Agﬁp;;(Agﬂ)‘”igﬁg;gl(xgzg
7 BN Yoizo Qua (A ) R (M)
Banded matrices and orthogonality January 24th, 2023
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Spectral properties

> We can write u,i]\Q = B,(Tl,)l ()\ECN})PLJX] + ot Br(L(]zl(ALN])PEc],\Q
B2, () - 8 ()
(N]._ B : :
Pia =Bn| ~
B3, (47) - 52, ()
L O 5 ) 5 )
[N] _ : : :
pk72 = BN ° : :
BJ(\}qul(kLN]) Bfﬁqil(ALN]) ""Bg\?iqfl (AECN])

BE, (A1) oo B D (AM)
ny = : ;
chq] = (-1)""" By : :

| Bt (0) - B2, (00)
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Spectral properties

» It holds that

[ 1 (T P ol !

r NI : g
Hi 1 V%l) 1 : o
V] Lo e : W™
Bzl | 0 T e ; k.2
|| R
M p e ™|
v _1/(17)1 ............. V](fill) .. 1_ D

[ Qv ol !

[oin | ; o
i él) Lo : k,1
bl L e A R
P2 | _ : . . . : e
] I I ! I
_pk,q_ . i 5 _Uzw |
_551—)1 ............. 55(1—11) 1
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Spectral properties

» Matrices U (with columns the right eigenvectors uy, arranged in the
standard order) and T and (with rows the left eigenvectors wy,
arranged in the standard order) satisfy

UW: :IN+1

Banded matrices and orthogonality January 24th, 2023 18 /55



Spectral properties

» Matrices U (with columns the right eigenvectors uy, arranged in the
standard order) and T and (with rows the left eigenvectors wy,
arranged in the standard order) satisfy

UW: :IN+1

» In terms of the diagonal matrix D = diag (/\[IN], e ,)\K,Vil) we have

UD"W = (TV)"

Banded matrices and orthogonality January 24th, 2023 18 /55



Orthogonality

Step functions

0, T < /\K,VL,
N N] [N N] [N N N
o LA O ok,
N] [N N N N
p[l,b]'“[l,a] tooe ngjrl,bﬁ‘gv}rl,av x> /\[1 ] J
Forae {1,...,p}and b€ {1,...,q}, we have
N] [N N N
p[l,b}lj'[l,a] +oe /)[ U]rLbNRH]L

1,a - (5_11(1,1)V_T)h a

]
Banded matrices and orthogonality
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Orthogonality

Step functions

N
0, T < )\Evl_l,
N N] [N N] [N N N
Yo = § Ao + o+ Pt A <e <A k=1,

N] [N N N N
p[l,b]ﬂ[l,a] oot pEVJ]rl,b”EVj—l,a: Tz )\[1 ]

Finite sums

Forae {1,...,p}and b€ {1,...,q}, we have

N] [N N N . T
P[1,b]ﬁ‘[1,a] +oot pEVJ]rl,bM.[Nj—l,a = (" Igp™ Dba

Banded matrices and orthogonality January 24th, 2023
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Orthogonality

Matrix of discrete measures

IN] V]
z/’1.,1 1/11‘,1,
q x p matrix of functions: WVl .= g © | g X p matrix of discrete
z/J[N] AR
q,1 q,p

Lebesgue—Stieltjes measures supported at the zeros of Pn1:

N N N
d%bh] ...... (wg’p] N pl[c,l]
N | i : N N (V]
duN — : =3 [MH ...... M][w]}(;@ — AN
dqpc[ﬁ] ...... Ayl k=1 pg\;}

Banded matrices and orthogonality January 24th, 2023 20 /55



Orthogonality

Assume that the recursion polynomials Py have simple zeros {

Theorem

The following biorthogonal relations hold

>3 [ BO@@AR @) = b,

)\[N]}N—H

n,m € {0,...,N}
a=1 b=1 )
Proof.
It follows from UW = I 1)

Banded matrices and orthogonality
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Orthogonality

From this biorthogonality we get the following:

Corollary
The following discrete type mixed multiple orthogonality for
m € {1,..., N} are satisfied:

p
Z/ AP AD =0, nel0,...,degBY |}, be{l,....q
a=1

q
Z/Bﬁf?dwlﬁf\fﬂ:o, ne{O,...,degAT(z)_l}, ae{l,...,p}
b=1

Banded matrices and orthogonality January 24th, 2023 22 /55



Positive bidiagonal factorization

. We now introduce the very important idea of positive bidiagonal
factorization (PBF)

This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices

Banded matrices and orthogonality January 24th, 2023 23 /55



Positive bidiagonal factorization

. We now introduce the very important idea of positive bidiagonal
factorization (PBF)

. This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices
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Positive bidiagonal factorization

Positive bidiagonal factorization
We say that a banded matrix 7" admits a PBF if

with A = diag(Ag, Aq, ..

1 0 ERERER
Lo 1
Lk = 0

T=1L- L,AU,---U;

with Lk\i: Uk|i7 A; >0, for i € Ny

.) and bidiagonal matrices given respectively by

Upo 0.+
1 U
1.

Banded matrices and orthogonality
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

All its minors are non-negative and is nonsingular

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

Banded matrices and orthogonality

=

January 24th, 2023

Do
25 /55




Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

Banded matrices and orthogonality
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

(m]

=
Banded matrices and orthogonality

z DA
January 24th, 2023

25 /55



Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix A™ is
totally positive

Banded matrices and orthogonality January 24th, 2023 25 /55



Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

PBF = oscillatory

Banded matrices and orthogonality January 24th, 2023 26 /55



Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

PBF = oscillatory

3
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization |

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

<
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization |

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

Factorization Il
PBF = oscillatory

<
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

W =

)

Uw =1

Banded matrices and orthogonality
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

v

Prm]
U=[u®. ... u™], w=| |, UW = I
o)

=] & = = C
Banded matrices and orthogonality January 24th, 2023 27 /55
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

v

Left and right eigenvectors w*), u(%) to the k-th largest eigenvalue

w

U = [u(l) ...... u(n)]7 W = o Uw =1
e

Banded matrices and orthogonality January 24th, 2023 27 /55



Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations of bounded Jacobi matrices are oscillatory matrices

& =
Banded matrices and orthogonality
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Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations

Translations of bounded Jacobi matrices are oscillatory matrices

Banded matrices and orthogonality January 24th, 2023 28 /55



Oscillatory matrices
Interlacing

Let us assume that 7" is oscillatory. Then:

. The polynomial Py interlaces Py

When x € R, for the corresponding Wronskian we find
Py Py — PyPny1 > 0. In particular,

(Pfl\urlPN)‘m:)\]Ew > 0,

(Pn41Py)|__yv-1 <0
The confluent kernel is a positive function; i.e.,

an BN Zf:fzo QnN(T)Ry n(z) >0 for z € R

(m]

If T" has a PBF then its leading principal submatrices T are oscillatory

=
Banded matrices and orthogonality
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Oscillatory matrices

Interlacing

Let us assume that 7" is oscillatory. Then:

. The polynomial Py interlaces Py

. When z € R, for the corresponding Wronskian we find

Py PN — PyPny1 > 0. In particular,

(PJI\7+1PN)|z:>\£€N] > 0, (PN+1PJ/\7)|z:>\£€N—1] <0

The conﬂu_ent kernel is a positive function; i.e.,
an BN Z}T:() Qnn(x)Ry n(x) >0 for x € R

If T has a PBF then its leading principal submatrices TN are oscillatory

o D = = 2a0

January 24th, 2023 29 /55
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Oscillatory matrices

Interlacing
Let us assume that 7" is oscillatory. Then:
. The polynomial Py interlaces Py

. When z € R, for the corresponding Wronskian we find
Py PN — PyPny1 > 0. In particular,

(PJI\7+1PN)|x:>\E€N] > 0, (PN+1PJ/V)|$:>\£€N—1] <0

. The confluent kernel is a positive function; i.e.,
anBn YN Qun(@)Ryn(z) >0 for z € R

If T has a PBF then its leading principal submatrices TN are oscillatory

= = = Ha
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Oscillatory matrices

Interlacing
Let us assume that 7" is oscillatory. Then:

. The polynomial Py interlaces Py

. When z € R, for the corresponding Wronskian we find
Py PN — PyPny1 > 0. In particular,

(PIIVHPN)lx:AECN] > 0, (PN+1PJ/\7)|x:>\£€N—1] <0

. The confluent kernel is a positive function; i.e.,
anBn YN Qun(@)Ryn(z) >0 for z € R

PBF implies oscillatory

If T has a PBF then its leading principal submatrices T1V) are oscillatory
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Darboux transformations

Darboux transformations

Let us assume that 7" admits a bidiagonal factorization (not necessarily
positive). For each of its truncations TV we consider a chain of new
auxiliary matrices, called Darboux transformations, given by the
consecutive permutation of the triangular matrices in the factorization

A = M. . IINIANIGIN .. ML
o N N] ;[N] [N
TINA+2] _ Lg ]...LLN]A[N]U(gN}...UI[ ]L[1 ]L[2 ]

PINAG-D] = [INIANIN ..M NI )

TiNel = AN .. yM NIV L

Banded matrices and orthogonality January 24th, 2023 30/55



Darboux transformations

Darboux transformations

;

\

gt — M FINIAINIG I, g
T[N,*Q] _ UQ[N]Ul[N]L[lN] . LLN}A[N]U(EN] - éN]

FIN~(a-1)] — Uqull LM Mg LM AN

TIN—d — V] ... Ul[N]L[lN]L[ZN} ... LLN]A[N]

Banded matrices and orthogonality January 24th, 2023
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Darboux transformations

Darboux transformations are p + g + 1 banded matrices

Theorem (PBF and Darboux transformations)
Let us assume that the holds. Then,

. The Darboux transformations T[N’+“], ac{l,...,p}, T[N’_b],
be{l,...,q} are oscillatory

The characteristic polynomial of the Darboux transformations
TWN+al g e {1,..., py, TN pe {1,..., q} is Pny1

If w,u are left and right eigenvectors of TN, respectively, then

. N N] . . AN
W = u,'L[1 I LL ' Is a left eigenvector of TN+ gnd
4 — 77V AN] : : [N, —b]
u=U, - Ui 'uis a right eigenvector of T !
[} =l = =
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Darboux transformations

Darboux transformations are p + g + 1 banded matrices

Theorem (PBF and Darboux transformations)

Let us assume that the holds. Then,

. The Darboux transformations T[N’+“], ac{l,...,p}, T[N’_b},
be{l,...,q} are oscillatory

. The characteristic polynomial of the Darboux transformations
TWNAd g e {1,...,p}, TW:= be{1,...,q} is Pvy1

If w,u are left and right eigenvectors of TN, respectively, then

. N N] . . AT 4

W = u'LE I LL is a left eigenvector of TN+ gnd

~ 77NV A[N] . . . [N, —b]

uw=U, - Ui 'uis a right eigenvector of T I )
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Darboux transformations

Darboux transformations are p + ¢ + 1 banded matrices J

Theorem (PBF and Darboux transformations)

Let us assume that the holds. Then,

. The Darboux transformations TN+l ¢ € {1,...,p}, T[N’*b},
be{l,...,q} are oscillatory

. The characteristic polynomial of the Darboux transformations
TN+ g e {1,...,p}, TN8 be {1,...,q} is Py

. If w,u are left and right eigenvectors of TV, respectively, then

W= wL[lN] S LLN] is a left eigenvector of TN+l and
0 = UZEN] e {N}u is a right eigenvector of TN:—Y]
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Christoffel numbers are positive for PBF

T
A= [AD) ... A®)] € RP*, Ti=| | eroxa
()
where
1 1
W | ® _ L -1 p—11 |
AL =], N = =i oo T
: Tk :
0 0
1 -1 =1
TO =1 0. 0], T® .= 5[1 Weocoo- 0] gl ~U,£q_1}
with
Tk ::Lk|0Lk—1|1 co L1|k—17 Sk ::Uk|0Uk—1|1 i Ul‘k_l
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Christoffel numbers are positive for PBF

Lemma

The matrices A and Y are positive upper and lower unitriangular matrices,
respectively

Theorem (Christoffel coefficients positivity)

Let us assume that T' has a PBF and choose the matrices of initial
conditions as

v = AA, =BT

for some upper and lower unitriangular nonnegative matrices A € RP*P
and B € R%*9, respectively. Then,

Py >0, pd >0, kel,... ,N+1, ae{l,....,p}, be{l,....q}

v
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Idea of the proof |

Christoffel numbers in terms of biorthogonal families of right an left
eigenvectors:

(V] (N)
P.1 U1
N N N N = : — .
i occco: uL,,j] - M,B ...... w;,pqy [ I T
(V] (N)
Pk.q Ukq

Banded matrices and orthogonality January 24th, 2023 35/55



Idea of the proof |

Christoffel numbers in terms of biorthogonal families of right an left
eigenvectors:

(V] (N)
P.1 U1
N N N N =T . -1 .
MLJ] ...... “L:,p}] _ {w]<€71> ...... wii,qu , | =¢ :
(V] (N)
Pk.q Uk,q

Entries of these biorthogonal right and left eigenvectors can be written as

w,i{\(? = QN PQ]’:J:EI-{’;; ] and u;{p = ﬂNRb—l,N ()\LN})

ac:)\ECN
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Idea of the proof |

Christoffel numbers in terms of biorthogonal families of right an left
eigenvectors:

(V] (N)
P.1 U1
N N N NY] . —T X 1|
i occco: NL:,p]]: M? ...... wli,pqy | =t
(V] U
Pkq k,q

Entries of these biorthogonal right and left eigenvectors can be written as

(N) _ Qa-1, (N) _ (V]
Wg o = ON PJ’\,Hl]%[V N and vy, " = BN Rp—1,n (M)

CD+interlacing leads to the fact that the Christoffel numbers are positive if and
only if

Ro N .
BnE! : B [Qon -+ Qp-1,N]vT
Rq—l,N
are positive vectors at the points z = )\LN], ke{l,....N+1}
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Idea of the proof ||

Consider left and right eigenvectors with last entry normalized to 1

Ro,N
Ry, N
Ri,N
gllvfjv ...... 1] : oy

z:AEQN]

N]

Qo,N [
QN,N z=AlM] ‘szk

1

(the last entry of any eigenvector is nonzero) Recall that )y y = a}ll{\v,

Ry N = /7’&1 Py and that the first eigenvector entries are not zero; i.e.,

@ Qo,N ~ Ro,n
(YN Py )\"W v PN Pxn
;

N # 0. As the last entry is positive the change
L=Ay

Tr=

sign properties described in the"sign Theorem leads to

Qo.N Qo.N Qo,N
QN i)’“\ >0, an ij“\ <0, an QPU”\ >0,
N |z=X ‘1'\ ] N ,If:/\z'\ N ,1‘:)\:;‘\
 Ro; Ro N Ry
By —2N >0, Ay N <0, fn 2N 59
F N :z':/\[‘w F N |z=xl" F N I*)\:S\
and so on, alternating the sign Or «Fr «=>» «2» E ©DaC
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Idea of the proof ||

Consider left and right eigenvectors with last entry normalized to 1

Ro,N
RN,N I:/\Ej\’]
Ri N
Qo,N Q1,N e
. N (N
|:QN,N w:/\ch] QN,N z=AM 1 ) N .x_)‘k
1

(the last entry of any eigenvector is nonzero) Recall that Qn n = aJQlPN,
Ry N = BR,IPN and that the first eigenvector entries are not zero; i.e.,

QO,N RO,N
an “p- w:/\ECN]’BN o IZALN]#O.
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Idea of the proof ||

Consider left and right eigenvectors with last entry normalized to 1

Ro,N
RN,N I:/\Ej\’]
Ri N
Qo,N Q1,N e
. N (N
|:QN,N w:/\ch] QN,N z=AM 1 ) N .x_)‘k
1

(the last entry of any eigenvector is nonzero) Recall that Qn n = aJQlPN,
Ry N = BR,IPN and that the first eigenvector entries are not zero; i.e.,

Qo,N Ro, N
= Py = )\N],BN

. # 0. As the last entry is positive the change

sign propertles descrlbed in the sign Theorem leads to

N N N
an Qo >0, ay Qo ‘ <0, an Qo.x ‘ >0,
Py Y Py w=ALY) Py a= AN
Ro,n Ro N Ro N
ﬁN > Oa BN : < 07 BN > 07
Py |, Py |, Py |,y
1 2 3

and so on, alternating the sign
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Idea of the proof ||

As T is oscillatory and the characteristic polynomial Py interlaces Py
we have that sgn Py ()\g\”) = (—1)*7! so that

aNQO,N()\ECN})yBNRO,N(ALN]) >0, ke{l,...,N+1}
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Idea of the proof Il

Darboux transform 7V:%1 is an oscillatory matrix with characteristic
polynomial Py.1. Then, a left eigenvector of T+ for the eigenvalue
)\LN] can be chosen as

------ {7 = o extianne

x:)\EQN]

and a right eigenvector of TN:=1 for the eigenvalue )\LN] can be taken as

/BNRON‘ ]
:)\LN] 3 (Ro,n+UyjoR1,N)
R L Py Ny
V] | BN B T=Ay
Uj PN g=alM | =
: 1
L. 1 -
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Idea of the proof Il

Sign properties of the eigenvectors of an oscillatory matrix:

1 1
T, QoN + Q1N 7—QoN + Q1N
|0 1|0
aN P > 0, aN P <0
N _y[N] N _[N]
T=A; T=Ag
1 1
7o fon + RN g-Ron+ RN
|0 1]0
/BN > Oa /BN <0
PN :E*A[N] PN :E*A[N]
-1 72

and so alternating sign, and recalling the sign of Py at the zeros of Py
we get

1
, BN (UiRO,N + Rl,N)
k

1
an (TQO,N I Q1,N)
10
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Idea of the proof IV

Consequently, after repeating this process up to TV +#=1] and
TW:=@=1I we find that

Ro.n
BT |, an[QoN - Qp-1,N]A

Rq—1,n

are positive vectors at the points z = )\LN}, ke {1,...,N}. Therefore, if
the initial condition matrices are tuned as indicated we get the result
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Second kind polynomials, resolvent and Weyl
functions

From here on we assume that N > max(p, q)

Given r € N, we write {e[lr], e ,ey]} for the canonical basis of R" and
consider the r x (N + 1) matrix E}j = [Ir Orx(v+1-»]. Then, we introduce

the vectors e, ¢5 € RVT1 with

v . — T . Te—
2, = E[—;]I/ Te[f], (eg) = (e,[)q]) & lE[q]

For the matrices U and W we find

[V]
\‘/[:OJF 1 -<1J

BT N] N -7
(e)"U = /)[1.({ """ /)F\']\ 1,b| Weq =

Banded matrices and orthogonality January 24th, 2023

41/55



Second kind polynomials, resolvent and Weyl
functions

From here on we assume that N > max(p, q)

Given r € N, we write {e[lr], e ,67[~T]} for the canonical basis of R" and
consider the r x (N + 1) matrix E}j = [Ir Orx(v+1-»]. Then, we introduce

the vectors e, ¢5 € RVT1 with

v . — T . Te—
@, = E[;]y Te[f], (eg) = (el[;ﬂ) & 1E[q]

For the matrices U and W we find

4
eTrr _ [ V] [V] I
(6b) U o p b pN+1 bi|7 We(l - ~
V]
IU’N+1,a
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Second kind polynomials, resolvent and Weyl
functions

Second kind polynomials

N N
Forae {1,...,p},be{1,...,q}, and 77,[C - [Lieqa,... N1} (z— )‘l[ ]),
I#k
the second kind polynomials, in terms of the adjugate, are given by
P () = (¢5)7 adj(zIn41 — TM)er

N+1
N N
Zpiduka (@)

/PN+1 - Pnii(z )d¢[N]( )
_ aN+1/det(AN“(Z);:2et(AN+l(x))dw£ﬁ](x)
— By / det(BNH(Z)i - iet(BN+1(m))d¢,£{Yj )

v
(m] = = = = g€
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Second kind polynomials, resolvent and Weyl
functions

If T has a PBF and the initial conditions are tuned as above then
deg P = N

The moments of the pg discrete measures dz/;l[)]\;] are linked to the

components of the powers of TV

N 41

[ e aulid@) = 3 MO = ()T (@)

k=1
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Second kind polynomials, resolvent and Weyl
functions

If T has a PBF and the initial conditions are tuned as above then
deg P](V 2 =N J

The moments of the pg discrete measures dz/;l[)]\g are linked to the

components of the powers of TV

Theorem (Discrete moments)
Fora e {1,...,p},b € {1,...,q}, the discrete moments we have

N+
[k =3 AIEIORY = @y
=
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Second kind polynomials, resolvent and Weyl
functions

Proof.

We have that (eg)T(T[N])neZ = (eg)TUD"WeZ so that

[N]
ul,a
OT(TINN v — | V] [N] n :
(eg) (T ) €a = |P1p PN+1b D :
(V]
MN+1,a
Ol
y
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Second kind polynomials, resolvent and Weyl
functions

Resolvent

The resolvent matrix RIV)(2) of the leading principal submatrix TV is

—1 adJ ZIN—H — T[N]
RN (2) = (eInya - TM) ™ = det((zIN+1 = T[N]))

Weyl’s functions

Forae {1,...,p},be {1,...,q}, the Weyl functions are

N v
SN = (e§) TR

N+1 [N] [N]

(b,a) (V]
. Pyii(2) . PrpHka dyy, , (z)
j2 2 Z [N] z—x
N+1(2) =1 2 — AL )
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Second kind polynomials, resolvent and Weyl
functions

Interlacing

If T has a PBF for tuned initial conditions the polynomial P\':*) is
interlaced by Py

dy bu (x
Z/ n >1(/1.)

a=1

(V]
da T :
Z/ (@ —”“( ) — TR epes

s — 1
b=1

A path to mixed Hermite—Padé

4
=] & o DA
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Second kind polynomials, resolvent and Weyl
functions

If T" has a PBF for tuned initial conditions the polynomial P
interlaced by Py

Recursion polynomials and resolvent

N +]
dlb () T
> [ Do) = () B e
N]
X
> [ B0 D - R e
zZ—X
A path to mixed Hermite—Padé
=] = = £ =
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Helly’s tools

1.| Helly’s Selection Principle: for any uniformly bounded sequence
{@D[N]}JOVOZO of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function v
defined in R
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Helly’s tools

1.| Helly’s Selection Principle: for any uniformly bounded sequence
{@D[N]}]OVOZO of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function v
defined in R

2. Helly’s second theorem: Let us assume a uniformly bounded
sequence {wm}?\,":o of non-decreasing functions on a compact
interval [a, b] with limit function 1, then for any continuous function

£ in [a,b] we have limy o0 [ f(2)dp!N(2) = [° f(z
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Favard theorem

As the submatrices TV! are oscillatory, we know that Py (z) strictly
interlaces Py (x) so that the positive sequence {)\[N }R_; is a strictly
increasing sequence and {)\ Jrl}N 1 is a strictly decreasing sequence. As
Mloo < [T lo0 < oo
Therefore, there exists the limits ¢ :== limy_ o0 )\Ea]rl > 0 and

well, for bounded operators, ||| < oo, we have ||T

n=lmy oA} ' < ||T]|oo. We call [¢,n] C [0, ||T||oc] the true interval of
orthogonality, that is the smallest interval containing all zeros of the
characteristic polynomials P,, i.e. the eigenvalues of the leading principal
submatrices of T’
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Favard theorem

Theorem (Favard spectral representation)

Let us assume that

. The banded matrix T is bounded and there exist s > 0 such that T + sI has
a PBF.

The sequences {A( ..... AEIP)} {Bf,,”., L Bf,,(”}zczo of recursion
polynomials are determmed by the mitia/ condition matrices v and

& respectively, such that v~ = AA, €1 = BY, and A € RP*P js a
nonnegative upper unitriangular matrices and B € R?*9 js a nonnegative

lower unitriangular matrix.

Then, there exists pq non decreasing positive functions 1y, 4, a € {1,..., p} and
be{l,...,q} and corresponding positive Lebesgue—St/e/tJes measures dipy, , with
compact support A such that the following biorthogonality holds

P q

ZZ/ B (@) dipp o (2) A (2) = 61, k,l € No

a=1 b=1
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Favard theorem

Theorem (Favard spectral representation)

Let us assume that

. The banded matrix T is bounded and there exist s > 0 such that T + sI has
a PBF.

. The sequences {Asll), L AP }n o {B .. (Q)} of recursion
polynomials are determined by the initial cond/t/on matr/ces v and
& respectively, such that v= T = AA, €' = BY, and A € RP*P s a
nonnegative upper unitriangular matrices and B € R?*4 js a nonnegative
lower unitriangular matrix.

Then, there exists pq non decreasing positive functions ¥y, o, a € {1,..., p} and
be{l,..., q} and corresponding positive Lebesgue—Stieltjes measures di)y, , with
compact support A such that the following biorthogonality holds

p q

ZZ/BdeMMW)ML k,l e Ny

a=1

v

g = = =
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Favard theorem

Theorem (Favard spectral representation)

Let us assume that

. The banded matrix T is bounded and there exist s > 0 such that T + sI has
a PBF.

. The sequences {AS), e A%p)} o {B,(Ll), . ,B,(,q)}zozo of recursion
polynomials are determined by the initial condition matrices v and
& respectively, such that v= T = AA, €' = BY, and A € RP*P s a
nonnegative upper unitriangular matrices and B € R?*4 js a nonnegative
lower unitriangular matrix.

Then, there exists pq non decreasing positive functions vy, o, a € {1,...,p} and
be{l1,...,q} and corresponding positive Lebesgue-Stieltjes measures diy, , with
compact support A such that the following biorthogonality holds

p q n b
Z Z/ Bl( )(m)dwb@(x)Agl)(x) = 6k,l7 k,l € No
¢

v

g —
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Favard theorem

Proof.

The shift in the matrix T — T" 4 sI only shifts by s the eigenvalues of the
truncations TV, so that they are positive, and the dependent variable of
the recursion polynomials, but do not alter the interlacing properties of the
polynomials and the positivity of the corresponding Christoffel numbers.
We know that the sequences {1#%}}?\,0:0, ae{l,...,p},be{l,...,q}
are positive, uniformly bounded and nondecreasing. Consequently,
following Helly's results there exist subsequences that converge when

N — o0 to positive nondecreasing functions v , with support on [¢, 7]
and that the discrete biorthogonal relations lead to the stated biorthogonal
properties []
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Favard theorem

Corollary (Mixed multiple orthogonal relations)

In the conditions above, the mixed multiple orthogonal relations are
fulfilled

P
Z/{ "y o (@)AD (@) = 0, nefo,...,degBY ), be{l,...,q)
a=1

g n
Z/ B,(,g)(a;)dz/)b,a(a;)x” =0, ne {0, e ,degAﬁZ)_l}, a€{l,...,p}
b=1"¢
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Favard theorem

Theorem (Spectral representation of moments and Stieltjes—Markov
functions)

In the conditions above and in terms of the spectral functions 1y, 4,
ae€{l,...,p}, be{l,...,q} we find the following relations between

entries of powers or the resolvent of the banded matrix and moments or
the Cauchy transform of the measures, respectively:

& TTn Z: " nq .
(ez) e /C " depp o ()
€T Gr -y = [ g o)

¢ z— X
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Favard theorem

Theorem (Normal convergence of Weyl functions)

Fora e {1,...,p},be {1,...,q}, and in the conditions above, the Weyl
functions converge uniformly in compact subsets of C \ [, n] to the
Stieltjes—Markov functions, i.e.,

(b,a)

Ny _ PN+1(Z) %
Sba (Z) - PN+1(Z) ﬁ; ¢b,a(z)
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Gauss quadrature formulas

Degrees of precision

The degrees of precision or orders dp, .(N), a € {1,...,p}, b€ {1,.

..,q}, are the
largest natural numbers such that

ANTrm v _ (6T NI\ v
a a’ X X Up,a
(eg) Tmel = (e;) (T[ ]) e 0 < n<dpq(N)
with

a N+2— N+2-5b
dya(N) = deg AY + deg BY +1 = [H} N {+w .
p q
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Gauss quadrature formulas

Theorem (Mixed multiple Gaussian quadrature formulas)
The following Gauss quadrature formulas hold

n N+1
/C 2"dpa(z) = Y pipupa (A", 0 < n < dpa(N)
=l

Here the degrees of precision dy, , are optimal (for any power largest than
n a positive remainder appears, an exactness is lost)
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