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Banded semi-infinite matrices

Banded matrices

T [N ] =



T0,0 T0,q 0 0

Tp,0

0 0

TN−q,N

0 0 TN,N−p TN,N



where the extreme diagonal entries are nonzero

with T = limN→∞ T [N ] (inductive limit) a banded semi-infinite matrix
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Recursion polynomials

Type I recursion polynomials

A(a)(x) =
[
A

(a)
0 (x) A

(a)
1 (x)

]
, a ∈ {1, . . . , p}

▶ Left eigenvectors:

A(a)(x)T = xA(a)(x), a ∈ {1, . . . , p}
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Recursion polynomials

Type I recursion polynomials

▶ Initial conditions,


A

(1)
0 = 1,

A
(1)
1 = ν

(1)
1 ,

...

A
(1)
p−1 = ν

(1)
p−1,



A
(2)
0 = 0,

A
(2)
1 = 1,

A
(2)
2 = ν

(2)
2 ,

...

A
(2)
p−1 = ν

(2)
p−1,

· · ·


A

(p)
0 = 0,

...

A
(p)
p−2 = 0,

A
(p)
p−1 = 1,

ν
(i)
j being arbitrary constants
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Recursion polynomials

Type I recursion polynomials

▶ Initial condition matrix

ν :=



1 0 0

ν
(1)
1 1

0

ν
(1)
p−1 ν

(p−1)
p−1 1


▶ (p+ q + 1)-term recursion relation, A

(a)
−q = · · · = A

(a)
−1 = 0, a ∈ {1, . . . , p}

A
(a)
n−qTn−q,n + · · ·+A

(a)
n+pTn+p,n = xA(a)

n , n ∈ N0

▶ degA
(a)
n =

⌈
n+2−a

p

⌉
− 1
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Recursion polynomials

Type I recursion polynomials

▶ Initial condition matrix

ν :=



1 0 0

ν
(1)
1 1

0

ν
(1)
p−1 ν

(p−1)
p−1 1


▶ (p+ q + 1)-term recursion relation, A

(a)
−q = · · · = A

(a)
−1 = 0, a ∈ {1, . . . , p}

A
(a)
n−qTn−q,n + · · ·+A

(a)
n+pTn+p,n = xA(a)

n , n ∈ N0

▶ degA
(a)
n =

⌈
n+2−a

p

⌉
− 1

Banded matrices and orthogonality January 24th, 2023 5 / 55



Recursion polynomials

Type II recursion polynomials

B(b)(x) =
[
B

(b)
0 (x) B

(b)
1 (x)

]⊤
, b ∈ {1, . . . , q}

▶ Right eigenvectors:

TB(b)(x) = xB(b)(x), b ∈ {1, . . . , q}
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Recursion polynomials

Type II recursion polynomials

▶ Initial conditions,


B

(1)
0 = 1,

B
(1)
1 = ξ

(1)
1 ,

...

B
(1)
q−1 = ξ

(1)
q−1,



B
(2)
0 = 0,

B
(2)
1 = 1,

B
(2)
2 = ξ

(2)
2 ,

...

B
(2)
p−1 = ξ

(2)
q−1,

· · ·


B

(q)
0 = 0,

...

B
(q)
q−2 = 0,

B
(q)
q−1 = 1,

ξ
(i)
j being arbitrary constants
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Recursion polynomials

Type II recursion polynomials

▶ Initial condition matrix

ξ :=



1 0 0

ξ
(1)
1 1

0

ξ
(1)
q−1 ξ

(q−1)
q−1 1


▶ (p+ q + 1)-term recursion relation, B

(b)
−p = · · · = B

(b)
−1 = 0, b ∈ {1, . . . , q}

Tn,n−pB
(b)
n−p + · · ·+ Tn,n+qB

(b)
n+q = xB(b)

n , n ∈ {0, 1, . . .}

▶ degB
(b)
n =

⌈
n+2−b

q

⌉
− 1
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Recursion polynomials

Characteristic polynomials

For the semi-infinite matrix T we consider the polynomials PN (x),
degPN = N , as the characteristic polynomials of T [N−1]

PN (x) :=

{
1, N = 0

det
(
xIN − T [N−1]

)
, N ∈ N

Left and right recursion polynomials determinants

AN :=


A

(1)
N A

(1)
N+p−1

A
(p)
N A

(p)
N+p−1

, BN :=


B

(1)
N B

(q)
N

B
(1)
N+q−1 B

(q)
N+q−1


αN := (−1)(p−1)NTp,0 · · ·TN+p−1,N−1, βN := (−1)(q−1)NT0,q · · ·TN−1,N+q−1

for N ∈ N and α0 = β0 = 1
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Recursion polynomials

Recall that as the entries in the extreme diagonals do not cancel
αN , βN ̸= 0. In terms of these objects we found the following important
result:

Theorem

Determinantal expressions for the characteristic polynomials

PN (x) = αN detAN (x) = βN detBN (x)

Founded for q = 1, in the context of non-mixed multiple orthogonality, in:

Jonathan Coussement and Walter Van Assche, Gaussian quadrature for

multiple orthogonal polynomials, Journal of Computational and Applied

Mathematics 178 (2005) 131–145.
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Associated polynomials

Associated polynomials

Qn,N :=

∣∣∣∣∣∣∣∣∣∣∣

A
(1)
n A

(p)
n

A
(1)
N+1 A

(p)
N+1

A
(1)
N+p−1 A

(p)
N+p−1

∣∣∣∣∣∣∣∣∣∣∣
, Rn,N :=

∣∣∣∣∣∣∣∣∣∣∣

B
(1)
n B

(q)
n

B
(1)
N+1 B

(q)
N+1

B
(1)
N+q−1 B

(q)
N+q−1

∣∣∣∣∣∣∣∣∣∣∣
QN :=

[
Q0,N Q1,N

]
, Q⟨N⟩ :=

[
Q0,N Q1,N QN,N

]
RN :=

[
R0,N R1,N

]⊤
, R⟨N⟩ :=

[
R0,N R1,N RN,N

]⊤
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Associated polynomials

1. QN+1,N = · · · = QN+p−1,N = RN+1,N = · · · = RN+q−1,N = 0

2. αNQN,N = βNRN,N = PN

3. (−1)p−1αN+1QN+p,N = (−1)q−1βN+1RN+q,N = PN+1

4. QNT = xQN and TRN = xRN

5.

Q⟨N⟩T [N ] +
[
0 0 TN+p,NQN+p,N

]
= xQ⟨N⟩

T [N ]R⟨N⟩ +


0

0
TN,N+qRN+q,N

 = xR⟨N⟩.
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Christoffel–Darboux

Theorem (Christoffel–Darboux formulas)

1. For the determinantal polynomials Qn,N and Rn,N we get the
following generalized Christoffel–Darboux formula

N∑
n=0

Qn,N (x)Rn,N (y) =
1

αNβN

PN+1(x)PN (y)− PN (x)PN+1(y)

x− y

2. The following generalized confluent Christoffel–Darboux relation is
fulfilled

N∑
n=0

Qn,NRn,N =
1

αNβN

(
P ′
N+1PN − P ′

NPN+1

)
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Spectral properties

Assume that PN+1 has simple zeros at the set
{
λ
[N ]
k

}N+1

k=1

▶ Biorthogonal sets of left and right eigenvectors,
{
w

⟨N⟩
k

}N+1

k=1
,{

u
⟨N⟩
k

}N+1

k=1
, are given by

w
⟨N⟩
k =

Q⟨N⟩(λ[N ]
k

)
βN

∑N
l=0Ql,N

(
λ
[N ]
k

)
Rl,N

(
λ
[N ]
k

) , u
⟨N⟩
k = βNR

⟨N⟩(λ[N ]
k

)
▶ The following expression holds

w
⟨N⟩
k,n =

αNQn−1,N

(
λ
[N ]
k

)
PN

(
λ
[N ]
k

)
P ′
N+1

(
λ
[N ]
k

) , u
⟨N⟩
k,n = βNRn−1,N

(
λ
[N ]
k

)
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Spectral properties

▶ We can write w
⟨N⟩
k,n = A

(1)
n−1

(
λ
[N ]
k

)
µ
[N ]
k,1 + · · ·+A

(p)
n−1

(
λ
[N ]
k

)
µ
[N ]
k,p

Christoffel numbers

µ
[N ]
k,1 :=

∣∣∣∣∣∣
A

(2)
n+1

(
λ
[N]
k

)
A

(p)
n+1

(
λ
[N]
k

)
A

(2)
n+p−1

(
λ
[N]
k

)
A

(p)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣

βN
∑N

l=0Ql,N

(
λ
[N ]
k

)
Rl,N

(
λ
[N ]
k

)

µ
[N ]
k,2 := −

∣∣∣∣∣∣
A

(1)
n+1

(
λ
[N]
k

)
A

(3)
n+1

(
λ
[N]
k

)
A

(p)
n+1

(
λ
[N]
k

)
A

(1)
n+p−1

(
λ
[N]
k

)
A

(3)
n+p−1

(
λ
[N]
k

)
A

(p)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣

βN
∑N

l=0Ql,N

(
λ
[N ]
k

)
Rl,N

(
λ
[N ]
k

)
...

µ
[N ]
k,p := (−1)p−1

∣∣∣∣∣∣
A

(1)
n+1

(
λ
[N]
k

)
A

(p−1)
n+1

(
λ
[N]
k

)
A

(1)
n+p−1

(
λ
[N]
k

)
A

(p−1)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣

βN
∑N

l=0Ql,N

(
λ
[N ]
k

)
Rl,N

(
λ
[N ]
k

)
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Spectral properties

▶ We can write u
⟨N⟩
k,n = B

(1)
n−1

(
λ
[N ]
k

)
ρ
[N ]
k,1 + · · ·+B

(q)
n−1

(
λ
[N ]
k

)
ρ
[N ]
k,q

Christoffel numbers

ρ
[N ]
k,1 := βN

∣∣∣∣∣∣
B

(2)
N+1

(
λ
[N]
k

)
B

(q)
N+1

(
λ
[N]
k

)
B

(2)
N+q−1

(
λ
[N]
k

)
B

(p)
N+q−1

(
λ
[N]
k

)
∣∣∣∣∣∣

ρ
[N ]
k,2 := −βN

∣∣∣∣∣∣
B

(1)
N+1

(
λ
[N]
k

)
B

(3)
N+1

(
λ
[N]
k

)
B

(q)
N+1

(
λ
[N]
k

)
B

(1)
N+q−1

(
λ
[N]
k

)
B

(3)
n+q−1

(
λ
[N]
k

)
B

(p)
N+q−1

(
λ
[N]
k

)
∣∣∣∣∣∣

...

ρ
[N ]
k,q := (−1)q−1βN

∣∣∣∣∣∣
B

(1)
N+1

(
λ
[N]
k

)
B

(q−1)
N+1

(
λ
[N]
k

)
B

(1)
N+q−1

(
λ
[N]
k

)
B

(q−1)
N+q−1

(
λ
[N]
k

)
∣∣∣∣∣∣
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Spectral properties

▶ It holds that


µ
[N ]
k,1

µ
[N ]
k,2

µ
[N ]
k,p

 =



1 0 0

ν
(1)
1 1

0

ν
(1)
p−1 ν

(p−1)
p−1 1



−1
w

⟨N⟩
k,1

w
⟨N⟩
k,2

w
⟨N⟩
k,p




ρ
[N ]
k,1

ρ
[N ]
k,2

ρ
[N ]
k,q

 =



1 0 0

ξ
(1)
1 1

0

ξ
(1)
q−1 ξ

(q−1)
q−1 1



−1
u
⟨N⟩
k,1

u
⟨N⟩
k,2

u
⟨N⟩
k,q


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Spectral properties

▶ Matrices U (with columns the right eigenvectors uk arranged in the
standard order) and W and (with rows the left eigenvectors wk
arranged in the standard order) satisfy

UW =WU = IN+1

▶ In terms of the diagonal matrix D = diag
(
λ
[N ]
1 , . . . , λ

[N ]
N+1

)
we have

UDnW =
(
T [N ]

)n
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Orthogonality

Step functions

ψ
[N ]
b,a :=


0, x < λ

[N ]
N+1,

ρ
[N ]
1,b µ

[N ]
1,a + · · ·+ ρ

[N ]
k,b µ

[N ]
k,a , λ

[N ]
k+1 ⩽ x < λ

[N ]
k , k = 1, . . . , N

ρ
[N ]
1,b µ

[N ]
1,a + · · ·+ ρ

[N ]
N+1,bµ

[N ]
N+1,a, x ⩾ λ

[N ]
1

Finite sums

For a ∈ {1, . . . , p} and b ∈ {1, . . . , q}, we have

ρ
[N ]
1,b µ

[N ]
1,a + · · ·+ ρ

[N ]
N+1,bµ

[N ]
N+1,a = (ξ−1Iq,pν

−⊤)b,a
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Orthogonality

Matrix of discrete measures

q × p matrix of functions: Ψ[N ] :=

ψ[N ]
1,1 ψ

[N ]
1,p

ψ
[N ]
q,1 ψ

[N ]
q,p

 q × p matrix of discrete

Lebesgue–Stieltjes measures supported at the zeros of PN+1:

dΨ[N ] =


dψ

[N ]
1,1 dψ

[N ]
1,p

dψ
[N ]
q,1 dψ

[N ]
q,p

 =

N+1∑
k=1


ρ
[N ]
k,1

ρ
[N ]
k,q

[µ[N ]
k,1 µ

[N ]
k,p

]
δ
(
x− λ

[N ]
k

)
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Orthogonality

Assume that the recursion polynomials PN+1 have simple zeros
{
λ
[N ]
k

}N+1

k=1

Theorem

The following biorthogonal relations hold

p∑
a=1

q∑
b=1

∫
B(b)
n (x)dψ

[N ]
b,a (x)A

(a)
m (x) = δn,m, n,m ∈ {0, . . . , N}

Proof.

It follows from UW = I
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Orthogonality

From this biorthogonality we get the following:

Corollary

The following discrete type mixed multiple orthogonality for
m ∈ {1, . . . , N} are satisfied:

p∑
a=1

∫
xndψ

[N ]
b,a A

(a)
m = 0, n ∈

{
0, . . . ,degB

(b)
m−1

}
, b ∈ {1, . . . , q}

q∑
b=1

∫
B(b)
m dψ

[N ]
b,a x

n = 0, n ∈
{
0, . . . ,degA

(a)
m−1

}
, a ∈ {1, . . . , p}
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Positive bidiagonal factorization

1. We now introduce the very important idea of positive bidiagonal
factorization (PBF)

2. This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices
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Positive bidiagonal factorization

Positive bidiagonal factorization

We say that a banded matrix T admits a PBF if

T = L1 · · ·Lp∆Uq · · ·U1

with ∆ = diag(∆0,∆1, . . . ) and bidiagonal matrices given respectively by

Lk :=



1 0

Lk|0 1

0 Lk|1 1

 , Uk :=



1 Uk|0 0

0 1 Uk|1

1


with Lk|i, Uk|i,∆i > 0, for i ∈ N0
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix An is
totally positive
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization I

From Cauchy–Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

Factorization II

PBF ⇒ oscillatory
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

Left and right eigenvectors w(k), u(k) to the k-th largest eigenvalue

U =
[
u(1) u(n)

]
, W =

w
(1)

w(n)

, UW = I
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Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations

Translations of bounded Jacobi matrices are oscillatory matrices
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Oscillatory matrices

Interlacing

Let us assume that T is oscillatory. Then:

1. The polynomial PN+1 interlaces PN

2. When x ∈ R, for the corresponding Wronskian we find
P ′
N+1PN − P ′

NPN+1 > 0. In particular,

(P ′
N+1PN )

∣∣
x=λ

[N ]
k

> 0, (PN+1P
′
N )

∣∣
x=λ

[N−1]
k

< 0

3. The confluent kernel is a positive function; i.e.,
αNβN

∑N
n=0Qn,N (x)Rn,N (x) > 0 for x ∈ R

PBF implies oscillatory

If T has a PBF then its leading principal submatrices T [N ] are oscillatory
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Darboux transformations

Darboux transformations

Let us assume that T admits a bidiagonal factorization (not necessarily
positive). For each of its truncations T [N ] we consider a chain of new
auxiliary matrices, called Darboux transformations, given by the
consecutive permutation of the triangular matrices in the factorization

T̂ [N,+1] = L
[N ]
2 · · ·L[N ]

p ∆[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1

T̂ [N,+2] = L
[N ]
3 · · ·L[N ]

p ∆[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2

...

T̂ [N,+(p−1)] = L[N ]
p ∆[N ]U [N ]

q · · ·U [N ]
1 L

[N ]
1 L

[N ]
2 · · ·L[N ]

p−1

T̂ [N,+p] = ∆[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2 · · ·L[N ]

p
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Darboux transformations

Darboux transformations



T̂ [N,−1] = U
[N ]
1 L

[N ]
1 · · ·L[N ]

p ∆[N ]U [N ]
q · · ·U [N ]

2

T̂ [N,−2] = U
[N ]
2 U

[N ]
1 L

[N ]
1 · · ·L[N ]

p ∆[N ]U [N ]
q · · ·U [N ]

3

...

T̂ [N,−(q−1)] = U
[N ]
q−1 · · ·U

[N ]
1 L

[N ]
1 L

[N ]
2 · · ·L[N ]

p ∆[N ]U [N ]
q

T̂ [N,−q] = U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2 · · ·L[N ]

p ∆[N ]
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Darboux transformations

Darboux transformations are p+ q + 1 banded matrices

Theorem (PBF and Darboux transformations)

Let us assume that the PBF holds. Then,

1. The Darboux transformations T̂ [N,+a], a ∈ {1, . . . , p}, T̂ [N,−b],
b ∈ {1, . . . , q} are oscillatory

2. The characteristic polynomial of the Darboux transformations
T̂ [N,+a], a ∈ {1, . . . , p}, T̂ [N,−b], b ∈ {1, . . . , q} is PN+1

3. If w, u are left and right eigenvectors of T [N ], respectively, then

ŵ = wL
[N ]
1 · · ·L[N ]

a is a left eigenvector of T̂ [N,+a] and

û = U
[N ]
b · · ·U [N ]

1 u is a right eigenvector of T̂ [N,−b]
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Christoffel numbers are positive for PBF

Λ :=
[
Λ(1) Λ(p)

]
∈ Rp×p, Υ :=

Υ
(1)

Υ(q)

 ∈ Rq×q

where

Λ(1) :=


1
0

0

, Λ(k) :=
1

rk
L
[p−1]
1 · · ·L[p−1]

k−1


1
0

0


Υ(1) :=

[
1 0 0

]
, Υ(k) :=

1

sk

[
1 0 0

]
U

[q−1]
1 · · ·U [q−1]

k−1

with

rk :=Lk|0Lk−1|1 · · ·L1|k−1, sk :=Uk|0Uk−1|1 · · ·U1|k−1
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Christoffel numbers are positive for PBF

Lemma

The matrices Λ and Υ are positive upper and lower unitriangular matrices,
respectively

Theorem (Christoffel coefficients positivity)

Let us assume that T has a PBF and choose the matrices of initial
conditions as

ν−⊤ = ΛA, ξ−1 = BΥ

for some upper and lower unitriangular nonnegative matrices A ∈ Rp×p
and B ∈ Rq×q, respectively. Then,

ρ
[N ]
k,b > 0, µ

[N ]
k,a > 0, k ∈ 1, . . . , N + 1, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}
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Idea of the proof I

Christoffel numbers in terms of biorthogonal families of right an left
eigenvectors:

[
µ
[N ]
k,1 µ

[N ]
k,p

]
=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,p

]
ν−⊤,


ρ
[N ]
k,1

ρ
[N ]
k,q

 = ξ−1


u
⟨N⟩
k,1

u
⟨N⟩
k,q



Entries of these biorthogonal right and left eigenvectors can be written as

w
⟨N⟩
k,a = αN

Qa−1,N

P ′
N+1PN

∣∣∣
x=λ

[N ]
k

and u
⟨N⟩
k,b = βNRb−1,N

(
λ
[N ]
k

)
CD+interlacing leads to the fact that the Christoffel numbers are positive if and
only if

βNξ
−1

 R0,N

Rq−1,N

, 1

βN

[
Q0,N Qp−1,N

]
ν−⊤

are positive vectors at the points x = λ
[N ]
k , k ∈ {1, . . . , N + 1}

Banded matrices and orthogonality January 24th, 2023 35 / 55



Idea of the proof I

Christoffel numbers in terms of biorthogonal families of right an left
eigenvectors:

[
µ
[N ]
k,1 µ

[N ]
k,p

]
=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,p

]
ν−⊤,


ρ
[N ]
k,1

ρ
[N ]
k,q

 = ξ−1


u
⟨N⟩
k,1

u
⟨N⟩
k,q


Entries of these biorthogonal right and left eigenvectors can be written as

w
⟨N⟩
k,a = αN

Qa−1,N

P ′
N+1PN

∣∣∣
x=λ

[N ]
k

and u
⟨N⟩
k,b = βNRb−1,N

(
λ
[N ]
k

)

CD+interlacing leads to the fact that the Christoffel numbers are positive if and
only if

βNξ
−1

 R0,N

Rq−1,N

, 1

βN

[
Q0,N Qp−1,N

]
ν−⊤

are positive vectors at the points x = λ
[N ]
k , k ∈ {1, . . . , N + 1}
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Idea of the proof II

Consider left and right eigenvectors with last entry normalized to 1

[
Q0,N

QN,N

∣∣∣
x=λ

[N]
k

Q1,N

QN,N

∣∣∣
x=λ

[N]
1

1
]
,



R0,N

RN,N

∣∣∣
x=λ

[N]
k

R1,N

RN,N

∣∣∣
x=λ

[N]
k

1


(the last entry of any eigenvector is nonzero) Recall that QN,N = α−1

N PN ,
RN,N = β−1

N PN and that the first eigenvector entries are not zero; i.e.,

αN
Q0,N

PN

∣∣∣
x=λ

[N]
k

, βN
R0,N

PN

∣∣∣
x=λ

[N]
k

̸= 0. As the last entry is positive the change

sign properties described in the sign Theorem leads to

αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
1

> 0, αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
2

< 0, αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
3

> 0,

βN
R0,N

PN

∣∣∣∣
x=λ

[N]
1

> 0, βN
R0,N

PN

∣∣∣∣
x=λ

[N]
2

< 0, βN
R0,N

PN

∣∣∣∣
x=λ

[N]
3

> 0,

and so on, alternating the sign
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Idea of the proof II

As T is oscillatory and the characteristic polynomial PN+1 interlaces PN
we have that sgnPN

(
λ
[N ]
k

)
= (−1)k−1 so that

αNQ0,N

(
λ
[N ]
k

)
, βNR0,N

(
λ
[N ]
k

)
> 0, k ∈ {1, . . . , N + 1}
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Idea of the proof III

Darboux transform T̂ [N,±1] is an oscillatory matrix with characteristic
polynomial PN+1. Then, a left eigenvector of T [N,+1] for the eigenvalue

λ
[N ]
k can be chosen as[
αN

Q0,N

PN

∣∣∣
x=λ

[N]
k

αN
Q1,N

PN

∣∣∣
x=λ

[N]
k

1
]
L
[N ]
1 =

[
αN

(Q0,N+L1|0Q1,N )

PN

∣∣∣
x=λ

[N ]
k

1
]
,

and a right eigenvector of T [N,−1] for the eigenvalue λ
[N ]
k can be taken as

U
[N ]
1


βN

R0,N

PN

∣∣∣
x=λ

[N ]
k

βN
R1,N

PN

∣∣∣
x=λ

[N ]
k

1

 =


βN

(R0,N+U1|0R1,N )

PN

∣∣∣
x=λ

[N ]
k

1


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Idea of the proof III

Sign properties of the eigenvectors of an oscillatory matrix:

αN

1
L1|0

Q0,N +Q1,N

PN

∣∣∣∣∣
x=λ

[N]
1

> 0, αN

1
L1|0

Q0,N +Q1,N

PN

∣∣∣∣∣
x=λ

[N]
2

< 0

βN

1
U1|0

R0,N +R1,N

PN

∣∣∣∣∣
x=λ

[N]
1

> 0, βN

1
U1|0

R0,N +R1,N

PN

∣∣∣∣∣
x=λ

[N]
2

< 0

and so alternating sign, and recalling the sign of PN at the zeros of PN+1

we get

αN

( 1

L1|0
Q0,N +Q1,N

)∣∣∣∣
x=λ

[N ]
k

, βN

( 1

U1|0
R0,N +R1,N

)∣∣∣∣
x=λ

[N ]
k

> 0
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Idea of the proof IV

Consequently, after repeating this process up to T [N,+(p−1)] and
T [N,−(q−1)] we find that

βNΥ

 R0,N

Rq−1,N

, αN
[
Q0,N Qp−1,N

]
Λ

are positive vectors at the points x = λ
[N ]
k , k ∈ {1, . . . , N}. Therefore, if

the initial condition matrices are tuned as indicated we get the result

Banded matrices and orthogonality January 24th, 2023 40 / 55



Second kind polynomials, resolvent and Weyl
functions

From here on we assume that N ⩾ max(p, q)

Given r ∈ N, we write
{
e
[r]
1 , . . . , e

[r]
r

}
for the canonical basis of Rr and

consider the r× (N + 1) matrix E[r] := [Ir 0r×(N+1−r)]. Then, we introduce

the vectors eνa, e
ξ
b ∈ RN+1 with

eνa := E⊤
[p]ν

−⊤e[p]a ,
(
eξb
)⊤

:=
(
e
[q]
b

)⊤
ξ−1E[q]

For the matrices U and W we find

(eξb)
⊤U =

[
ρ
[N ]
1,b ρ

[N ]
N+1,b

]
, Weνa =


µ
[N ]
1,a

µ
[N ]
N+1,a


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Second kind polynomials, resolvent and Weyl
functions

Second kind polynomials

For a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, and π[N ]
k :=

∏
l∈{1,...,N+1}

l ̸=k

(
x− λ

[N ]
l

)
,

the second kind polynomials, in terms of the adjugate, are given by

P
(b,a)
N+1(x) := (eξb)

⊤ adj(xIN+1 − T [N ])eνa

=

N+1∑
k=1

ρ
[N ]
k,bµ

[N ]
k,aπ

[N ]
k (x)

=

∫
PN+1(z)− PN+1(x)

z − x
dψ

[N ]
b,a (x)

= αN+1

∫
det(AN+1(z))− det(AN+1(x))

z − x
dψ

[N ]
b,a (x)

= βN+1

∫
det(BN+1(z))− det(BN+1(x))

z − x
dψ

[N ]
b,a (x)
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Second kind polynomials, resolvent and Weyl
functions

If T has a PBF and the initial conditions are tuned as above then
degP

(b,a)
N+1 = N

The moments of the pq discrete measures dψ
[N ]
b,a are linked to the

components of the powers of T [N ]:

Theorem (Discrete moments)

For a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, the discrete moments we have∫
xndψ

[N ]
b,a (x) =

N+1∑
k=1

ρ
[N ]
k,b µ

[N ]
k,a

(
λ
[N ]
k

)n
= (eξb)

⊤(T [N ]
)n
eνa
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Second kind polynomials, resolvent and Weyl
functions

Proof.

We have that (eξb)
⊤(T [N ]

)n
eνa = (eξb)

⊤UDnWeνa so that

(eξb)
⊤(T [N ]

)n
eνa =

[
ρ
[N ]
1,b ρ

[N ]
N+1,b

]
Dn


µ
[N ]
1,a

µ
[N ]
N+1,a


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Second kind polynomials, resolvent and Weyl
functions

Resolvent

The resolvent matrix R[N ](z) of the leading principal submatrix T [N ] is

R[N ](z) :=
(
zIN+1 − T [N ]

)−1
=

adj
(
zIN+1 − T [N ]

)
det(zIN+1 − T [N ])

Weyl’s functions

For a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, the Weyl functions are

S
[N ]
b,a := (eξb)

⊤R[N ]eνa

=
P

(b,a)
N+1(z)

PN+1(z)
=

N+1∑
k=1

ρ
[N ]
k,b µ

[N ]
k,a

z − λ
[N ]
k

=

∫
dψ

[N ]
b,a (x)

z − x
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Second kind polynomials, resolvent and Weyl
functions

Interlacing

If T has a PBF for tuned initial conditions the polynomial P
(b,a)
N+1 is

interlaced by PN+1

Recursion polynomials and resolvent

p∑
a=1

∫
dψ

[N ]
b,a (x)

z − x
A

(a)
n−1(x) =

(
eξb
)⊤
R[N ](z)en

q∑
b=1

∫
B

(b)
n−1(x)

dψ
[N ]
b,a (x)

z − x
= e⊤nR

[N ](z)eνa

A path to mixed Hermite–Padé
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Helly’s tools

1. Helly’s Selection Principle: for any uniformly bounded sequence
{ψ[N ]}∞N=0 of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function ψ
defined in R

2. Helly’s second theorem: Let us assume a uniformly bounded
sequence {ψ[N ]}∞N=0 of non-decreasing functions on a compact
interval [a, b] with limit function ψ, then for any continuous function

f in [a, b] we have limN→∞
∫ b
a f(x)dψ

[N ](x) =
∫ b
a f(x)dψ(x)
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Favard theorem

As the submatrices T [N ] are oscillatory, we know that PN+1(x) strictly

interlaces PN (x) so that the positive sequence {λ[N ]
1 }∞N=1 is a strictly

increasing sequence and {λ[N ]
N+1}∞N=1 is a strictly decreasing sequence. As

well, for bounded operators, ∥T∥∞ <∞, we have ∥T [N ]∥∞ < ∥T∥∞ <∞.

Therefore, there exists the limits ζ := limN→∞ λ
[N ]
N+1 ⩾ 0 and

η := limN→∞ λ
[N ]
1 ⩽ ∥T∥∞. We call [ζ, η] ⊆ [0, ∥T∥∞] the true interval of

orthogonality, that is the smallest interval containing all zeros of the
characteristic polynomials Pn, i.e. the eigenvalues of the leading principal
submatrices of T
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Favard theorem

Theorem (Favard spectral representation)

Let us assume that

1. The banded matrix T is bounded and there exist s ⩾ 0 such that T + sI has
a PBF.

2. The sequences
{
A

(1)
n , . . . , A

(p)
n

}∞
n=0

,
{
B

(1)
n , . . . , B

(q)
n

}∞
n=0

of recursion
polynomials are determined by the initial condition matrices ν and
ξ,respectively, such that ν−⊤ = ΛA, ξ−1 = BΥ, and A ∈ Rp×p is a
nonnegative upper unitriangular matrices and B ∈ Rq×q is a nonnegative
lower unitriangular matrix.

Then, there exists pq non decreasing positive functions ψb,a, a ∈ {1, . . . , p} and
b ∈ {1, . . . , q} and corresponding positive Lebesgue–Stieltjes measures dψb,a with
compact support ∆ such that the following biorthogonality holds

p∑
a=1

q∑
b=1

∫ η

ζ

B
(b)
l (x)dψb,a(x)A

(a)
k (x) = δk,l, k, l ∈ N0
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Favard theorem

Proof.

The shift in the matrix T → T + sI only shifts by s the eigenvalues of the
truncations T [N ], so that they are positive, and the dependent variable of
the recursion polynomials, but do not alter the interlacing properties of the
polynomials and the positivity of the corresponding Christoffel numbers.

We know that the sequences
{
ψ
[N ]
a,b

}∞
N=0

, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}
are positive, uniformly bounded and nondecreasing. Consequently,
following Helly’s results there exist subsequences that converge when
N → ∞ to positive nondecreasing functions ψb,a with support on [ζ, η]
and that the discrete biorthogonal relations lead to the stated biorthogonal
properties
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Favard theorem

Corollary (Mixed multiple orthogonal relations)

In the conditions above, the mixed multiple orthogonal relations are
fulfilled

p∑
a=1

∫ η

ζ
xndψb,a(x)A

(a)
m (x) = 0, n ∈

{
0, . . . ,degB

(b)
m−1

}
, b ∈ {1, . . . , q}

q∑
b=1

∫ η

ζ
B(b)
m (x)dψb,a(x)x

n = 0, n ∈
{
0, . . . ,degA

(a)
m−1

}
, a ∈ {1, . . . , p}
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Favard theorem

Theorem (Spectral representation of moments and Stieltjes–Markov
functions)

In the conditions above and in terms of the spectral functions ψb,a,
a ∈ {1, . . . , p}, b ∈ {1, . . . , q} we find the following relations between
entries of powers or the resolvent of the banded matrix and moments or
the Cauchy transform of the measures, respectively:

(eξb)
⊤Tneνa =

∫ η

ζ
xndψb,a(x)

(eξb)
⊤(zI − T )−1eνa =

∫ η

ζ

dψb,a(x)

z − x
=: ψ̂b,a(z)
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Favard theorem

Theorem (Normal convergence of Weyl functions)

For a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, and in the conditions above, the Weyl
functions converge uniformly in compact subsets of C̄ \ [ζ, η] to the
Stieltjes–Markov functions, i.e.,

S
[N ]
b,a (z) =

P
(b,a)
N+1(z)

PN+1(z)
−−−−−−−−⇒
N→∞

ψ̂b,a(z)
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Gauss quadrature formulas

Degrees of precision

The degrees of precision or orders db,a(N), a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, are the
largest natural numbers such that(

eξb
)⊤
Tneνa = (eξb)

⊤(T [N ]
)n
eνa, 0 ⩽ n ⩽ db,a(N)

with

db,a(N) = degA
(a)
N + degB

(b)
N + 1 =

⌈
N + 2− a

p

⌉
+

⌈
N + 2− b

q

⌉
− 1
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Gauss quadrature formulas

Theorem (Mixed multiple Gaussian quadrature formulas)

The following Gauss quadrature formulas hold∫ η

ζ
xndψb,a(x) =

N+1∑
k=1

ρ
[N ]
k,b µ

[N ]
k,a

(
λ
[N ]
k

)n
, 0 ⩽ n ⩽ db,a(N)

Here the degrees of precision db,a are optimal (for any power largest than
n a positive remainder appears, an exactness is lost)
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