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Simple case: Jacobi matrix
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Spectral Favard theorem for bounded Jacobi
matrices

Recurrence Relation

xPn(x) = Pn+1(x) + bnPn(x) + anPn−1(x), bn ∈ R, an > 0

Favard’s Theorem

∃ψ(x), non-decreasing piece-wise continuous function, such that∫
Pn(x)Pm(x)dψ(x) = knδn,m
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Jacobi matrix and recursion relation

J :=



b0 1 0

a1 b1 1
0 a2 b2 1

 , J


P0(x)
P1(x)
P2(x)

 = x


P0(x)
P1(x)
P2(x)


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Characteristic Polynomial

Pn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− b0 −1 0 0

−a1 x− b1 −1
0 −a2 x− b2 −1

0
−1

0 0 −an x− bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Proof

This determinantal polynomial satisfies the same three recurrence relation
with the same initial conditions P−1 = 0, P0 = 1
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Polynomials of the second kind

P
(1)
−1 = 1, P

(1)
0 = 0

Determinantal form of polynomials of the second kind

P
(1)
n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− b1 −1 0 0

−a2 x− b2 −1
0 −a3 x− b3 −1

0
1

0 0 −an x− bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Adjugates and second kind

P
(1)
n+1 = e⊤1 adj

(
xIn+1 − J [n]

)
e1

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 6 / 78



Eigenvalues and zeros

1. The zeros
{
λ
[N ]
1 , . . . , λ

[N ]
N+1

}
of the orthogonal polynomials are the

eigenvalues of the truncated Jacobi matrix

J [N ] =



b0 1 0 0

a1 b1 1
0 a2 b2 1

0
1

0 0 aN bN


2. The eigenvalues are real and simple
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Proof.

J [N ]


P0(x)
P1(x)

PN (x)

 = x


P0(x)
P1(x)

PN (x)

−


0

0
PN+1(x)


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Right eigenvector matrix

U :=


P0(λ

[N ]
1 ) P0(λ

[N ]
2 ) P0(λ

[N ]
N+1)

P1(λ
[N ]
1 ) P1(λ

[N ]
2 ) P1(λ

[N ]
N+1)

PN (λ
[N ]
1 ) PN (λ

[N ]
2 ) PN (λ

[N ]
N+1)


Diagonalization

J [N ]U = UD, D := diag(λ
[N ]
1 , . . . , λ

[N ]
N+1)
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Left eigenvector matrix condition

WJ [N ] = DW

Proof.

Let us consider H = diag
(
1, a1, . . . , a1 . . . aN

)
, with H0 = 1 and

Hk = a1 · · · ak > 0 for k ∈ N such that

H−1J [N ] = J [N ]⊤H−1

so that it holds

U⊤H−1J [N ] = U⊤J [N ]⊤H–1 = DU⊤H−1

and we get that W̃ = U⊤H−1 is a left eigenvector matrix
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W̃ Left Eigenvector Matrix

W̃ =


Q0(λ

[N ]
1 ) Q1(λ

[N ]
1 ) QN (λ

[N ]
1 )

Q0(λ
[N ]
2 ) Q1(λ

[N ]
2 ) QN (λ

[N ]
2 )
...

Q0(λ
[N ]
N+1) Q1(λ

[N ]
N+1) QN (λ

[N ]
N+1)

, Qn(x) :=
Pn(x)

Hn

Orthogonality condition

DW̃U = W̃J [N ]U = W̃UD ⇒ W̃U = D̃

so that

D̃ = diag
( N∑

k=0

(Pk(λ
[N ]
1 ))2

Hk
, . . . ,

N∑
k=0

(Pk(λ
[N ]
N+1))

2

Hk

)
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Bi-orthogonality

In terms of the Christoffel numbers (they are clearly positive!)

µ
[n]
k :=

1∑N
l=0

(Pl(λ
[N ]
k ))2

Hl

> 0

we have

D̃−1W̃U = UD̃−1W̃ = I, D̃−1 = diag(µ
[N ]
1 , . . . , µ

[N ]
N+1)

Normalised left eigenvectors

W = D̃−1W̃
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Discrete orthogonality relations

N+1∑
k=1

Pr(λ
[N ]
k )Ps(λ

[N ]
k )

Hs
µ
[N ]
k = δr,s

Discrete weight measure

µ[N ] =
N+1∑
k=1

µ
[N ]
k δ(z − λ

[N ]
k )

Lebesgue–Stieltjes representation

In terms of the non-decreasing piecewise continuous function

ψ[N ] :=


0, x < λ

[N ]
n+1,

µ
[N ]
1 + · · ·+ µ

[N ]
k , λ

[N ]
k+1 ⩽ x < λ

[N ]
k , k ∈ {1, . . . , N}

µ
[N ]
1 + · · ·+ µ

[N ]
N+1 = 1, x ⩾ λ

[N ]
1
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Moments of the discrete measure

UDmW =
(
J [N ]

)m

N+1∑
k=1

(λ
[N ]
k )mµ

[N ]
k = e⊤1

(
J [N ]

)m
e1

Resolvent matrix function

R[N ]
z :=

(
zIN+1 − J [N ]

)−1
= U (zIN+1 −D)−1W

Weyl function

S[N ](z) := e⊤1

(
zIN+1 − J [N ]

)−1
e1 =

N+1∑
k=1

µ
[N ]
k

z − λ
[N ]
k

=
P

(1)
N+1(z)

PN+1(z)

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 14 / 78



Truncated polynomials

P
[0]
n+1 = Pn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− b0 −1 0 0

−a1 x− b1 −1
0 −a2 x− b2 −1

0
−1

0 0 −an x− bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P
[1]
n+1 = P

(1)
n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− b1 −1 0 0

−a2 x− b2 −1
0 −a3 x− b3 −1

0
1

0 0 −an x− bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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For k ∈ {0, 1, . . . , n}

P
[k]
n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− bk 1 0 0

−ak+1 x− bk+1 1
0 −ak+2 x− bk+2 1

0
1

0 0 −an x− bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Recursion relation

ak+1P
[k+2]
n+1 + bkP

[k+1]
N+1 + P

[k]
N+1 = xP

[k+1]
N+1 , k ∈ {0, 1, . . . , n}

with P
[n+1]
n+1 = 1, P

[n+2]
n+1 = 0
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Left eigenvectors truncated version

[
P

[1]
N+1(λ

[N ]
k ) P

[N+1]
N+1 (λ

[N ]
k )

]
J [N ] = λ

[N ]
k

[
P

[1]
N+1(λ

[N ]
k ) P

[N+1]
N+1 (λ

[N ]
k )

]
Comparing truncated and original

Using CD formulas

HN
Qr−1

(
λ
[N ]
k

)
PN

(
λ
[N ]
k

)
P ′
N+1

(
λ
[N ]
k

) =
P

[r]
N+1

(
λ
[N ]
k

)∑N
l=0 P

[l+1]
N+1

(
λ
[N ]
k

)
Pl

(
λ
[N ]
k

)
=
P

[r]
N+1

(
λ
[N ]
k

)
P ′
N+1

(
λ
[N ]
k

)
In particular, for r = 1, µ

[N ]
k =

P
(1)
N+1

(
λ
[N ]
k

)
P ′
N+1

(
λ
[N ]
k

) . As the Christoffel coefficients

are positive we conclude that recursion polynomials Pn+1 strictly interlace

its second kind polynomials P
(1)
n+1
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Helly’s tools

1. Helly’s Selection Principle: for any uniformly bounded sequence
{ψ[n]}∞n=0 of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function ψ
defined in R

2. Helly’s second theorem: Let us assume a uniformly bounded
sequence {ψ[n]}∞n=0 of non-decreasing functions on a compact interval
[a, b] with limit function ψ, then for any continuous function f in

[a, b] we have limn→∞
∫ b
a f(x)dψ

[n](x) =
∫ b
a f(x)dψ(x)
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Spectral Favard’s theorem

Helly’s results lead to the existence of a nondecreasing functions ψ and
corresponding positive Lebesgue–Stieltjes measures dψ with compact
support ∆ such that the orthogonal relations of “type II”∫

∆
xkPn(x)dψ(x) = 0, k = 0, . . . , n− 1

and of “type I”∫
∆
Qk−1(x)dψ(x)x

l = 0, l ∈ {0, 1, . . . , k − 1}, k ∈ {1, . . . , n}

hold. These polynomial sequences of types II and I are biorthogonal, i.e.,∫
∆
Qk(x)dψ(x)Pl(x) = δk,l

for k, l ∈ N0. Recall that HkQk = Pk, and the biorthogonality reads∫
∆
Pk(x)dψ(x)Pl(x) = δk,lHk
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Spectral Favard’s theorem

Helly’s second theorem leads to the spectral representation in terms of the
spectral function ψ

sk = e⊤1 J
ke1 =

∫
∆
tkdψ(t), ψ̂ = e⊤1 (zI − J)−1e1 =

∫
∆

dψ(t)

z − t
,

of the moments sk and of the Stieltjes–Markov function ψ̂. The Markov
theorem ensures that the Weyl function converges uniformly in C̄ \∆ to
the Stieltjes–Markov function

S[n] ⇒ ψ̂, n→ ∞
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Multiple case: banded Hessenberg
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Banded Hessenberg semi-infinite matrices and
Favard theorem

Banded monic lower Hessenberg semi-infinite matrix

T =

a0,0 1 0
a1,0 a1,1 1

ap,0
0




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Recursion polynomials

Type II recursion polynomials

B(x) =
[
B0(x) B1(x)

]⊤
, degBn = n

▶ Right eigenvectors:

TB(x) = xB(x)

▶ Initial condition: B0 = 1

▶ Type II recursion polynomials: Bn(x)

▶ (p+ 2)-term recurrence relation

Bn+1 = (x− an,n)Bn − an,n−1Bn−1 − · · · − an,n−pBn−p, n ∈ N0
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Recursion polynomials

Type I recursion polynomials

A(a)(x) =
[
A

(a)
0 (x) A

(a)
1 (x)

]
, a = 1, . . . , p,

▶ Left eigenvectors:

A(a)(x)T = xA(a)(x), a = 1, . . . , p.
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Recursion polynomials

Type I recursion polynomials

▶ Initial conditions,


A

(1)
0 = 1,

A
(1)
1 = ν

(1)
1 ,

...

A
(1)
p−1 = ν

(1)
p−1,



A
(2)
0 = 0,

A
(2)
1 = 1,

A
(2)
2 = ν

(2)
2 ,

...

A
(2)
p−1 = ν

(2)
p−1,

· · ·


A

(p)
0 = 0,

...

A
(p)
p−2 = 0,

A
(p)
p−1 = 1,

ν
(i)
j being arbitrary constants
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Recursion polynomials

Type I recursion polynomials

▶ Initial condition matrix

ν :=



1 0 0

ν
(1)
1 1

0

ν
(1)
p−1 ν

(p−1)
p−1 1


▶ (p+ 2)-term recursion relation, a ∈ {1, . . . , p}, A(a)

−1 = 0

A
(a)
n−1 + an,nA

(a)
n + · · ·+ an+p,nA

(a)
n+p = xA(a)

n , n ∈ {0, 1, . . .}

▶ degA
(r)
kp+j = k, for r = 1, . . . , j + 1, degA

(r)
kp+j = k − 1 for r = j + 2, . . . , p
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(r)
kp+j = k − 1 for r = j + 2, . . . , p
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Recursion polynomials

Recursion polynomials and characteristic polynomials

Jonathan Coussement and Walter Van Assche, Gaussian quadrature for
multiple orthogonal polynomials, Journal of Computational and Applied
Mathematics 178 (2005) 131–145.

Bn = hn

∣∣∣∣∣∣∣∣
A

(1)
n A

(p)
n

A
(1)
n+p−1 A

(p)
n+p−1

∣∣∣∣∣∣∣∣, n ∈ N0

where

hn :− (−1)(p−1)nHn, Hn :− ap,0ap+1,1 · · · an−1+p,n−1
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Associated polynomials

Qn,N :=

∣∣∣∣∣∣∣∣∣∣∣

A
(1)
n A

(p)
n

A
(1)
N+1 A

(p)
N+1

A
(1)
N+p−1 A

(p)
N+p−1

∣∣∣∣∣∣∣∣∣∣∣
QN :=

[
Q0,N Q1,N

]
, Q⟨N⟩ :=

[
Q0,N Q1,N QN,N

]
1. QN+1,N = · · · = QN+p−1,N = 0

2. QN,N = h−1
N BN and QN+p,N = (−1)p−1h−1

N+1BN+1

3. QNT = xQN

4. Q⟨N⟩T [N ] +
[
0 0 aN+p,NQN+p,N

]
= xQ⟨N⟩
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Spectral properties

Assume that BN+1 has simple zeros at the set
{
λ
[N ]
k

}N+1

k=1
, so that the

vectors u
⟨N⟩
k :− B⟨N⟩(λ[N ]

k

)
and w̃

⟨N⟩
k :− Q⟨N⟩(λ[N ]

k

)
are right and left

eigenvectors of T [N ], respectively, k = 1, . . . , N + 1. Then

▶ The normalized basis of left eigenvectors
{
w

⟨N⟩
k

}N+1

k=1
, which is

biorthogonalto the basis of right eigenvectors
{
u
⟨N⟩
k

}N+1

k=1
, is given by

w
⟨N⟩
k =

Q⟨N⟩(λ[N ]
k

)∑N
l=0Ql,N

(
λ
[N ]
k

)
Bl

(
λ
[N ]
k

)
▶ The following expression holds

w
⟨N⟩
k,n =

Qn−1,N

(
λ
[N ]
k

)∑N
l=0Ql,N

(
λ
[N ]
k

)
Bl

(
λ
[N ]
k

) =
Qn−1,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

)
B′

N+1

(
λ
[N ]
k

)
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Spectral properties

▶ We can write w
⟨N⟩
k,n = A

(1)
n−1

(
λ
[N ]
k

)
µ
[N ]
k,1 + · · ·+A

(p)
n−1

(
λ
[N ]
k

)
µ
[N ]
k,p

Christoffel numbers

µ
[N ]
k,1 :=

∣∣∣∣∣∣
A

(2)
n+1

(
λ
[N]
k

)
A

(p)
n+1

(
λ
[N]
k

)
A

(2)
n+p−1

(
λ
[N]
k

)
A

(p)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣∑N

l=0Ql,N

(
λ
[N ]
k

)
Bl

(
λ
[N ]
k

)

µ
[N ]
k,2 := −

∣∣∣∣∣∣
A

(1)
n+1

(
λ
[N]
k

)
A

(3)
n+1

(
λ
[N]
k

)
A

(p)
n+1

(
λ
[N]
k

)
A

(1)
n+p−1

(
λ
[N]
k

)
A

(3)
n+p−1

(
λ
[N]
k

)
A

(p)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣∑N

l=0Ql,N

(
λ
[N ]
k

)
Bl

(
λ
[N ]
k

)
...

µ
[N ]
k,p := (−1)p−1

∣∣∣∣∣∣
A

(1)
n+1

(
λ
[N]
k

)
A

(p−1)
n+1

(
λ
[N]
k

)
A

(1)
n+p−1

(
λ
[N]
k

)
A

(p−1)
n+p−1

(
λ
[N]
k

)
∣∣∣∣∣∣∑N

l=0Ql,N

(
λ
[N ]
k

)
Bl

(
λ
[N ]
k

)
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Spectral properties

▶ It holds that


µ
[N ]
k,1

µ
[N ]
k,2

µ
[N ]
k,p

 =



1 0 0

ν
(1)
1 1

0

ν
(1)
p−1 ν

(p−1)
p−1 1



−1
w

⟨N⟩
k,1

w
⟨N⟩
k,2

w
⟨N⟩
k,p


▶ Matrices U (with columns the right eigenvectors uk arranged in the

standard order) and W and (with rows the left eigenvectors wk

arranged in the standard order) satisfy

UW =WU = IN+1

▶ In terms of the diagonal matrix D = diag
(
λ
[N ]
1 , . . . , λ

[N ]
N+1

)
we have

UDnW =
(
T [N ]

)n
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Orthogonality

Discrete measures: µ
[N ]
a :=

∑N+1
j=1 µ

[N ]
j,a δ

(
x− λ

[N ]
j

)
, a ∈ {1, . . . , p}

Multiple discrete biorthogonalities

Assume that the recursion polynomials BN+1 have simple zeros {λk}N+1
k=1 .

For k, l ∈ {0, . . . , N}, the following biorthogonal relations hold〈
A

(1)
k µ

[N ]
1 + · · ·+A

(p)
k µ[N ]

p , Bl

〉
= δk,l

Proof.

U =


B0

(
λ
[N ]
1

)
B0

(
λ
[N ]
N+1

)
BN

(
λ
[N ]
1

)
BN

(
λ
[N ]
N+1

)
, W =


w

[N ]
1,1 w

[N ]
1,N+1

w
[N ]
N+1,1 w

[N ]
N+1,N+1


satisfy UW = I, and biorthogonality follows immediately
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Orthogonality

Multiple discrete orthogonalities

Assume that the recursion polynomials BN+1 have simple zeros

{λ[N ]
k }N+1

k=1 . For k such that kp+ j ⩽ N , the following type II multiple
orthogonal conditions are satisfied〈

µ[N ]
r , xmBkp+j

〉
= 0, m = 0, . . . , k, r = 1 . . . , j〈

µ[N ]
r , xmBkp+j

〉
= 0, m = 0, . . . , k − 1, r = j + 1 . . . , p

For the recursion polynomials of type I we have the following discrete type
I multiple orthogonality〈

A
(1)
kp+jµ

[N ]
1 + · · ·+A

(p)
kp+jµ

[N ]
2 , xn

〉
= 0

for n ∈ {0, 1, . . . , kp+ j − 1}, k ∈ {1, . . . , N}
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Orthogonality

Lebesgue–Stieltjes representation of the measures

In terms of the following piecewise continuous functions

ψ[N ]
a :=


0, x < λ

[N ]
N+1

µ
[N ]
1,a + · · ·+ µ

[N ]
k,a , λ

[N ]
k+1 ⩽ x ⩽ λ

[N ]
k

µ
[N ]
1,a + · · ·+ µ

[N ]
N+1,a = −(ν−⊤)1,a x > λ

[N ]
1

we can write µ
[N ]
a = dψ

[N ]
a for a ∈ {1, . . . , p}

Positivity of Christoffel numbers

For simple orthogonality the Christoffel number was clearly positive from
definition. (And from this positivity interlacing was proven)
Now, for multiple orthogonality, is not clear at all.
Can we find conditions that ensure that Christoffel numbers are
positive???
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Positive bidiagonal factorization

1. We now introduce the very important idea of positive bidiagonal
factorization (PBF)

2. This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices
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Positive bidiagonal factorization

PBF: T = L1L2 · · ·LpU

Lk :=

1 0
(Lk)1,0 1

0 (Lk)2,1 1
(Lk)3,2 1


 (Lk)j+1,j = αk+1+j(p+1)

U :=


U0,0 1 0

0 U1,1 1

U2,2

 Uj,j = α1+j(p+1)

with αi > 0, for i ∈ N
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Finite PBF: T [N ] = L
[N ]
1 L

[N ]
2 · · ·L[N ]

p U [N ]

L
[N ]
k =



1 0 0

αk+1

0 αk+1+(p+1)

0
0 0 αk+1+(p+1)N 1



U [N ] =



α1 1 0 0

0 α1+(p+1)

α1+2(p+1) 0

1
0 0 α1+(p+1)N


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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix An is
totally positive
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization I

From Cauchy–Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product
The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

Factorization II

PBF ⇒ oscillatory
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

Left and right eigenvectors w(k), u(k) to the k-th largest eigenvalue

U =
[
u(1) u(n)

]
, W =

w
(1)

w(n)

, UW = I
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Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations

Translations of bounded Jacobi matrices are oscillatory matrices
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Darboux transformations

Darboux transformations

Let us assume that T admits a bidiagonal factorization (not necessarily
positive). For each of its truncations T [N ] we consider a chain of new
auxiliary matrices, called Darboux transformations, given by the
consecutive permutation of the triangular matrices in the factorization

T̂ [N,1] = L
[N ]
2 · · ·L[N ]

p U [N ]L
[N ]
1

T̂ [N,2] = L
[N ]
3 · · ·L[N ]

p U [N ]L
[N ]
1 L

[N ]
2

...

T̂ [N,p−1] = L[N ]
p U [N ]L

[N ]
1 L

[N ]
2 · · ·L[N ]

p−1

T̂ [N,p] = U [N ]L
[N ]
1 L

[N ]
2 · · ·L[N ]

p
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Darboux transformations

Darboux transformations are banded Hessenberg matrices with only its
first p subdiagonals different from zero

PBF and Darboux transformations

Let us assume that the PBF holds. Then, for k ∈ {1, . . . , p}, we find

1. The Darboux transformation T̂ [N,k] is oscillatory

2. The characteristic polynomial of the Darboux transformation T̂ [N,k] is
BN+1

3. If w is a left eigenvector of T [N ], then ŵ = wL
[N ]
1 · · ·L[N ]

k is a left

eigenvector of T̂ [N,k]

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 43 / 78



Darboux transformations

Darboux transformations are banded Hessenberg matrices with only its
first p subdiagonals different from zero

PBF and Darboux transformations

Let us assume that the PBF holds. Then, for k ∈ {1, . . . , p}, we find

1. The Darboux transformation T̂ [N,k] is oscillatory

2. The characteristic polynomial of the Darboux transformation T̂ [N,k] is
BN+1

3. If w is a left eigenvector of T [N ], then ŵ = wL
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Darboux transformations

Proof.

1. Each bidiagonal factor belongs to InTN. Then, the Darboux
transformation T̂ [N,k] is a product of matrices in InTN and,
consequently, belongs to InTN. Moreover, the entries in the first
superdiagonal are all 1, while the entries in the first subdiagonal are
sum of products of α’s. Thus, all entries in these two diagonals are
positive. According to Gantmacher–Krein Criterion is an oscillatory
matrix.

2. As T̂ [N,k] = (L
[N ]
1 · · ·L[N ]

k )−1T [N ]L
[N ]
1 · · ·L[N ]

k its characteristic
polynomial is BN+1

3. We see that

λŵ = λwL
[N ]
1 · · ·L[N ]

k = wL
[N ]
1 · · ·L[N ]

k L
[N ]
k+1 · · ·L

[N ]
p U [N ]L

[N ]
1 · · ·L[N ]

k

= ŵT̂ [N ]
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Christoffel numbers are positive for PBF

Gathering α’s

L :=
[
L1 L2 Lp

]
∈ Rp×p

with columns

L1 :=


1
0

0

, Lk :− 1

dk
L
[p−1]
1 · · ·L[p−1]

k−1


1
0

0

, k ∈ {2, . . . , p}

with dk := αkαk+pαk+2pαk+3p · · ·αk+(k−2)p

L is a non-negative upper unitriangular matrix
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Christoffel numbers are positive for PBF

Christoffel coefficients positivity

Let us assume that T [N ] has a PBF and that the initial conditions is such
that

ν−⊤ = LC

for some nonnegative upper unitriangular matrix C. Then, the Christoffel
numbers of the discrete measures given for for T [N ] are positive, i.e.,

µ[N ]
n,a> 0, n ∈ {1, . . . , N + 1}, a ∈ {1, . . . , p}
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Idea of the proof

For µ
[N ]
n,1 > 0, n ∈ {1, . . . , N + 1}, we consider the left eigenvector

Q⟨N⟩(λ[N ]
k

)
=

[
Q0,N

(
λ
[N ]
k

)
Q1,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

)]
that has QN,N

(
λ
[N ]
k

)
̸= 0 (oscillatory property), we can normalize the last

entry to 1

ω
⟨N⟩
k :=

[
Q0,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

) Q1,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

) 1

]
The change sign properties (oscillatory) leads to

Q0,N

(
λ
[N ]
1

)
QN,N

(
λ
[N ]
1

) > 0,
Q0,N

(
λ
[N ]
2

)
QN,N

(
λ
[N ]
2

) < 0,
Q0,N

(
λ
[N ]
3

)
QN,N

(
λ
[N ]
3

) > 0,

and so on, alternating the sign
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Idea of the proof

As the polynomial BN+1 is monic for the derivative B′
N+1 evaluated at

the zeros λ
[N ]
k we have

B′
N+1(λ

[N ]
1 ) > 0, B′

N+1(λ
[N ]
2 ) < 0, B′

N+1(λ
[N ]
3 ) > 0

and so on, alternating the sign. Then, it holds that

µ
[N ]
k,1 =

Q0,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

)
B′

N+1

(
λ
[N ]
k

) > 0, k ∈ {1, . . . , N + 1}.
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Idea of the proof

For the Christoffel coefficient µ
[N ]
k,2 , for k ∈ {1, . . . , N + 1} recall that

T̂ [N,1] is an oscillatory matrix with characteristic polynomial BN+1. Then,

a left eigenvector for the eigenvalue λ
[N ]
k can be chosen as

ω
⟨N⟩
k L

[N ]
1 =

[
Q0,N (λ

[N ]
k )

QN,N (λ
[N ]
k

) Q1,N (λ
[N ]
k )

QN,N (λ
[N ]
k )

1

]
L
[N ]
1

=

[
(Q0,N+α2Q1,N )(λ

[N ]
k )

QN,N (λ
[N ]
k )

1

]
Using the sign properties of the left eigenvector (oscillatory)

(Q0,N + α2Q1,N )(λ
[N]
1 )

QN,N (λ
[N]
1 )

> 0,
(Q0,N + α2Q1,N )(λ

[N]
2 )

QN,N (λ
[N]
2 )

< 0,
(Q0,N + α2Q1,N )(λ

[N]
3 )

QN,N (λ
[N]
3 )

> 0

and so on, alternating the sign. As before, using the interlacing properties
of the polynomial B′

N+1:

µ̃
[N ]
k,2 :=

( 1
α2
Q0,N +Q1,N )(λ

[N ]
k )

QN,N (λ
[N ]
k )B′

N+1

(
λ
[N ]
k

) > 0, k ∈ {1, . . . , N + 1}
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Idea of the proof

We repeat this argument for each a ∈ {1, . . . , p} getting some positive

numbers µ̃
[N ]
k,a > 0, for example

µ̃
[N ]
k,3 :=

(
1

α3α3+p
Q0,N + α2+α3

α3α3+p
Q1,N +Q2,N

)
(λ

[N ]
k )

QN,N

(
λ
[N ]
k

)
B′

N+1

(
λ
[N ]
k

) > 0

In general, these positive numbers are

µ̃
[N ]
k,1 :=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,p

]
1
0

0

, µ̃
[N ]
k,j :=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,p

]
Lj
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Idea of the proof

Entrywise positive row vector[
µ̃
[N ]
k,1 µ̃

[N ]
k,2 µ̃

[N ]
k,p

]
=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,p

]
L

Then, from[
µ
[N ]
k,1 µ

[N ]
k,2 µ

[N ]
k,p

]
=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,2 w

⟨N⟩
k,p

]
ν−⊤

we get the result[
µ
[N ]
k,1 µ

[N ]
k,2 µ

[N ]
k,p

]
=

[
w

⟨N⟩
k,1 w

⟨N⟩
k,2 w

⟨N⟩
k,p

]
LC

=
[
µ̃
[N ]
k,1 µ̃

[N ]
k,2 µ̃

[N ]
k,p

]
C

which is a entrywise positive row vector
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Second kind polynomials

We consider

1.

T [N,k] :=



ak,k 1 0 0

ak+1,k ak+1,k+1 1

ap,k
0

0

1
0 0 aN,N−p aN,N


2. Truncated polynomials

B
[k]
N+1(x) :− det

(
xIN+1 − T [N,k]

)
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Second kind polynomials

(p+ 2) terms linear homogeneous recurrence

For k ∈ {0, 1, . . . , N}

ap,kB
[k+p+1]
N+1 + · · ·+ ak+1,kB

[k+2]
N+1 + ak,kB

[k+1]
N+1 +B

[k]
N+1 = xB

[k+1]
N+1

Normalized left eigenvectors

ω⟨N⟩
n :=

[
B

[1]
N+1 B

[N+1]
N+1

]∣∣∣∣
x=λ

[N ]
n

, n ∈ {1, . . . , N + 1},

are the left eigenvectors of T [N ] with last entry normalized to 1

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 53 / 78



Second kind polynomials

(p+ 2) terms linear homogeneous recurrence

For k ∈ {0, 1, . . . , N}

ap,kB
[k+p+1]
N+1 + · · ·+ ak+1,kB

[k+2]
N+1 + ak,kB

[k+1]
N+1 +B

[k]
N+1 = xB

[k+1]
N+1

Normalized left eigenvectors

ω⟨N⟩
n :=

[
B

[1]
N+1 B

[N+1]
N+1

]∣∣∣∣
x=λ

[N ]
n

, n ∈ {1, . . . , N + 1},

are the left eigenvectors of T [N ] with last entry normalized to 1

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 53 / 78



Christoffel–Darboux

Christoffel–Darboux type formulas for truncated polynomials

1. Christoffel–Darboux type relation holds

N∑
n=0

B
[n+1]
N+1 (x)Bn(y) =

BN+1(x)−BN+1(y)

x− y

2. Confluent Christoffel–Darboux type formula is satisfied

N∑
n=0

B
[n+1]
N+1 Bn = B′

N+1
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Second kind polynomials

For k ∈ {0, 1, . . . , N}

Qn,N

(
λ
[N ]
k

)
QN,N

(
λ
[N ]
k

) = B
[n+1]
N+1

(
λ
[N ]
k

)
, w

⟨N⟩
k,n =

B
[n]
N+1

(
λ
[N ]
k

)
B′

N+1

(
λ
[N ]
k

)
Second kind polynomials

The second kind polynomials B
(k)
N+1, k ∈ {1, . . . , p}, are the entries of the

following row vector[
B

(1)
N+1 B

(p)
N+1

]
=

[
B

[1]
N+1 B

[p]
N+1

]
ν−⊤

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 55 / 78



Second kind polynomials

If {e1, . . . , eN+1} is the canonical basis of RN+1 we have the modified

basis eνk := ν−⊤ek. For example, eν1 = e1, e
ν
2 = e2 − ν

(1)
1 e1 and

eν3 = e3 − ν
(2)
2 e2 +

(
ν
(1)
1 ν

(2)
2 − ν

(1)
2

)
e1

Second kind polynomials and adjugate matrix

The second kind polynomials are given as

B
(k)
N+1(x) = e⊤1 adj(xIN+1 − T [N ])eνk
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Resolvent and Weyl functions

Resolvent matrix R
[N ]
z of the leading principal submatrix T [N ]

R[N ]
z :=

(
zIN+1 − T [N ]

)−1
=

adj
(
zIN+1 − T [N ]

)
det(zIN+1 − T [N ])

= U(zIN+1 −D)−1W

Weyl’s functions

S[N ]
a (z) := e⊤1

(
zIN+1 − T [N ]

)−1
eνa =

B
(a)
N+1(z)

BN+1(z)
=

N+1∑
n=1

µ
[N ]
n,a

z − λ
[N ]
n

The Christoffel coefficients are residues at the simple poles of the Weyl
functions
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Spectral Favard Theorem and
Multiple Orthogonal Polynomials
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Favard spectral theorem

At this point we are ready to give one of the main results
of the talk, that establish the existence of multiple
orthogonal polynomials and corresponding positive
Lebesgue–Stieltjes measures for a given bounded banded
Hessenberg matrix that admit a positive bidiagonal
factorization. The result is based in the positivity of the
Christoffel coefficients

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 59 / 78



Favard spectral theorem

Favard spectral representation

Let us assume that

1. The banded Hessenberg matrix T is bounded and admit a PBF

2. The sequences
{
A

(1)
n , . . . , A

(p)
n

}∞
n=0

of recursion polynomials of type I,

are determined by the initial condition matrix ν such that ν−⊤ = LC

Then, there exists p non decreasing functions {ψk}pk=1, and corresponding
positive Lebesgue–Stieltjes measures dψk with compact support ∆ such
that the following biorthogonality holds∫

∆

(
A

(1)
k (x)dψ1(x) + · · ·+A

(p)
k (x)dψp(x)

)
Bl(x) = δk,l, k, l ∈ N0
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are determined by the initial condition matrix ν such that ν−⊤ = LC

Then, there exists p non decreasing functions {ψk}pk=1, and corresponding
positive Lebesgue–Stieltjes measures dψk with compact support ∆ such
that the following biorthogonality holds∫

∆

(
A

(1)
k (x)dψ1(x) + · · ·+A

(p)
k (x)dψp(x)

)
Bl(x) = δk,l, k, l ∈ N0
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Favard spectral theorem

Proof.

The sequences
{
ψ
[N ]
k

}∞
N=0

, k ∈ {1, . . . , p} are uniformly bounded and
nondecreasing. Consequently, following Helly’s results, there exist
subsequences that converge when N → ∞ to nondecreasing functions
ψ1, . . . , ψp. Being T bounded its eigenvalues lay in a bounded set ∆, and
we deduce that these measures have compact support.
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Favard spectral theorem

Multiple orthogonal relations

Multiple orthogonal relations of type II∫
∆
xmBkp+jdψr(x) = 0, m = 0, . . . , k, r = 1, . . . , j∫

∆
xmBkp+jdψr(x) = 0, m = 0, . . . , k − 1, r = j + 1, . . . , p

and of type I, for n ∈ {0, 1, . . . , kp+ j − 1},∫
∆

(
A

(1)
kp+j(x)dψ1(x) + · · ·+A

(p)
kp+j(x)dψp(x)

)
xn = 0
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Favard spectral theorem

Spectral representation of moments and Stieltjes–Markov functions

Helly’s second theorem leads to the spectral representation for the
moments and Stieltjes–Markov functions ψ̂k of the full banded Hessenberg
matrix in terms of the spectral functions ψ1, . . . , ψp:

e⊤1 T
keνk =

∫
∆
tkdψk(t), ψ̂k := e⊤1 (zI − T )−1eν1 =

∫
∆

dψk(t)

z − t

For the Weyl functions we have in C̄ \∆ uniform convergence to the
Stieltjes–Markov functions

S
[N ]
k ⇒ ψ̂k, N → ∞
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Markov chains
beyond birth and death
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Banded stochastic matrices

Stochastic matrices: all the entries in each row are
nonnegative and satisfy that its sum is 1
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Banded stochastic matrices

PII =

r0,0 r0,1 0
r1,0 r1,1 r1,2

rp,0 rp,p rp,p+1

0 rp+1,1 rp+1,p+1 rp+1,p+2




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Banded stochastic matrices

p = 2

0 1 2 3 4 5

r0,1 r1,2 r2,3 r3,4 r4,5

r1.0 r2,1 r3,2 r3,4 r5,4

r2,0 r3,1 r4,2 r5,3

r1,1 r2,2 r3,3 r4,4 r5,5

r0,0
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Banded stochastic matrices

PI =

r0,0 r0,1 r0,p 0

r1,0 r1,1 r1,p+1

0 r2,1

rp,p
rp+1,p rp+1,p+1

rp+1,p+2





Multiple orthogonality, Favard and Markov Octuber 7th, 2022 68 / 78



Banded stochastic matrices

p = 2

0 1 2 3 4 5

r0,1 r1,2 r2,3 r3,4 r4,5

r1,0 r2,1 r3,2 r3,4 r5,4

r0,2 r1,3 r2,4 r3,5

r1,1 r2,2 r3,3 r4,4 r5,5

r0,0
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Banded stochastic matrices

These stochastic matrices of Hessenberg type are connected to the monic
banded Hessenberg matrix T assuming that rn,n+1 > 0, we have

PII = HIITH
−1
II

HII = diag(1, HII,1, HII,2, . . . ), HII,n =
1

r0,1r1,2 · · · rn,n−1

Assuming that rn+1,n > 0

PI = H−1
I T⊤HI

HI = diag(1, HI,1, HI,2, . . . ), HI,n =
1

r1,0r2,1 · · · rn−1,n

Markov chains can be described by the spectral methods we have
constructed for monic Hessenberg semi-infinite matrices with positive
bidiagonal factorization
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Banded stochastic matrices

Positive stochastic bidiagonal factorization (PSBF)

PII = Π1 · · ·ΠpΥ with stochastic bidiagonal factors (a ∈ {1, . . . , p})

Πa :=

(Πa)0,0 0
(Πa)1,0 (Πk)1,1

0 (Πa)2,1 (Πa)2,2

(Πa)3,2 (Πa)3,3





Υ :=


Υ0,0 Υ0,1 0

0 Υ1,1 Υ1,2

Υ2,2


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Finite banded stochastic matrices

A finite matrix with a positive stochastic bidiagonal factorization is
oscillatory

PSBF vs PBF

Let us assume a banded stochastic matrix, PII . Then, PII has a positive
stochastic bidiagonal factorization if and only if it is similar, via a positive
diagonal matrix, to a monic Hessenberg matrix T with positive bidiagonal
factorization

PII = Π1 · · ·ΠpΥ ⇐=====⇒ T = L1 · · ·LpU

with L1, . . . , Lp positive lower bidiagonal matrices and U an upper
positive bidiagonal matrix
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Finite banded stochastic matrices
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Karlin-McGregor

ΘII,k,l :=
HII,k

HII,l
=


1

rl,l+1 · · · rk−1,k
, l < k

1, l = k

rk,k+1 · · · rl−1,l, l > k

ΘI,l,k :=
HI,l

HI,k
=


rl,l+1 · · · rk,k+1, l < k

1, l = k,
1

rk+1,k · · · rl,l−1
, l > k
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Karlin-McGregor

Let us consider a Markov chain with transition matrix a PSBF
(p+ 2)-diagonal matrix such that admits a positive stochastic bidiagonal
factorization. Then, there is sequence of multiple orthogonal polynomials

of type II, {Bn}∞n=0, and of type I, {A(1)
n , . . . , A

(p)
n }∞n=0, associated with

positive Lebesgue–Stieltjes measures dψ1, . . . ,dψp such that:

Karlin–McGregor spectral representation formula

The iterated probabilities have the following spectral representation

((
PII

)n)
k,l

= ΘII,k,l

∫ 1

0
(A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x))x

nBk(x)((
PI

)n)
k,l

= ΘI,l,k

∫ 1

0
(A

(1)
k dψ1(x) + · · ·+A

(p)
k dψp(x))x

nBl(x)
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Karlin-McGregor

Spectral representation of generating functions

Spectral representation of generating functions. For |s| < 1, the
corresponding transition probability generating functions are

(PII(s))k,l = ΘII,k,l

∫ 1

0

(
A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x)

)Bk(x)

1− sx

(PI(s))k,l = ΘI,l,k

∫ 1

0

(
A

(1)
k dψ1(x) + · · ·+A

(p)
k dψp(x)

) Bl(x)

1− sx
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Karlin-McGregor

Spectral representation of generating functions

For k ̸= l, the first passage generating functions are

(FII(s))k,l = ΘII,k,l

∫ 1
0

(
A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x)

)Bk(x)
1−sx∫ 1

0

(
A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x)

)Bl(x)
1−sx

(FI(s))k,l = ΘI,l,k

∫ 1
0

(
A

(1)
k dψ1(x) + · · ·+A

(p)
k dψp(x)

)Bl(x)
1−sx∫ 1

0

(
A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x)

)Bl(x)
1−sx

For k = l the first passage generating functions are the same for type I
and II, namely

F
[N ]
ll (s) = 1− 1∫ 1

0

(
A

(1)
l dψ1(x) + · · ·+A

(p)
l dψp(x)

)Bl(x)
1−sx

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 76 / 78



Karlin-McGregor

Recurrent vs transient

The Markov chain is recurrent if and only if the integral∫ 1

0

dψ1(x)

1− x

diverges. Otherwise is transient
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Karlin-McGregor

Ergodic Markov chains

The Markov chain is ergodic (or positive recurrent) if and only 1 is a mass
point of dψ1, dψ2, . . . ,dψp with masses m1 > 0 and m2, . . . ,mp ⩾ 0,
respectively. In that case, the corresponding stationary distribution is

π =
[
π1 π2

]
, πn+1 = (A(1)

n (1)m1 + · · ·+A(p)
n (1)mp)Bn(1)
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