Banded total positive matrices and multiple orthogonality: Favard, Gauss quadrature and normality

Research project [PID2021- 122154NB-I00], Ortogonalidad y Aproximación con Aplicaciones en Machine Learning y Teoría de la Probabilidad funded by MICIU/AEI/10.13039 /501100011033 and by "ERDF A Way of making Europe" Multiple orthogonal polynomials

Spectral theory for bounded banded matrices with positive bidiagonal factorization and mixed multiple orthogonal polynomials

Amílcar Branquinho^a, Ana Foulquié-Moreno^b, Manuel Mañas^{c,d,*}

^a CMUC, Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal ^b CIDMA, Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, Portugal ^c Departamento de Física Téórica, Universidad Complutense de Madrid, Plaza Ciencios 1. 28404-Madrid Sonia.

^d Instituto de Ciencias Matematicas (ICMAT), Campus de Cantoblanco UAM, 28049-Madrid, Spain

ARTICLE INFO

Article history: Received 2 January 2023 Received in revised form 3 September 2023 Accepted 16 September 2023 Available online xxxx Communicated by C. Fefferman

ABSTRACT

Spectral and factorization properties of oscillatory matrices lead to a spectral Favard theorem for bounded banded matrices, that admit a positive bidiagonal factorization, in terms of sequences of mixed multiple orthogonal polynomials with respect to a set positive Lebesgue–Stieltjes measures. A mixed multiple Gauss quadrature formula with corresponding degrees of precision is given.

Banded semi-infinite matrices

Banded matrices

where the extreme diagonal entries are nonzero

with $T = \lim_{N \to \infty} T^{[N]}$ a banded semi-infinite matrix

Type I recursion polynomials

$$A^{(a)}(x) = \begin{bmatrix} A_0^{(a)}(x) & A_1^{(a)}(x) \cdots \end{bmatrix}, \qquad a \in \{1, \dots, p\}$$

Left eigenvectors:

$$A^{(a)}(x)T = xA^{(a)}(x), \qquad a \in \{1, \dots, p\}$$

Type I recursion polynomials Initial conditions,

 $\nu_{i}^{(i)}$ being arbitrary constants

Type I recursion polynomials

Initial condition matrix

▶ (p+q+1)-term recursion relation, $A_{-q}^{(a)} = \cdots = A_{-1}^{(a)} = 0$, $a \in \{1, \dots, p\}$ $A_{n-q}^{(a)}T_{n-q,n} + \cdots + A_{n+p}^{(a)}T_{n+p,n} = xA_n^{(a)}$, $n \in \mathbb{N}_0$ ▶ $\deg A_n^{(a)} \leq \left\lceil \frac{n+2-a}{p} \right\rceil - 1$. Normality iff \leq is replaced by =

Multiple orthogonal polynomials

Type I recursion polynomials

Initial condition matrix

▶ (p+q+1)-term recursion relation, $A_{-q}^{(a)} = \cdots = A_{-1}^{(a)} = 0, a \in \{1, \dots, p\}$ $A_{n-q}^{(a)}T_{n-q,n} + \cdots + A_{n+p}^{(a)}T_{n+p,n} = xA_n^{(a)}, n \in \mathbb{N}_0$ ▶ $\deg A_n^{(a)} \leq \left\lceil \frac{n+2-a}{p} \right\rceil - 1.$ Normality iff \leq is replaced by =

Multiple orthogonal polynomials

Type I recursion polynomials

Initial condition matrix

▶ (p+q+1)-term recursion relation, $A_{-q}^{(a)} = \cdots = A_{-1}^{(a)} = 0$, $a \in \{1, \dots, p\}$ $A_{n-q}^{(a)}T_{n-q,n} + \cdots + A_{n+p}^{(a)}T_{n+p,n} = xA_n^{(a)}, \quad n \in \mathbb{N}_0$ ▶ $\deg A_n^{(a)} \leq \left\lceil \frac{n+2-a}{p} \right\rceil - 1$. Normality iff \leq is replaced by =

Multiple orthogonal polynomials

June 23rd, 2024

Type II recursion polynomials

$$B^{(b)}(x) = \begin{bmatrix} B_0^{(b)}(x) & B_1^{(b)}(x) & \cdots \end{bmatrix}^\top, \qquad b \in \{1, \dots, q\}$$

Right eigenvectors:

 $TB^{(b)}(x) = xB^{(b)}(x), \qquad b \in \{1, \dots, q\}$

Multiple orthogonal polynomials

June 23rd, 2024

Type II recursion polynomials Initial conditions,

$$\begin{cases} B_0^{(1)} = 1, \\ B_1^{(1)} = \xi_1^{(1)}, \\ \vdots \\ B_{q-1}^{(1)} = \xi_{q-1}^{(1)}, \end{cases} \begin{cases} B_0^{(2)} = 0, \\ B_1^{(2)} = 1, \\ B_2^{(2)} = \xi_2^{(2)}, \\ \vdots \\ B_2^{(2)} = \xi_2^{(2)}, \\ B_{2}^{(2)} = \xi_{2}^{(2)}, \\ B_{2}^{(2)} = \xi_{2}^{(2)}, \\ B_{2}^{(2)} = \xi_{2}^{(2)}, \\ B_{q-2}^{(2)} = 0, \\ B_{q-2}^{(q)} = 0, \\ B_{q-2}^{(q)} = 0, \\ B_{q-1}^{(q)} = 0, \\ B_{q-1}^{(q)} = 0, \\ B_{1}^{(2)} = \xi_{2}^{(2)}, \\ B_{1}^{(2)} = \xi_{2}^{(2)}, \\ B_{1}^{(2)} = \xi_{2}^{(2)}, \\ B_{1}^{(2)} = \xi_{2}^{(2)}, \\ B_{1}^{(2)} = 0, \\ B_{1}^{$$

 $\xi_{i}^{(i)}$ being arbitrary constants

Type II recursion polynomials

Initial condition matrix

(p + q + 1)-term recursion relation, $B_{-p}^{(b)} = \cdots = B_{-1}^{(b)} = 0$, $b \in \{1, \dots, q\}$

$$T_{n,n-p}B_{n-p}^{(b)} + \dots + T_{n,n+q}B_{n+q}^{(b)} = xB_n^{(b)}, \quad n \in \mathbb{N}_0$$

• $\deg B_n^{(b)} \leq \left\lceil \frac{n+2-b}{q} \right\rceil - 1$. Normality iff \leq is replaced by =

Type II recursion polynomials

Initial condition matrix

(p + q + 1)-term recursion relation, $B_{-p}^{(b)} = \dots = B_{-1}^{(b)} = 0, b \in \{1, \dots, q\}$

$$T_{n,n-p}B_{n-p}^{(b)} + \dots + T_{n,n+q}B_{n+q}^{(b)} = xB_n^{(b)}, \quad n \in \mathbb{N}_0$$

• $\deg B_n^{(b)} \leq \left\lceil \frac{n+2-b}{q} \right\rceil - 1$. Normality iff \leq is replaced by =

Type II recursion polynomials

Initial condition matrix

▶ (p+q+1)-term recursion relation, $B_{-p}^{(b)} = \cdots = B_{-1}^{(b)} = 0$, $b \in \{1, \dots, q\}$ $T_{n,n-p}B_{n-p}^{(b)} + \cdots + T_{n,n+q}B_{n+q}^{(b)} = xB_n^{(b)}$, $n \in \mathbb{N}_0$ ▶ $\deg B_n^{(b)} \leq \left\lceil \frac{n+2-b}{q} \right\rceil - 1$. Normality iff \leq is replaced by =

Characteristic polynomials

For the semi-infinite matrix T we consider the polynomials $P_N(x)$, $\deg P_N = N$, as the characteristic polynomials of $T^{[N-1]}$

$$P_N(x) \coloneqq \begin{cases} 1, & N = 0\\ \det\left(xI_N - T^{[N-1]}\right), & N \in \mathbb{N} \end{cases}$$

Left and right recursion polynomials determinants

$$A_{N} \coloneqq \begin{bmatrix} A_{N}^{(1)} \cdots A_{N+p-1}^{(1)} \\ \vdots \\ A_{N}^{(p)} \cdots A_{N+p-1}^{(p)} \end{bmatrix}, \quad B_{N} \coloneqq \begin{bmatrix} B_{N}^{(1)} \cdots B_{N}^{(q)} \\ \vdots \\ B_{N+q-1}^{(1)} \cdots B_{N+q-1}^{(q)} \end{bmatrix}$$

 $\alpha_N \coloneqq (-1)^{(p-1)N} T_{p,0} \cdots T_{N+p-1,N-1}, \ \beta_N \coloneqq (-1)^{(q-1)N} T_{0,q} \cdots T_{N-1,N+q-1}$ for $N \in \mathbb{N}$ and $\alpha_0 = \beta_0 = 1$

Characteristic polynomials

For the semi-infinite matrix T we consider the polynomials $P_N(x)$, $\deg P_N = N$, as the characteristic polynomials of $T^{[N-1]}$

$$P_N(x) \coloneqq \begin{cases} 1, & N = 0\\ \det\left(xI_N - T^{[N-1]}\right), & N \in \mathbb{N} \end{cases}$$

Left and right recursion polynomials determinants

$$A_{N} \coloneqq \begin{bmatrix} A_{N}^{(1)} \cdots A_{N+p-1}^{(1)} \\ \vdots & \vdots \\ A_{N}^{(p)} \cdots A_{N+p-1}^{(p)} \end{bmatrix}, \quad B_{N} \coloneqq \begin{bmatrix} B_{N}^{(1)} \cdots B_{N}^{(q)} \\ \vdots & \vdots \\ B_{N+q-1}^{(1)} \cdots B_{N+q-1}^{(q)} \end{bmatrix}$$

 $\alpha_N \coloneqq (-1)^{(p-1)N} T_{p,0} \cdots T_{N+p-1,N-1}, \ \beta_N \coloneqq (-1)^{(q-1)N} T_{0,q} \cdots T_{N-1,N+q-1}$ for $N \in \mathbb{N}$ and $\alpha_0 = \beta_0 = 1$

Recursion and associated polynomials

Theorem

Determinantal expressions for the characteristic polynomials

$$P_N(x) = \alpha_N \det A_N(x) = \beta_N \det B_N(x)$$

Associated polynomials

 $R_{1.}$

$$Q_{n,N} \coloneqq \begin{vmatrix} A_{n}^{(1)} \cdots A_{n}^{(p)} \\ A_{N+1}^{(1)} \cdots A_{N+1}^{(p)} \\ \vdots \\ A_{N+p-1}^{(1)} \cdots A_{N+p-1}^{(p)} \end{vmatrix}, \quad R_{n,N} \coloneqq \begin{vmatrix} B_{n}^{(1)} \cdots B_{n}^{(q)} \\ B_{N+1}^{(1)} \cdots B_{N+1}^{(q)} \\ \vdots \\ \vdots \\ B_{N+q-1}^{(1)} \cdots B_{N+q-1}^{(q)} \end{vmatrix}$$
$$Q_{N} \coloneqq \begin{bmatrix} Q_{0,N} & Q_{1,N} \cdots B_{N+q-1}^{(q)} \end{bmatrix}$$

 $|R_0|$

 K_1

Key spectral property of truncations

$$Q^{\langle N \rangle} T^{[N]} + \begin{bmatrix} 0 \cdots 0 & T_{N+p,N} Q_{N+p,N} \end{bmatrix} = x Q^{\langle N \rangle}$$
$$T^{[N]} R^{\langle N \rangle} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ T_{N,N+q} R_{N+q,N} \end{bmatrix} = x R^{\langle N \rangle}$$

Christoffel–Darboux type formulas

$$\sum_{n=0}^{N} Q_{n,N}(x) R_{n,N}(y) = \frac{1}{\alpha_N \beta_N} \frac{P_{N+1}(x) P_N(y) - P_N(x) P_{N+1}(y)}{x - y}$$

Multiple orthogonal polynomials

June 23rd, 2024

Key spectral property of truncations

$$Q^{\langle N \rangle} T^{[N]} + \begin{bmatrix} 0 \cdots 0 & T_{N+p,N} Q_{N+p,N} \end{bmatrix} = x Q^{\langle N \rangle}$$
$$T^{[N]} R^{\langle N \rangle} + \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ T_{N,N+q} R_{N+q,N} \end{bmatrix} = x R^{\langle N \rangle}$$

Christoffel–Darboux type formulas

$$\sum_{n=0}^{N} Q_{n,N}(x) R_{n,N}(y) = \frac{1}{\alpha_N \beta_N} \frac{P_{N+1}(x) P_N(y) - P_N(x) P_{N+1}(y)}{x - y}$$

Assume that P_{N+1} has simple zeros at the set $\{\lambda_k^{[N]}\}_{k=1}^{N+1}$

Biorthogonal sets of left and right eigenvectors, $\{w_k^{\langle N \rangle}\}_{k=1}^{N+1}$, $\{u_k^{\langle N \rangle}\}_{k=1}^{N+1}$, are given by

$$w_{k}^{\langle N \rangle} = \frac{Q^{\langle N \rangle}(\lambda_{k}^{[N]})}{\beta_{N} \sum_{l=0}^{N} Q_{l,N}(\lambda_{k}^{[N]}) R_{l,N}(\lambda_{k}^{[N]})}, \quad u_{k}^{\langle N \rangle} = \beta_{N} R^{\langle N \rangle}(\lambda_{k}^{[N]})$$

The following expression holds

$$w_{k,n}^{\langle N \rangle} = \frac{\alpha_N Q_{n-1,N} \left(\lambda_k^{[N]} \right)}{P_N \left(\lambda_k^{[N]} \right) P_{N+1}' \left(\lambda_k^{[N]} \right)}, \qquad u_{k,n}^{\langle N \rangle} = \beta_N R_{n-1,N} \left(\lambda_k^{[N]} \right)$$

Assume that P_{N+1} has simple zeros at the set $\{\lambda_k^{[N]}\}_{k=1}^{N+1}$

Biorthogonal sets of left and right eigenvectors, $\{w_k^{\langle N \rangle}\}_{k=1}^{N+1}$, $\{u_k^{\langle N \rangle}\}_{k=1}^{N+1}$, are given by

$$w_{k}^{\langle N \rangle} = \frac{Q^{\langle N \rangle}(\lambda_{k}^{[N]})}{\beta_{N} \sum_{l=0}^{N} Q_{l,N}(\lambda_{k}^{[N]}) R_{l,N}(\lambda_{k}^{[N]})}, \quad u_{k}^{\langle N \rangle} = \beta_{N} R^{\langle N \rangle}(\lambda_{k}^{[N]})$$

The following expression holds

$$w_{k,n}^{\langle N \rangle} = \frac{\alpha_N Q_{n-1,N} \left(\lambda_k^{[N]}\right)}{P_N \left(\lambda_k^{[N]}\right) P_{N+1}' \left(\lambda_k^{[N]}\right)}, \qquad u_{k,n}^{\langle N \rangle} = \beta_N R_{n-1,N} \left(\lambda_k^{[N]}\right)$$

 $\blacktriangleright \text{ We can write } w_{k,n}^{\langle N \rangle} = A_{n-1}^{(1)} (\lambda_k^{[N]}) \mu_{k,1}^{[N]} + \dots + A_{n-1}^{(p)} (\lambda_k^{[N]}) \mu_{k,p}^{[N]}$

$$\mu_{k,1}^{[N]} \coloneqq \frac{\begin{vmatrix} A_{n+1}^{(2)} \left(\lambda_{k}^{[N]}\right) \cdots A_{n+1}^{(p)} \left(\lambda_{k}^{[N]}\right) \\ \vdots & \ddots & \vdots \\ A_{n+p-1}^{(2)} \left(\lambda_{k}^{[N]}\right) \cdots A_{n+p-1}^{(p)} \left(\lambda_{k}^{[N]}\right) \end{vmatrix}}{\beta_{N} \sum_{l=0}^{N} Q_{l,N} \left(\lambda_{k}^{[N]}\right) R_{l,N} \left(\lambda_{k}^{[N]}\right)} \\ \mu_{k,2}^{[N]} \coloneqq -\frac{\begin{vmatrix} A_{n+1}^{(1)} \left(\lambda_{k}^{[N]}\right) & A_{n+1}^{(3)} \left(\lambda_{k}^{[N]}\right) \cdots A_{n+1}^{(p)} \left(\lambda_{k}^{[N]}\right) \\ \vdots & \vdots & \ddots & \vdots \\ A_{n+p-1}^{(1)} \left(\lambda_{k}^{[N]}\right) A_{n+p-1}^{(3)} \left(\lambda_{k}^{[N]}\right) \cdots A_{n+p-1}^{(p)} \left(\lambda_{k}^{[N]}\right) \end{vmatrix}}{\beta_{N} \sum_{l=0}^{N} Q_{l,N} \left(\lambda_{k}^{[N]}\right) R_{l,N} \left(\lambda_{k}^{[N]}\right)}$$

$$\mu_{k,p}^{[N]} \coloneqq (-1)^{p-1} \frac{\begin{vmatrix} A_{n+1}^{(1)} \left(\lambda_k^{[N]}\right) \cdots A_{n+1}^{(p-1)} \left(\lambda_k^{[N]}\right) \\ \vdots & \ddots & \vdots \\ A_{n+p-1}^{(1)} \left(\lambda_k^{[N]}\right) \cdots A_{n+p-1}^{(p-1)} \left(\lambda_k^{[N]}\right) \end{vmatrix}}{\beta_N \sum_{l=0}^N Q_{l,N} \left(\lambda_k^{[N]}\right) R_{l,N} \left(\lambda_k^{[N]}\right)}$$

Multiple orthogonal polynomials

 $\blacktriangleright \text{ We can write } u_{k,n}^{\langle N \rangle} = B_{n-1}^{(1)} (\lambda_k^{[N]}) \rho_{k,1}^{[N]} + \dots + B_{n-1}^{(q)} (\lambda_k^{[N]}) \rho_{k,q}^{[N]}$ Christoffel numbers

$$\begin{split} \rho_{k,1}^{[N]} &\coloneqq \beta_N \begin{vmatrix} B_{N+1}^{(2)} \left(\lambda_k^{[N]}\right) \cdots B_{N+1}^{(q)} \left(\lambda_k^{[N]}\right) \\ \vdots &\vdots \\ B_{N+q-1}^{(2)} \left(\lambda_k^{[N]}\right) \cdots B_{N+q-1}^{(p)} \left(\lambda_k^{[N]}\right) \end{vmatrix} \\ \rho_{k,2}^{[N]} &\coloneqq -\beta_N \begin{vmatrix} B_{N+1}^{(1)} \left(\lambda_k^{[N]}\right) & B_{N+1}^{(3)} \left(\lambda_k^{[N]}\right) \cdots B_{N+q-1}^{(q)} \left(\lambda_k^{[N]}\right) \\ \vdots &\vdots \\ B_{N+q-1}^{(1)} \left(\lambda_k^{[N]}\right) & B_{n+q-1}^{(3)} \left(\lambda_k^{[N]}\right) \cdots B_{N+q-1}^{(p)} \left(\lambda_k^{[N]}\right) \end{aligned}$$
$$\vdots$$
$$\rho_{k,q}^{[N]} &\coloneqq (-1)^{q-1} \beta_N \begin{vmatrix} B_{N+1}^{(1)} \left(\lambda_k^{[N]}\right) \cdots B_{N+1}^{(q-1)} \left(\lambda_k^{[N]}\right) \\ \vdots &\vdots \\ B_{N+q-1}^{(1)} \left(\lambda_k^{[N]}\right) \cdots B_{N+1}^{(q-1)} \left(\lambda_k^{[N]}\right) \end{vmatrix}$$

Step functions

$$\psi_{b,a}^{[N]} \coloneqq \begin{cases} 0, & x < \lambda_{N+1}^{[N]}, \\ \rho_{1,b}^{[N]} \mu_{1,a}^{[N]} + \dots + \rho_{k,b}^{[N]} \mu_{k,a}^{[N]} & \lambda_{k+1}^{[N]} \leqslant x < \lambda_{k}^{[N]}, \, k \in \{1,\dots,N\} \\ \rho_{1,b}^{[N]} \mu_{1,a}^{[N]} + \dots + \rho_{N+1,b}^{[N]} \mu_{N+1,a}^{[N]} & x \geqslant \lambda_{1}^{[N]} \end{cases}$$

Finite sums

For $a \in \{1, \dots, p\}$ and $b \in \{1, \dots, q\}$, we have

$$\rho_{1,b}^{[N]}\mu_{1,a}^{[N]} + \dots + \rho_{N+1,b}^{[N]}\mu_{N+1,a}^{[N]} = (B_0^{-1}I_{q,p}A_0^{-1})_{b,a}$$

 $I_{p,q} \in \mathbb{R}^{p imes q}$, $(I_{p,q})_{i,j} = \delta_{i,j}$

Step functions

$$\psi_{b,a}^{[N]} \coloneqq \begin{cases} 0, & x < \lambda_{N+1}^{[N]}, \\ \rho_{1,b}^{[N]} \mu_{1,a}^{[N]} + \dots + \rho_{k,b}^{[N]} \mu_{k,a}^{[N]} & \lambda_{k+1}^{[N]} \leqslant x < \lambda_{k}^{[N]}, \, k \in \{1,\dots,N\} \\ \rho_{1,b}^{[N]} \mu_{1,a}^{[N]} + \dots + \rho_{N+1,b}^{[N]} \mu_{N+1,a}^{[N]} & x \geqslant \lambda_{1}^{[N]} \end{cases}$$

Finite sums

For $a \in \{1, \dots, p\}$ and $b \in \{1, \dots, q\}$, we have

$$\rho_{1,b}^{[N]}\mu_{1,a}^{[N]} + \dots + \rho_{N+1,b}^{[N]}\mu_{N+1,a}^{[N]} = (B_0^{-1}I_{q,p}A_0^{-1})_{b,a}$$

 $I_{p,q} \in \mathbb{R}^{p imes q}$, $(I_{p,q})_{i,j} = \delta_{i,j}$

June 23rd, 2024

Matrix of discrete measures $q \times p$ matrix of functions: $\Psi^{[N]} \coloneqq \begin{bmatrix} \psi_{1,1}^{v_1, \cdots, v_{1,p}^{v_1}} \\ \vdots \\ \psi_{a,1}^{[N]} \cdots \psi_{a,p}^{[N]} \end{bmatrix} q \times p$ matrix of discrete Lebesgue–Stieltjes measures supported at the zeros of P_{N+1} : $\mathbf{d}\Psi^{[N]} = \begin{vmatrix} \mathbf{d}\psi_{1,1}^{[N]} \cdots \mathbf{d}\psi_{1,p}^{[N]} \\ \vdots \\ \mathbf{d}\psi_{a,1}^{[N]} \cdots \mathbf{d}\psi_{a,p}^{[N]} \end{vmatrix} = \sum_{k=1}^{N+1} \begin{vmatrix} \rho_{k,1}^{[N]} \\ \vdots \\ \rho_{k,a}^{[N]} \end{vmatrix} \left[\mu_{k,1}^{[N]} \cdots \mu_{k,p}^{[N]} \right] \delta(x - \lambda_k^{[N]})$

Theorem

The following biorthogonal relations hold

$$\sum_{a=1}^{p} \sum_{b=1}^{q} \int B_{n}^{(b)}(x) \mathrm{d}\psi_{b,a}^{[N]}(x) A_{m}^{(a)}(x) = \delta_{n,m}, \qquad n, m \in \{0, \dots, N\}$$

Corollary

The following discrete mixed multiple orthogonality for $m \in \{1, ..., N\}$ are satisfied:

$$\sum_{a=1}^{p} \int x^{n} d\psi_{b,a}^{[N]} A_{m}^{(a)} = 0, \quad n \in \{0, \dots, \deg B_{m-1}^{(b)}\}, \quad b \in \{1, \dots, q\}$$
$$\sum_{b=1}^{q} \int B_{m}^{(b)} d\psi_{b,a}^{[N]} x^{n} = 0, \quad n \in \{0, \dots, \deg A_{m-1}^{(a)}\}, \quad a \in \{1, \dots, p\}$$

Totally nonnegative (TN) All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix A^n is totally positive

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN) All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix ${\cal A}$ such that for some n, the matrix ${\cal A}^n$ is totally positive

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN) All its minors are non-negative and is nonsingular

Totally positive (TP) All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix ${\cal A}$ such that for some n, the matrix ${\cal A}^n$ is totally positive

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN) All its minors are non-negative and is nonsingular

Totally positive (TP) All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix A^n is totally positive

Factorization I

From Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product PBF \Rightarrow oscillatory

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Translations

Translations of bounded Jacobi matrices are oscillatory matrices

Multiple orthogonal polynomials

June 23rd, 2024

Factorization I

From Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product $PBF \Rightarrow$ oscillatory

Eigenvalues The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Translations

Translations of bounded Jacobi matrices are oscillatory matrices

Multiple orthogonal polynomials

June 23rd, 2024

Factorization I From Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product PBF \Rightarrow oscillatory

Eigenvalues The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Translations

Translations of bounded Jacobi matrices are oscillatory matrices

Multiple orthogonal polynomials

June 23rd, 2024

Factorization I From Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under the usual matrix product PBF \Rightarrow oscillatory

Eigenvalues The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix (deleting first row and column) (also last column and row)

Translations Translations of bounded Jacobi matrices are oscillatory matrices

Multiple orthogonal polynomials

June 23rd, 2024

1. Banded matrices are characterized by having p subdiagonals and q superdiagonals. These matrices are denoted as $B_{p,q}$.

- 2. We define $B_{p,q}TN$ as the subset of $B_{p,q}$ that intersects with TN, $B_{p,q}InTN$ as the subset of $B_{p,q}$ that intersects with InTN, and $B_{p,q}IITN$ as the subset of $B_{p,q}$ that intersects with IITN.
- A particular case of banded matrices arises when p = n and q = 0, resulting in lower triangular matrices, and when p = 0 and q = n, resulting in upper triangular matrices. These specific cases are denoted by ΔTN or ∇TN for lower and upper totally nonnegative matrices, respectively

- **1.** Banded matrices are characterized by having p subdiagonals and q superdiagonals. These matrices are denoted as $B_{p,q}$.
- 2. We define $B_{p,q}TN$ as the subset of $B_{p,q}$ that intersects with TN, $B_{p,q}InTN$ as the subset of $B_{p,q}$ that intersects with InTN, and $B_{p,q}IITN$ as the subset of $B_{p,q}$ that intersects with IITN.

A particular case of banded matrices arises when p = n and q = 0, resulting in lower triangular matrices, and when p = 0 and q = n, resulting in upper triangular matrices. These specific cases are denoted by ΔTN or ∇TN for lower and upper totally nonnegative matrices, respectively

- **1.** Banded matrices are characterized by having p subdiagonals and q superdiagonals. These matrices are denoted as $B_{p,q}$.
- 2. We define $B_{p,q}TN$ as the subset of $B_{p,q}$ that intersects with TN, $B_{p,q}InTN$ as the subset of $B_{p,q}$ that intersects with InTN, and $B_{p,q}IITN$ as the subset of $B_{p,q}$ that intersects with IITN.
- **3.** A particular case of banded matrices arises when p = n and q = 0, resulting in lower triangular matrices, and when p = 0 and q = n, resulting in upper triangular matrices. These specific cases are denoted by ΔTN or ∇TN for lower and upper totally nonnegative matrices, respectively

Price, 1965

Let $T \in B_{p,q}$ be a nonsingular banded matrix with contiguous minors

$$T\begin{pmatrix} i & i+1\cdots + r-1\\ j & j+1\cdots + j+r-1 \end{pmatrix} > 0$$

for $i - p \le j \le i + q$, where $i, j \in \{1, \dots, n\}$. Then, T is a oscillatory matrix

Trivial submatrices $T\begin{bmatrix} i_1 & \cdots & i_r \\ j_1 & \cdots & j_r \end{bmatrix}$ with $T_{i_k,j_k} = 0$ above the q-th superdiagonal are of the form:

and for $T_{i_k,j_k} = 0$ below the p-th subdiagonal

Banded totally positive

A banded matrix is said to be banded totally positive if all nontrivial minors are positive. The set of such matrices will be denoted by BTP or by $B_{p,q}TP$

Nontrivial contiguous submatrices

For $T \in \mathbb{R}^{n \times n}$ such that $T \in B_{(p,q)}$ TN, the corresponding nontrivial contiguous submatrices, associated with zero dispersion sequences of indexes,

$$T\begin{bmatrix} i & i+1\cdots + r-1\\ j & j+1\cdots + j+r-1 \end{bmatrix}$$

are those satisfying $i-p\leq j\leq i+q$, with $i,j\in\{1,\ldots,n\}$

Banded totally positive

A banded matrix is said to be banded totally positive if all nontrivial minors are positive. The set of such matrices will be denoted by BTP or by $B_{p,q}TP$

Nontrivial contiguous submatrices

For $T \in \mathbb{R}^{n \times n}$ such that $T \in B_{(p,q)}$ TN, the corresponding nontrivial contiguous submatrices, associated with zero dispersion sequences of indexes,

$$T\begin{bmatrix} i & i+1\cdots + r-1\\ j & j+1\cdots + r-1 \end{bmatrix}$$

are those satisfying $i-p \leq j \leq i+q$, with $i,j \in \{1,\ldots,n\}$

Price in disguise Banded matrices with all nontrivial contiguous minors being positive are oscillatory

Our result on BTP based on Pinkus

A matrix is banded totally positive if and only if all nontrivial contiguous minors are positive

Initial submatrices

For any matrix $T \in \mathbb{R}^{n \times n}$, we define the Δ initial submatrices as follows:

$$\Delta^{i}[T] \coloneqq T \begin{bmatrix} 1 \cdots \cdots & i \\ n - i + 1 \cdots & n \end{bmatrix}, \quad \Delta_{i}[T] \coloneqq T \begin{bmatrix} n - i + 1 \cdots & n \\ 1 \cdots & \cdots & i \end{bmatrix}.$$

and corresponding minors $\Delta^i(T)$ and $\Delta_i(T)$

Price in disguise Banded matrices with all nontrivial contiguous minors being positive are oscillatory

Our result on BTP based on Pinkus A matrix is banded totally positive if and only if all nontrivial contiguous minors are positive

Initial submatrices

For any matrix $T \in \mathbb{R}^{n \times n}$, we define the Δ initial submatrices as follows:

$$\Delta^{i}[T] \coloneqq T \begin{bmatrix} 1 \cdots \cdots & i \\ n - i + 1 \cdots & n \end{bmatrix}, \quad \Delta_{i}[T] \coloneqq T \begin{bmatrix} n - i + 1 \cdots & n \\ 1 \cdots & \cdots & i \end{bmatrix}.$$

and corresponding minors $\Delta^i(T)$ and $\Delta_i(T)$

Price in disguise Banded matrices with all nontrivial contiguous minors being positive are oscillatory

Our result on BTP based on Pinkus A matrix is banded totally positive if and only if all nontrivial contiguous minors are positive

Initial submatrices

For any matrix $T \in \mathbb{R}^{n \times n}$, we define the Δ initial submatrices as follows:

$$\Delta^{i}[T] \coloneqq T \begin{bmatrix} 1 \cdots \cdots & i \\ n - i + 1 \cdots & n \end{bmatrix}, \quad \Delta_{i}[T] \coloneqq T \begin{bmatrix} n - i + 1 \cdots & n \\ 1 \cdots & \cdots & i \end{bmatrix},$$

and corresponding minors $\Delta^i(T)$ and $\Delta_i(T)$

Our result on BTP based on Metelmann

Given a banded matrix T, the following equivalences hold:

- 2. All nontrivial submatrices $\Delta_i[T], \Delta^i[T]$ are InTN
- 3. All nontrivial initial minors are positive

There exists a nonnegative bidiagonal factorization of T into $T = \hat{L}_1 \cdots \hat{L}_p \cdot D \cdot \hat{U}_q \cdots \hat{U}_1$ where $\hat{L}_i \coloneqq \begin{bmatrix} I_{D_0^{-i}} & 0 \\ L_i \end{bmatrix}$ is a nonnegative bidiagonal lower unitriangular matrix with L_i being a positive bidiagonal lower unitriangular matrix, and $\hat{U}_i \coloneqq \begin{bmatrix} I_{q-i} & 0 \\ 0 & U_i \end{bmatrix}$ is a nonnegative bidiagonal upper unitriangular matrix with U_i being a positive bidiagonal upper unitriangular matrix, and D is a positive diagonal matrix

Our result on BTP based on Metelmann

Given a banded matrix T, the following equivalences hold:

1. $T \in \mathsf{BTP}$

2. All nontrivial submatrices $\Delta_i[T], \Delta^i[T]$ are InTN

3. All nontrivial initial minors are positive

There exists a nonnegative bidiagonal factorization of T into $T = \hat{L}_1 \cdots \hat{L}_p \cdot D \cdot \hat{U}_q \cdots \hat{U}_1$ where $\hat{L}_i \coloneqq \begin{bmatrix} I_{D^{-i}} & 0 \\ L_i \end{bmatrix}$ is a nonnegative bidiagonal lower unitriangular matrix with L_i being a positive bidiagonal lower unitriangular matrix, and $\hat{U}_i \coloneqq \begin{bmatrix} I_{Q^{-i}} & 0 \\ U_i \end{bmatrix}$ is a nonnegative bidiagonal upper unitriangular matrix with U_i being a positive bidiagonal upper unitriangular matrix, and D is a positive diagonal matrix

Our result on BTP based on Metelmann

Given a banded matrix T, the following equivalences hold:

1. $T \in \mathsf{BTP}$

- 2. All nontrivial submatrices $\Delta_i[T], \Delta^i[T]$ are InTN
- 3. All nontrivial initial minors are positive

There exists a nonnegative bidiagonal factorization of T into $T = \hat{L}_1 \cdots \hat{L}_p \cdot D \cdot \hat{U}_q \cdots \hat{U}_1$ where $\hat{L}_i \coloneqq \begin{bmatrix} I_{D_0}^{-i} & 0 \\ L_i \end{bmatrix}$ is a nonnegative bidiagonal lower unitriangular matrix with L_i being a positive bidiagonal lower unitriangular matrix, and $\hat{U}_i \coloneqq \begin{bmatrix} I_{q-i} & 0 \\ 0 & U_i \end{bmatrix}$ is a nonnegative bidiagonal upper unitriangular matrix with U_i being a positive bidiagonal upper unitriangular matrix, and D is a positive diagonal matrix

Our result on BTP based on Metelmann

Given a banded matrix T, the following equivalences hold:

1. $T \in \mathsf{BTP}$

- 2. All nontrivial submatrices $\Delta_i[T], \Delta^i[T]$ are InTN
- 3. All nontrivial initial minors are positive

4. There exists a nonnegative bidiagonal factorization of T into $T = \hat{L}_1 \cdots \hat{L}_p \cdot D \cdot \hat{U}_q \cdots \hat{U}_1$ where $\hat{L}_i \coloneqq \begin{bmatrix} I_{p^{-i}} & 0\\ 0 & L_i \end{bmatrix}$ is a nonnegative bidiagonal lower unitriangular matrix with L_i being a positive bidiagonal lower unitriangular matrix, and $\hat{U}_i \coloneqq \begin{bmatrix} I_{q^{-i}} & 0\\ U_i \end{bmatrix}$ is a nonnegative bidiagonal upper unitriangular matrix with U_i being a positive bidiagonal upper unitriangular matrix, and D is a positive diagonal matrix

Positive bidiagonal matrices are BTP

For $(L)_{i,i-1}, (U)_{i-1,n} > 0$, $i \in \{1, \ldots, n\}$, the following bidiagonal matrices:

are banded totally positive matrices

Positive of bidiagonal factorization

A matrix T is said to be PBF (positive of bidiagonal factorization) if it can be expressed as:

$$T = L_1 \cdots L_p D U_q \cdots U_1$$

where L_i and U_i are positive bidiagonal matrices and D is a positive diagonal matrix

PBF vs BTP PBF matrices are banded totally positive matrices

Multiple orthogonal polynomials

June 23rd, 2024

Positive of bidiagonal factorization

A matrix T is said to be PBF (positive of bidiagonal factorization) if it can be expressed as:

$$T = L_1 \cdots L_p D U_q \cdots U_1$$

where L_i and U_i are positive bidiagonal matrices and D is a positive diagonal matrix

PBF vs BTP PBF matrices are banded totally positive matrices

Multiple orthogonal polynomials

June 23rd, 2024

Christoffel numbers are positive for PBF

Total positivity The matrices Λ_p and Υ_q belong to $\mathbb{V}\mathsf{TP}$ and $\mathbb{L}\mathsf{TP}$, respectively

Multiple orthogonal polynomials

June 23rd, 2024

Christoffel numbers are positive for PBF

Total positivity The matrices Λ_p and Υ_q belong to $\forall TP$ and $\land TP$, respectively

Multiple orthogonal polynomials

June 23rd, 2024

Theorem (Christoffel coefficients positivity)

Let us assume that T has a PBF and that $A_0^{-1} = \Lambda_p \mathcal{A}$, $B_0^{-1} = \mathcal{B}\Upsilon_q$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is an upper unitriangular totally positive matrix and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a lower unitriangular totally positive matrix. Then,

 $\rho_{k,b}^{[N]} > 0, \quad \mu_{k,a}^{[N]} > 0, \quad k \in \{1, \dots, N+1\}, \quad a \in \{1, \dots, p\}, \quad b \in \{1, \dots, q\}$

Favard theorem

Theorem (Favard spectral representation and normality) Let us assume that

1. The banded matrix T is bounded and there exist $s \ge 0$ such that T + sI has a PBF

The sequences $\{A_n^{(1)}, \ldots, A_n^{(p)}\}_{n=0}^{\infty}, \{B_n^{(1)}, \ldots, B_n^{(q)}\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices A_0 and B_0 , respectively, such that $A_0^{-1} = \Lambda_p \mathcal{A}$, $B_0^{-1} = \mathcal{B}\Upsilon_q$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a upper unitriangular totally positive matrix and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a lower unitriangular totally positive matrix

Then, there exists pq non decreasing positive functions $\psi_{b,a}$, $a \in \{1, \ldots, p\}$ and $b \in \{1, \ldots, q\}$ and corresponding positive Lebesgue–Stieltjes measures $d\psi_{b,a}$ with compact support $[\zeta, \eta]$ such that the following biorthogonality holds

$$\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d}\psi_{b,a}(x) A_{k}^{(a)}(x) = \delta_{k,l}, \qquad k, l \in \mathbb{N}_{0}$$

and we have normal degrees

June 23rd, 2024

Favard theorem

Theorem (Favard spectral representation and normality) Let us assume that

1. The banded matrix T is bounded and there exist $s \ge 0$ such that T + sI has a PBF

2. The sequences $\{A_n^{(1)}, \ldots, A_n^{(p)}\}_{n=0}^{\infty}, \{B_n^{(1)}, \ldots, B_n^{(q)}\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices A_0 and B_0 , respectively, such that $A_0^{-1} = \Lambda_p \mathcal{A}$, $B_0^{-1} = \mathcal{B}\Upsilon_q$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a upper unitriangular totally positive matrix and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a lower unitriangular totally positive matrix

Then, there exists pq non decreasing positive functions $\psi_{b,a}$, $a \in \{1, \ldots, p\}$ and $b \in \{1, \ldots, q\}$ and corresponding positive Lebesgue–Stieltjes measures $d\psi_{b,a}$ with compact support $[\zeta, \eta]$ such that the following biorthogonality holds

$$\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d}\psi_{b,a}(x) A_{k}^{(a)}(x) = \delta_{k,l}, \qquad k, l \in \mathbb{N}_{0}$$

and we have normal degrees

Favard theorem

Theorem (Favard spectral representation and normality) Let us assume that

1. The banded matrix T is bounded and there exist $s \ge 0$ such that T + sI has a PBF

2. The sequences $\{A_n^{(1)}, \ldots, A_n^{(p)}\}_{n=0}^{\infty}, \{B_n^{(1)}, \ldots, B_n^{(q)}\}_{n=0}^{\infty}$ of recursion polynomials are determined by the initial condition matrices A_0 and B_0 , respectively, such that $A_0^{-1} = \Lambda_p \mathcal{A}, B_0^{-1} = \mathcal{B}\Upsilon_q$, and $\mathcal{A} \in \mathbb{R}^{p \times p}$ is a upper unitriangular totally positive matrix and $\mathcal{B} \in \mathbb{R}^{q \times q}$ is a lower unitriangular totally positive matrix

Then, there exists pq non decreasing positive functions $\psi_{b,a}$, $a \in \{1, \ldots, p\}$ and $b \in \{1, \ldots, q\}$ and corresponding positive Lebesgue–Stieltjes measures $d\psi_{b,a}$ with compact support $[\zeta, \eta]$ such that the following biorthogonality holds

$$\sum_{a=1}^{p} \sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{l}^{(b)}(x) \mathrm{d}\psi_{b,a}(x) A_{k}^{(a)}(x) = \delta_{k,l}, \qquad k, l \in \mathbb{N}_{0}$$

and we have normal degrees

Favard theorem / Gaussian quadrature

Mixed multiple orthogonal relations

$$\sum_{a=1}^{p} \int_{\zeta}^{\eta} x^{n} \mathrm{d}\psi_{b,a}(x) A_{m}^{(a)}(x) = 0, \quad n \in \{0, \dots, \deg B_{m-1}^{(b)}\}, \quad b \in \{1, \dots, q\}$$
$$\sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{m}^{(b)}(x) \mathrm{d}\psi_{b,a}(x) x^{n} = 0, \quad n \in \{0, \dots, \deg A_{m-1}^{(a)}\}, \quad a \in \{1, \dots, p\}$$

Degrees of precision

$$d_{b,a}(N) = \deg A_N^{(a)} + \deg B_N^{(b)} + 1 = \left\lceil \frac{N+2-a}{p} \right\rceil + \left\lceil \frac{N+2-b}{q} \right\rceil - 1$$

Mixed multiple Gaussian quadrature formulas

$$\int_{\zeta}^{\eta} x^{n} \mathrm{d}\psi_{b,a}(x) = \sum_{k=1}^{N+1} \rho_{k,b}^{[N]} \mu_{k,a}^{[N]} (\lambda_{k}^{[N]})^{n},$$

Multiple orthogonal polynomials

June 23rd, 2024

Favard theorem / Gaussian quadrature

Mixed multiple orthogonal relations

$$\sum_{a=1}^{p} \int_{\zeta}^{\eta} x^{n} d\psi_{b,a}(x) A_{m}^{(a)}(x) = 0, \quad n \in \{0, \dots, \deg B_{m-1}^{(b)}\}, \quad b \in \{1, \dots, q\}$$
$$\sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{m}^{(b)}(x) d\psi_{b,a}(x) x^{n} = 0, \quad n \in \{0, \dots, \deg A_{m-1}^{(a)}\}, \quad a \in \{1, \dots, p\}$$

Degrees of precision

$$d_{b,a}(N) = \deg A_N^{(a)} + \deg B_N^{(b)} + 1 = \left\lceil \frac{N+2-a}{p} \right\rceil + \left\lceil \frac{N+2-b}{q} \right\rceil - 1$$

Mixed multiple Gaussian quadrature formulas

$$\int_{\zeta}^{\eta} x^{n} \mathrm{d}\psi_{b,a}(x) = \sum_{k=1}^{N+1} \rho_{k,b}^{[N]} \mu_{k,a}^{[N]} (\lambda_{k}^{[N]})^{n},$$

Multiple orthogonal polynomials

June 23rd, 2024

Favard theorem / Gaussian quadrature

Mixed multiple orthogonal relations

$$\sum_{a=1}^{p} \int_{\zeta}^{\eta} x^{n} d\psi_{b,a}(x) A_{m}^{(a)}(x) = 0, \quad n \in \{0, \dots, \deg B_{m-1}^{(b)}\}, \quad b \in \{1, \dots, q\}$$
$$\sum_{b=1}^{q} \int_{\zeta}^{\eta} B_{m}^{(b)}(x) d\psi_{b,a}(x) x^{n} = 0, \quad n \in \{0, \dots, \deg A_{m-1}^{(a)}\}, \quad a \in \{1, \dots, p\}$$

Degrees of precision

$$d_{b,a}(N) = \deg A_N^{(a)} + \deg B_N^{(b)} + 1 = \left\lceil \frac{N+2-a}{p} \right\rceil + \left\lceil \frac{N+2-b}{q} \right\rceil - 1$$

Mixed multiple Gaussian quadrature formulas

$$\int_{\zeta}^{\eta} x^{n} \mathrm{d}\psi_{b,a}(x) = \sum_{k=1}^{N+1} \rho_{k,b}^{[N]} \mu_{k,a}^{[N]} \big(\lambda_{k}^{[N]}\big)^{n},$$

$$0 \leqslant n \leqslant d_{b,a}(N$$

Multiple orthogonal polynomials

June 23rd, 2024