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Simple case: Jacobi matrix
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Spectral Favard theorem for bounded Jacobi
matrices

Recurrence Relation

ZCPn(I) = Pn—i—l(«x) ol ann(x) + anPn—l(m)v

b, R, a,>0

Ji(z), non-decreasing piece-wise continuous function, such that

/ Py () Py (z)dp(x) = kndp.m
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Spectral Favard theorem for bounded Jacobi
matrices

Recurrence Relation

P, (x) = Ppt1(z) + by Po(z) + anPr—1(x), by €R, a, >0

Favard’s Theorem
I¢p(x), non-decreasing piece-wise continuous function, such that

[ Pl P()6(2) = ko
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Jacobi matrix and recursion relation

by

a2

O cvvnennnn

E Py(x)

1 Py ()
by 1 )
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Characteristic Polynomial

r—by —1 Qv 0
—a1 T —b —1 o,
0. ) x — by —1 .
Pn+1 = . o . 5.0
z 0
: T P |
)ooocooooococonoo0000s -0 —an T — bn
This determinantal polynomial satisfies the same three recurrence relation
with the same initial conditions P_1 =0, Py =1
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Characteristic Polynomial

r—by —1 R REERRRP 0
—aq Tr — b1 —1 . o4 :
0, —a Tr — bQ —1
Pn+1: 5 °a : o
0
; el
[ P, 0 —a, T—b,
Proof
This determinantal polynomial satisfies the same three recurrence relation
with the same initial conditions P_1 =0, Py =1
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Polynomials of the second kind
PY -1, =0

Determinantal form of polynomials of the second kind

x—b -1 O v 0
—aso x — by —1 :
Pr(:i-)lz O _ag"-.gc_bs"-.fl"
[0 P 0 —a, x—b,
Adjugates and second kind
P,Ei)l = elT adj (:cIn+1 — J["])el )
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Eigenvalues and zeros

. The zeros {A[lN], .. ,AE{,VJ]A} of the orthogonal polynomials are the

eigenvalues of the truncated Jacobi matrix

[y 1 Dococoooonanas 0
ar b 1 5
JINl — v a2..b2.. Lo e
E .0
; 1
i @ooccocooocoooodo 0 an : bN
The eigenvalues are real and simple
v
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Eigenvalues and zeros

. The zeros {/\[1N], .. ,AE{,VJ]A} of the orthogonal polynomials are the

eigenvalues of the truncated Jacobi matrix

[y 1 Dococoooonanas 0
ar b 1 L 5
J[N}: O a2_.b2._ 1.' IO
f .0
; 1
i @ooccocooocoooodo 0 an : bN
. The eigenvalues are real and simple
v
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Proof.

Py(x) Py(2) ’
g | P PO
i) Pa(a) PN—i(-)l( )
DJ
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Right eigenvector matrix

A N
Ag]) ........... }h(A%id)
N N o
U= P ()\[1 ]) P ()\[2 ]) ........... Pl(A‘EVj-l)
PO Py PN()‘EV-L)
Diagonalization
JMNy = UD,

D :=diag(\[", ... A}

N+1)

]
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Left eigenvector matrix condition

wJ™ = Dw

Let us consider H = diag (1,a1,...,a1...ay
Hp =ay---ap > 0 for k € N such that

, with Hy =1 and

gL = J[N}TH—l
so that it holds

UTH- 1N = ygT M gt = pyTH-!
and we get that

(m]
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Left eigenvector matrix condition

wJ™ = Dw

Proof.

Let us consider H = diag (1,a1, e, Q1 . ..aN> , with Hy =1 and
Hi =ay---ap > 0 for k € N such that

HLJW = N T g1
so that it holds
UTH- 1N = yTjM g1 = pyTH-!

and we get that
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W Left Eigenvector Matrix

Qo(A[lN]) Ql()\[lN]) ............ QN(A[lN])
- QoMY QM. Qv  Pu()
W= : ; f , Qn(z) T
QO()\K[VL) Ql(/\mrl) .......... QN()\K/V_L)
DWU =wJMNy =wub = WU =D
so that
N [N]\\2 N (V]
S (Pe(A\1)) (Pr(A
de@(;)[{k’”"z
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W Left Eigenvector Matrix

QM) QOT Qv
[V] Ny .o [V]

W Qo(ry ) @ ()‘2 ) QNn(Ay ) . OQn(a) _Pn(x)
QO(AK/VJJ) Ql()\gﬂ_l) """"" QN()\KIVJJ)

Orthogonality condition

DWU = WJWNu =wuD = WU =D
so that

Y N] N [N]
_ diag (Z ) . (Pk()‘N—H))Q)

k=0 =)
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Bi-orthogonality

In terms of the Christoffel numbers (they are clearly positive!)

] _ 1
T e @Oy ’
=0 Hl
we have
D'WU = , D l= diag(,u[lN], e ’NE\]Y-]H)

Normalised left eigenvectors

W =D"w
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Discrete orthogonality relations

N
SYEOTDROT M _
H, My .5
k=1
N+1

1= 3 stz — AL
k=1

In terms of the non-decreasing piecewise continuous function

0, z < AN
’Q/}[N] = /L[lN] + - —%—ugv], )\Eﬁ}l <z < )\g\[], ke{l,...,N}

N N
15 +"'+Mgvl1:1> 5’79/\[1]
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Discrete orthogonality relations

J§PT<ALN]>PS<A[N]> v

H, = Ors

k=1

Discrete weight measure

Z WMz — AN

In terms of the non-decreasing piecewise continuous function

0, z < A,
g = QN N ML <z <M ked{l,... N}
N N N

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 13/78



Discrete orthogonality relations

SEENDPOT) m_

H,
k=1 )
Discrete weight measure
N+1 N N
E : M[ ] 5(z )\L ])

Lebesgue—Stieltjes representation

In terms of the non-decreasing piecewise continuous function

0, $<>‘£fi]1’
L G heq
po e agh =1 @2 Al

N}

3
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Moments of the discrete measure

Resolvent matrix function

RVl .—

% A

|
<ZIN+1 - Jm) =U(zIngy— D) W
Weyl function

|
SIN(z) :=e] (zIN+1 — J[N]>

N+1 [N] (1)
o = Z My _ Pryia(2)
N P z
= m= N+1(2) |
=] = = £ =
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Truncated polynomials

x — by
0 0,
P =ma =] =

=1l

m—bl

_a/2.

x—bg'

=1l

x — by -1 0 0
—a9 T — by —1
1 1 0. —a3 X —bs -1 :
P =R =| O SR
: .0
s e

[ 0 —a, x-—by

= = - = = -
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For k € {0,1,...,n}

x — by, 1 0- B R RRERRES .
—agt1 T — by 1 R :
k 0. —Qgt2 T — brgo 1. :
Pr[l,—i]-lz ' o
: 0
s B 1
[0 P I 0 —a, x —by,
Recursion relation
k+2 k+1 k k+1
ap PRI p o Pl Pl o Pl ke 0,1, 0}
with PPt — 1 plntel — g
(=] )
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Left eigenvectors truncated version

[P, G - PRI ] SV = AN [P, IV - PTG

Comparing truncated and original
Using CD formulas

Hy Q1 () PYLL ()
Pr(AM) Py )~ 2, PETOM) B ()
_ PR ()
P (00
v _ Pl ()

In particular, for r =1, p;, :
P (W)

=T = - -
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Helly’s tools

1.| Helly’s Selection Principle: for any uniformly bounded sequence
{@D[n} 1>, of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function v
defined in R
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Helly’s tools

1.| Helly’s Selection Principle: for any uniformly bounded sequence
{y"] 1>, of non-decreasing functions defined in R, there exists a
convergent subsequence converging to a non-decreasing function v
defined in R

2. Helly’s second theorem: Let us assume a uniformly bounded
sequence {1["}>°  of non-decreasing functions on a compact interval
[a, b] with limit function v, then for any continuous function fin

[a, b] we have lim,, o f;f( )y (z f f(@
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Spectral Favard’s theorem

Helly's results lead to the existence of a nondecreasing functions 1 and
corresponding positive Lebesgue—Stieltjes measures di) with compact
support A such that the orthogonal relations of “type II”

/Aa:kPn(x)d@b(x) = kE=0,...,n—1
and of “type I"
/AQk_l(x)dw(x)a:l —0, 1e{01,....k—1}, ke{l,....n}
hold. These polynomial sequences of types Il and | are biorthogonal, i.e.,
| @@@n@ = by
for k,l € Ny. Recall that , and the biorthogonality reads

/A Pi(@)d9(@)Pi(z) = 641 Hi
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Spectral Favard’s theorem

Helly's second theorem leads to the spectral representation in terms of the
spectral function v

dy ()

z—t’

sp=e] JFe; = / thdy(t), P =ef (zI—J) e :/
A A

of the moments s;, and of the Stieltjes—Markov function . The Markov
theorem ensures that the Weyl function converges uniformly in C\ A to
the Stieltjes—Markov function

Sl = 4, n — oo
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Multiple case: banded Hessenberg
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Banded Hessenberg semi-infinite matrices and
Favard theorem

Banded monic lower Hessenberg semi-infinite matrix

-GO,O 1 0:. ..................
a170 ai,1 1.. S

T = a1;7()
0.
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Recursion polynomials
Type Il recursion polynomials

B(z) = [Bo(z) Bi(z)------ ] T, deg B, =n
P Right eigenvectors:
TB(z) = zB(x)

Initial condition: By =1
Type Il recursion polynomials: B, (z)

(p + 2)-term recurrence relation

Bn+1 — (?1" 7 an.n,)Bn 7 (ln.n,len,fl I (ln.n,prnfps n e NO

= - - =
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Recursion polynomials
Type Il recursion polynomials

B(z) = [Bo(z) Bi(z)------ ] T, deg B, =n

P Right eigenvectors:
TB(z) = zB(x)

> Initial condition: By =1
Type Il recursion polynomials: B, (z)

(p + 2)-term recurrence relation
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Recursion polynomials
Type Il recursion polynomials

B(z) = [Bo(a) Bi(@)------], deg By, = n
P Right eigenvectors:
TB(x) = zB(x)

> Initial condition: By =1
> Type Il recursion polynomials: B, (x)

(p + 2)-term recurrence relation

Bn+1 — (1' e (111,.71>B71, e (ln,.nlenfl R (III,.Hfj)BN*,UT n e N(,)

= = = rerC
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Recursion polynomials
Type Il recursion polynomials

B(x) = [Bo(w) Bi(a)----]', deg By = n
P Right eigenvectors:
TB(x) = zB(x)

> Initial condition: By =1
> Type Il recursion polynomials: B, (x)

> (p+ 2)-term recurrence relation

Bn+1 = (-73 - an,n)Bn - an,n—an—l - an,n—an—pa n e I\]O

= = = —_
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Recursion polynomials

Type | recursion polynomials

> Left eigenvectors:

A ()T = A (g), a=1,...,p.
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Recursion polynomials

Type | recursion polynomials
> Initial conditions,

(2 _
A(l) -1 AO =0,
0 ) (2) _
A7 =1,
A =w” ) _ o
Ay =y,
A(l—)l (1)1> % p)
P P A;()fl = V;()—)D
Vj(i) being arbitrary constants

AP =,
Ag’_;Q =0,
A;E)p_l - 17
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Recursion polynomials

Type | recursion polynomials
> Initial condition matrix

(p + 2)-term recursion relation, a € {1,

4(“)1 + Apops 4(;1) + -+ Gntpn 45;1 p = TA “), ne{0,1,...}
deg 4;11+1 =k forr=1,..., j+1, deg 4/1‘)%/ =k —1 for 7':,j+2....,,p4

= 1)
p—l

1

p}, A(fl' =)
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Recursion polynomials

Type | recursion polynomials

> Initial condition matrix

1 (): ................ 0

I/{l) 1

V=
: .0

1/1()1_)1 ............. yzgll_l)- 1

> (p+ 2)-term recursion relation, a € {1,...,p}, A(_al) =0

Afla_)l =+ an,nA,(f) S s an+p7nA7(.La:’)_p - $A£La), UES {O, ]., .- }
deg A,\E‘,’/'fﬂ =k, forr=1,..., j+1, deg \1;,’[)]7‘/ =k—1forr=35+2,..., D
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Recursion polynomials

Type | recursion polynomials
> Initial condition matrix

/) PO 0
Vfl) 1
vi=
5 L0

1 i)y o
_1/1()_)1 ............. V]g]il ) 1_

> (p+ 2)-term recursion relation, a € {1,...,p}, A(_al) =0

./47(?,)1‘|_(ln,nA’4£La)"""‘i‘an_|-p7 A7(’H)-p_ Aq(la), nE{O,l,}
> degAkp+]_k,forrzl,...,j—l—l,degA,(Qﬂ:k—lforr:j+2,...,p

v
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Recursion polynomials

Recursion polynomials and characteristic polynomials

Jonathan Coussement and Walter Van Assche, Gaussian quadrature for

multiple orthogonal polynomials, Journal of Computational and Applied
Mathematics 178 (2005) 131-145.

AL AP
By, = hn Lo n & No
AngJ)rpfl ...... .Agzplpfl
where
By — (—1)(p*1)"Hn, Hy :— apotpi1,1- - Gn_14pn—1 )
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Associated polynomials

AW AP
AE& L AE\I;L .
Qn,N = 5 o
|
Agvzkp—l """ Ag\];zkp—l
Qn = [Qon Qin

N ], @) = [Qon Qin
e ONyiNn==QNyp1n=0

QNN = hy By and Qnpn = (1P 1AL By
ONT = 2Qx

QWITINT 4 [()

0 anipNQN4pN]| = 2QIV

(m]

=
Multiple orthogonality, Favard and Markov

z 9ac
Octuber 7th, 2022

28/78




Associated polynomials

AL AP
Ag\llzr L AE\I;L .
Qn,N = . -
|
Agvzl—p—l """ Ag\elp—l
Qn = [Qon Qin

N ], @) = [Qon Qin
e ONyiNn='"=QnNyp-1,n=0

28 Qv = hy'By and Quapy = (1P ik Byt
ONT = 2Qx

() a ‘F\TJ',[)“\'QA\'JF[)“\v] — [,(2<A\>

(m]

=
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Associated polynomials

AD AP
Ag\lfzr L Ag\f;)ﬂ
Qn,N = oy . 0
1
Agvzl—p—l """ Ag\elp—l

Qv = [Qon Qin---], QW =[Qon Qun--- Qn,N]

e QN+ N=""=@N4p-1,N =0
B Qv =hy' By and Quapy = (=1 hyk B
B onT =2Qn

QMITIN 0. 0 an+pNQNipN] = 2QW)

=] & = = C
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Associated polynomials

AL AP
Ag\llzr L Ag\% .
Qn,N = e . .
1 ;
A§V)+p— L A%l—p— .

Qv = [Qon Qin---], QW =[Qon Qun--- Qn,N]

e ONyiNn='"=QnNyp-1,n=0

2] QNN = hy' By and Qnipn = (—1)P R By
Bl OnT =2Qu

| WLt L £ [@00ne- 0 antpNQNtpN] = 2QW)

o & - = Ha
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Spectral properties

Assume that By has simple zeros at the set {)\LN]}NH

1 » SO that the
vectors u,im :— BN) ()\ECN}) and w,ﬁf“ — QW) ()\LN]) are right and left

eigenvectors of TV respectively, k =1,..., N + 1. Then
» The basis of left eigenvectors {w,im ]kV:ll which is

to the basis of right eigenvectors {u,iN> kN:ll is given by

SR Lol )
o Qv (A B (A
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Spectral properties

Assume that By has simple zeros at the set {)\[N]}k 1 SO that the
vectors u,im :— BWNV >()\£€N}) and ]i b QW >(>‘L ]) are right and left
eigenvectors of TV respectively, k =1,..., N + 1. Then

» The

) ) N+1 L
basis of left eigenvectors {w,im k:+1 , which is

to the basis of right eigenvectors {u,iN> kN:ll is given by

™) Q™M (N
w _=
F 2w B
» The following expression holds
(Ny _ Qn—1 N()\[N]) _ Qn-1,x (M)
kn —

S Q)BT Quan () By ()
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Spectral properties

» We can write w,i]’:? = A7(11_)1 (/\LN])M%} SRR A;p_)l (AILN])NL],\Q
Christoffel numbers

AZL () 2 ()
O LA Ai”lp L)
k,1
Lo Quv (M) B (A
ASJ)rl(/\[N]) Agﬁl (/\EcN]): """" A(p) (A[N])
) A O8) A ) )
k2
: Ez:o Ql,N( k ])Bl(/\EcN])
ASL(AECN]): ....... AP (M)
.UECN] = (*l)p A;ﬁp 1(>‘[N]) """ Aszp+p1)1()‘[m)
P

Sy Qv () B3
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Spectral properties

> It holds that

R PR o] !
r, (V17 : (V)7
M 1 V(l) 1 ’ W1
1 .
[N] > © : (N)
Pra| _ Wi 2
M;;N] : )
LD - o)

.0
(p—1)-. W=

L "p—1 Vp—1 1
Matrices U (with columns the right eigenvectors uy arranged in the

wiy

standard order) and W and (with rows the left eigenvectors wy,
arranged in the standard order) satisfy
UW =

= INt+1
In terms of the diagonal matrix D = diag ()\

N N
[1 ], o V\Kll) we have
UD"W = (TM)"

Multiple orthogonality, Favard and Markov
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Spectral properties

It holds that
[ 1 0o ol !
- IV N I YE
M1 yf) 1 : W1
[N] o % o e : (N)
Pra| _ | : B E : k.2
[N] : T (V)
Herd L iy g | e
L "p—1 p—1 ]

Matrices U (with columns the right eigenvectors uy, arranged in the
standard order) and W and (with rows the left eigenvectors wy,
arranged in the standard order) satisfy

UW = = 1INt
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Spectral properties

It holds that
[ 1 0o ol !
- NI ()7
:uk71 l/%l) 1 wk,l
[N] o, (V)
Pra| _ Wg,2
[N] : 0 (V)
Herd L iy g | e
L "p—1 p—1 ]

Matrices U (with columns the right eigenvectors uy, arranged in the
standard order) and W and (with rows the left eigenvectors wy,
arranged in the standard order) satisfy

Uw = =In41
In terms of the diagonal matrix D = diag ()\[IN], e ,)\K,Vil) we have
UD"W = (TV)"
Octuber 7th, 2022 31/78
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Orthogonality

Discrete measures: uL - ZNH [N]é( )\EN]), ac{l,...,p}

Multiple discrete biorthogonalities
Assume that the recursion polynomials By 1 have simple zeros {)\k}NH.
For k,l € {0,..., N}, the following biorthogonal relations hold
<A2,-1)N[1N} + Aép)/i% i} Bl> = Ok,
N S NV N N
B B0l [l uf ]
U= : . : |, w=| _ |
N - N N N
{B\'()‘[l ]) """ BN(M\'JH)J [“"(\iu """ “ﬂ\'ll..\#lJ
satisfy UW = I, and biorthogonality follows immediately

- = = can

Octuber 7th, 2022 32/78
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Orthogonality

Discrete measures: ug - ZNH u%]é(:c - )\EN]), a€ed{l,...

Multiple discrete biorthogonalities

Assume that the recursion polynomials By 1 have simple zeros {\g
For k,l € {0,..., N}, the following biorthogonal relations hold

, P}

}N-i—l

<Al(c ARy & ],Bz> —
Proof.
N N N N
By ()\[ ]) ....... BO()‘.EVJ]A) w[l.,l} ......... wg ]\]7+1
U= S ; S :
N ' (N N N
B (>‘[1 ]) """ B ()‘Evjrl) wEVJrl 1 EVJ]rl N+1
satisfy UW = I, and biorthogonality follows immediately O
Multiple orthogonality, Favard and Markov 1 r_“,Octuber Tth, 2_022 ) 3w2y/\(7(8



Orthogonality

Multiple discrete orthogonalities
Assume that the recursion polynomials By have simple zeros
{A N]}NJrl For k such that kp + j < N, the following type Il multiple

orthogonal conditions are satisfied
< LN})l‘mka+j>:O7 m:(),...,k', T:1“‘?j
<LN}’$mka+j>:O, m=0,....,k—1, r=j3+1...,p

For the recursion polynomials of type | we have the following discrete type
| multiple orthogonality

<A(1)

kp+]

forne{0,1,...,kp+j5—1}, ke{l,...,N}

V.
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Orthogonality

Lebesgue—Stieltjes representation of the measures
In terms of the following piecewise continuous functions

07 ap <)\E€,V_}_1
=l <0
:u’[la]_l_”'-l_ﬂg\/’l-l,a:*(;“ )1.a $>)\[1 ]

we can write ,u[N] dw,[lN] fora e {1,...,p}

For simple orthogonality the Christoffel number was clearly positive from
definition. (And from this positivity interlacing was proven)

Now, for multiple orthogonality, is not clear at all.

Can we find conditions that ensure that Christoffel numbers are
positive???

= - - =
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Orthogonality

Lebesgue—Stieltjes representation of the measures

In terms of the following piecewise continuous functions

0, A )‘Kfvjrl
wC[LN] o= ,UJ[ll,Va] TP eeeaF Il‘l’;cjjj(vz]’ )\ij_]l < X < )\ECN]
5 N

we can write ,u([lN] = d¢LN} fora e {1,...,p}

Positivity of Christoffel numbers

For simple orthogonality the Christoffel number was clearly positive from
definition. (And from this positivity interlacing was proven)

Now, for multiple orthogonality, is not clear at all.

Can we find conditions that ensure that Christoffel numbers are
positive???

v
= i = - =yt
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Positive bidiagonal factorization

. We now introduce the very important idea of positive bidiagonal
factorization (PBF)

This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices
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factorization (PBF)

. This factorization is very natural for banded matrices as all the
subdiagonals may be constructed in terms of simpler bidiagonal
matrices
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Positive bidiagonal factorization

PBF: T =LiLy---L,U
1 Qg c0oanacaaonossanac
(Lk)10 1
| 0. (Lr)2x 1 .
b=\ U (Le)se 1.0 ety = cktitiory
[ Uoyo 1 O g
. 0. Ui I .
= j = C1t(pt)
: i ._U2,2 .
with a;; > 0, for i € N

y.
= i = =y
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Finite PBF: 7V = LM NI p IV v)

Qi1

Q-._.ak+1+(p+1).""'

0

- Ml (p+1)

1
LO el 0 aq +(p +1) N
V.
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

All its minors are non-negative and is nonsingular

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

=] F
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

(m]

=
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

totally positive

A totally non negative matrix A such that for some n, the matrix A™ is

(m]

=
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Oscillatory Matrices

Totally nonnegative (TN)

All its minors are non-negative

Invertible totally nonnegative (InTN)

All its minors are non-negative and is nonsingular

Totally positive (TP)

All its minors are positive

Oscillatory Matrix (IITN)

A totally non negative matrix A such that for some n, the matrix A™ is
totally positive
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

PBF = oscillatory
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

PBF = oscillatory

3
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization |

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

<
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Oscillatory matrices

Gantmacher-Krein Criterion

A totally non negative matrix is oscillatory if and only if it is nonsingular
and the elements of the first subdiagonal and superdiagonal are positive.

Oscillatory Jacobi Matrix

If and only if the elements of the first subdiagonal and superdiagonal are
positive, and the leading principal minors are positive

Factorization |

From Cauchy—Binet Theorem one can deduce the invariance of these sets
of matrices under the usual matrix product

The product of matrices in InTN is again InTN (similar statements hold
for TN or oscillatory matrices)

Factorization Il
PBF = oscillatory

<

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 39/78




Oscillatory matrices
Eigenvalues

The eigenvalues are simple and positive

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

w®
U= [u(l) ...... u(n)L w=1|: |, UW =1
w™
=] =
Multiple orthogonality, Favard and Markov
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Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

v

Prm]
U=[u®. ... u™], w=| |, UW = I
o)

=] & = = C
Multiple orthogonality, Favard and Markov Octuber 7th, 2022 40/78

Q>



Oscillatory matrices

Eigenvalues

The eigenvalues are simple and positive

Interlacing property

The eigenvalues strictly interlace the eigenvalues of the principal submatrix
(deleting first row and column) (also last column and row)

v

Left and right eigenvectors w*), u(%) to the k-th largest eigenvalue

w

U = [u(l) ...... u(n)]7 W = o Uw =1
e
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Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations of bounded Jacobi matrices are oscillatory matrices

(m]

=
Multiple orthogonality, Favard and Markov

Octuber 7th, 2022

2a0

41/78




Oscillatory matrices

Sign-variation

Number of variations in the eigenvectors will lead us to interlacing
properties of polynomials

Translations

Translations of bounded Jacobi matrices are oscillatory matrices
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Darboux transformations

Darboux transformations

Let us assume that 7" admits a bidiagonal factorization (not necessarily
positive). For each of its truncations TV we consider a chain of new
auxiliary matrices, called Darboux transformations, given by the
consecutive permutation of the triangular matrices in the factorization

> N ny
TN L[2 }...LZ[)N]U[N]L[l ]

FIN2 _ LgN] . LI[)N]U[N]L[IN]L[QN}

FINe=t] = LM M. N

TIND _ U[N]L[IN]L[QN] . "LLN]
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Darboux transformations

Darboux transformations are banded Hessenberg matrices with only its
first p subdiagonals different from zero

PBF and Darboux transformations
Let us assume that the holds. Then, for k € {1,...,p}, we find
. The Darboux transformation T1V:F is

The characteristic polynomial of the Darboux transformation TINVF s
BN 1

If w is a left eigenvector of TN then o = u,'L[l‘Vi e L]i‘f\v] is a left
eigenvector of TV:A]

=] & = C
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Darboux transformations

Darboux transformations are banded Hessenberg matrices with only its
first p subdiagonals different from zero

PBF and Darboux transformations
Let us assume that the holds. Then, for k € {1,...,p}, we find
. The Darboux transformation T1V:F is

2] The characteristic polynomial of the Darboux transformation 71V s
Bni1
If w is a left eigenvector of TNV then ) = u'LH‘\' e L]'\T\J is a left
[N,A]

eigenvector of T
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Darboux transformations

Darboux transformations are banded Hessenberg matrices with only its
first p subdiagonals different from zero

PBF and Darboux transformations
Let us assume that the holds. Then, for k € {1,...,p}, we find
. The Darboux transformation T1V:F is

2] The characteristic polynomial of the Darboux transformation 71V s
Bn+1

181 If wis a left eigenvector of TN, then i = wL[lN] . LECN] is a left
eigenvector of TNK
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Darboux transformations

Proof.

. Each bidiagonal factor belongs to INTN. Then, the Darboux
transformation TVl s a product of matrices in InTN and,
consequently, belongs to InTN. Moreover, the entries in the first
superdiagonal are all 1, while the entries in the first subdiagonal are
sum of products of a's. Thus, all entries in these two diagonals are
positive. According to Gantmacher—Krein Criterion is an oscillatory
matrix.
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Darboux transformations

Proof.

. Each bidiagonal factor belongs to InTN. Then, the Darboux
transformation 71V is a product of matrices in InTN and,
consequently, belongs to InTN. Moreover, the entries in the first
superdiagonal are all 1, while the entries in the first subdiagonal are
sum of products of a's. Thus, all entries in these two diagonals are

positive. According to Gantmacher—Krein Criterion is an oscillatory
matrix.

. As TINK — (L[lN] . -LLN])_IT[N]L[lN] e LECN} its characteristic
polynomial is By
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Darboux transformations

Proof.

. Each bidiagonal factor belongs to InTN. Then, the Darboux
transformation 71V is a product of matrices in InTN and,
consequently, belongs to InTN. Moreover, the entries in the first
superdiagonal are all 1, while the entries in the first subdiagonal are
sum of products of a's. Thus, all entries in these two diagonals are
positive. According to Gantmacher—Krein Criterion is an oscillatory
matrix.

. As TINK — (L[lN] . -LLN])_IT[N]L[lN] e LLN} its characteristic
polynomial is By

. We see that

b = dwLM o g = oM N PN NN N I
— T
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Christoffel numbers are positive for PBF

Gathering a’s

P = [gl Lo oo s } c RPXP
with columns
1 1
0 1 0]
# o=, BN pP i pe 2,
: dy, :
0 0

with di == Qg4 pOE+2pQk+3p * * * Okt (k—2)p

., P}

& is a non-negative upper unitriangular matrix
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Christoffel numbers are positive for PBF

Christoffel coefficients positivity

Let us assume that TV has a and that the initial conditions is such
that

for some nonnegative upper unitriangular matrix 6. Then, the Christoffel
numbers of the discrete measures given for for TV are positive, i.e.,

) ne{l,...,N+1}, ac{l,...,p}
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Idea of the proof

[N]

For y, 7 >0,n € {1,...,N + 1}, we consider the left eigenvector

Q™ O = Qo () Qv () - Qv ()]

that has QN N ()\LN]) # 0 (oscillatory property), we can normalize the last

entry to 1
W) |: Qo,N (ALN]) Q1N ()‘LN]) ,,,,,, 1:|
C QNN (ALN]) QNN ()\LN])
The leads to
[N] [N] [N]
Goxvldi ) (Alm) >0, QO’N(AQ[N]) <0, i (A?N]) >0,
QnN (A Y) Qv (Xs) Qv (A
and so on, alternating the sign
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Idea of the proof

As the polynomial By 41 is monic for the derivative Bf\,ﬂ evaluated at
the zeros ALN] we have

N N N
B§v+1()‘[1 ]) > 0, B§V+1()‘[2 ]) <0, B?VH()\LJ ]) >0
and so on, alternating the sign. Then, it holds that

¥ = Qox (M)
o v () By ()

> 0, ke{l,...,N+1}.
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Idea of the proof

For the Christoffel coefficient ,uLNQ] for k € {1,..., N + 1} recall that
. Then,
a left eigenvector for the eigenvalue )\L/,N} can be chosen as
[N] (V]
(N) 7 [N] _ Qon( ) @Ay ) 1|V
NG [QN,N(ALN]) Qn,n () !
_ |Qontar@r ™ 1
Qn.n R
Using the
Qo +e2@1,mMD) | Qon+e30u ) 0 @o + 2@ mE)

>0
QN,N(/\[lN]) QN,N(A[zN]) QN,N(XEQ.N])

and so on, alternating the sign. As before, using the

v (5Qon + Quv) (L)
k2
QNN ()\LN} )B4 (ALN])
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Idea of the proof

We repeat this argument for each a € {1,...,p} getting some positive
~[N ]

numbers [, >0, for example

V] (QSQSHQO N+ 3;;? Q1N + Q2 N)()\[ )

[l = >0
Qny (A By, (A0

In general, these positive numbers are
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Idea of the proof

Entrywise positive row vector

_[N] ~[N Y
[ML,I} MI[C,Q] ...... 'UIL‘,]:}] = [w,il’\Pwlil’\;)]g
Then, from
N N N1 [ (N) N (NY]. —T
[MLE MLJ ...... ul | p]} _ {wm w}<€2> ...... wi }y

we get the result

N N N N N N
|:'u£€,1] luEg’Q] ...... lugg,p]:| = |:w]<€’1> w]i’2> ...... wli,p>i|g%
~[N] ~[N ~ [N
= [ A i

which is a entrywise positive row vector
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Second kind polynomials

We consider

Ok 1 0 oerees s 0 -
Ok+1k Ok+1k+1 1
a 5
TINK] %k
o
§ 1

| 0 ........................ 0 aN,N p an N_

. Truncated polynomials

B][\’;]_|_1($) — det (IIN+1 — T[va])
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Second kind polynomials

(p+ 2) terms linear homogeneous recurrence
For k € {0,1,.

N}
G,p,kB][\];illH_l] +--+ GkJrl,kB][fTif] + ak,sz[sii] + BE\I;]—i-l = xB[NkE]
(V) . [nl N+1

“‘7<;, = B“[\“L'l """ BR;+1 q

, ne{l,...,N+
,17:/\[,;”
are the left eigenvectors of TN with last entry normalized to 1

(m]

=
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Second kind polynomials

(p + 2) terms linear homogeneous recurrence
For k € {0,1,..., N}

k 1 k+2 k+1 I k+1
ap,sz[vff+ IR ak+1,kBEvL] + Gk,kBJ[vL] + B][V]—i-l = ﬂfBz[vL]

Normalized left eigenvectors

, ned{l,...,N+1},
" { }

T=An

. 1 N+1
wiN) = [BEV}H ...... B][V-:_l ]}

are the left eigenvectors of TVl with last entry normalized to 1
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Christoffel-Darboux

N

S Bt (@) Ba(y)
n=0

Christoffel-Darboux type formulas for truncated polynomials
. Christoffel-Darboux type relation holds

_ Byni(z) = Bryi(y)

T -y
Confluent Christoffel-Darboux type formula is satisfied

Z B [n+1]

. /
N-+1 ”*BA\H»I
n=0

(m]

=
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Christoffel-Darboux

Christoffel-Darboux type formulas for truncated polynomials

. Christoffel-Darboux type relation holds

Z B[n+1] (y) = Byi1(z) — Bni1(y)
N1 ( P

. Confluent Christoffel-Darboux type formula is satisfied

N
+1
Z BJ[G+1]Bn = By
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Second kind polynomials

For k€ {0,1,...,N}

Qn,N )\[N} n

Qv (A

(),

(Ny BJ[G]—H(/\I[CN])
kn
By (%)

Second kind polynomials

(k)

The second kind polynomials By ,,

following row vector

kedl,...

,D}, are the entries of the

Multiple orthogonality, Favard and Markov
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Second kind polynomials

If {e1,...,en+1} is the canonical basis of RV*! we have the modified

. _ 1

basis e}, == v Te,. For example, e] = ey, e = ex — z/f )61 and
©) (1), (2) (1)

ez =e3— Uy 62+(V1 Uy ' — Uy )el

Second kind polynomials and adjugate matrix

The second kind polynomials are given as

BY) | (2) = ef adj(zInti — TN)el
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Resolvent and Weyl functions

Resolvent matrix RLN

]

of the leading principal submatrix 7]

RN = (2@ — TV

adj (ZIN-H — T[N])

 det(zIny1 — TNV
=U(zIny1 — D)W

(a) /. N+1 [N]
N N — Bc 7 (4) /1
SIN(2) = e] (2Dypy — TN Loy = ZNHLE)
1 ) e By+1(?) ; 2 =AM
The Christoffel coefficients are
[} [ = =
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Resolvent and Weyl functions

Resolvent matrix R[N}

z

of the leading principal submatrix gp Y]
_ dj (zI
AN o (alyyy — 7)1 = 20 (I

— T[N])
det(zIN+1

— TINV])

=U(zIyy1 — D)W
Weyl’s functions

. B(a)
S([IN](Z) = EI(ZIN—Fl _T[N}) 16” N+1(Z

N+l [N]

Mn a
e I DR
The Christoffel coefficients are

el 2 — A

(m]

=

Multiple orthogonality, Favard and Markov
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Spectral Favard Theorem and
Multiple Orthogonal Polynomials
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Favard spectral theorem

At this point we are ready to give one of the main results
of the talk, that establish the existence of multiple
orthogonal polynomials and corresponding positive
Lebesgue—Stieltjes measures for a given bounded banded
Hessenberg matrix that admit a positive bidiagonal
factorization. The result is based in the positivity of the
Christoffel coefficients
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Favard spectral theorem

Favard spectral representation
Let us assume that

11| The banded Hessenberg matrix T is bounded and admit a PBF
The sequences {Ag,,l) ..... ’))}

, of recursion polynomials of type |,

are determined by the in|t|al condltlon matrix v such that v~
Then, there exists p non decreasing functions {@k:}fﬂv and corresponding
positive Lebesgue—Stieltjes measures di; with compact support A such
that the following biorthogonality holds

=
/ (A,g)(.’lf)d’lf/'l ()
A

+ AP (2)dyy(x)) Bi(x) = b,

k,l € Ny

(m]

=
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Favard spectral theorem

Favard spectral representation

Let us assume that

. The banded Hessenberg matrix 1" is bounded and admit a PBF

. The sequences {Ag), e ,A,(lp)}zozo of recursion polynomials of type I,
are determined by the initial condition matrix v such that v~ T = £

Then, there exists p non decreasing functions {L,'A.}I,jzl, and corresponding
positive Lebesgue—Stieltjes measures dv;. with compact support A such
that the following biorthogonality holds

/ (1’12})(.1‘)(11‘11(;1:) 4k coo b A](‘,”)(,r)(h ,'[,(‘1‘))[3;(:17) =05, k, 1Ny
WVAN

Q>

[} =l = =
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Favard spectral theorem

Favard spectral representation

Let us assume that

. The banded Hessenberg matrix 1" is bounded and admit a PBF

120 The sequences {AS), . ,Aﬁf’}f;o of recursion polynomials of type I,
are determined by the initial condition matrix v such that v~ = 26

Then, there exists p non decreasing functions {wk}izl, and corresponding
positive Lebesgue—Stieltjes measures dv; with compact support A such
that the following biorthogonality holds

/A (AD @)dg (@) + - - - + AP (2)dep(@)) Bulx) = Sxss byl € No
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Favard spectral theorem

Proof.

The sequences {zz),[cm}?vo:o, ke {1,...,p} are uniformly bounded and
nondecreasing. Consequently, following Helly's results, there exist
subsequences that converge when N — oo to nondecreasing functions
Y1,...,1,. Being T bounded its eigenvalues lay in a bounded set A, and
we deduce that these measures have compact support. O

v
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Favard spectral theorem

Multiple orthogonal relations

Multiple orthogonal relations of type Il
/ 2" Biptjdipr(x) =0, m=0,...,k, P=1co.
N
/xmkaﬂ-dz/Jr(x):O, m=0,....k—1, r=j5+1,...
N

and of type |, for n € {0,1,..., kp+j — 1},

[ (D @0wr(a) + -+ AL, @)dwy(e))o" = 0
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Favard spectral theorem

Spectral representation of moments and Stieltjes—Markov functions

Helly's second theorem leads to the spectral representation for the

moments and Stieltjes—Markov functions zﬁk of the full banded Hessenberg
matrix in terms of the spectral functions 11, ..., y:

eITkeZ = /Atde/Jk(t), T/AJk = e;r(zf = T)_lell’ = /A vk (?)

z—1

For the Weyl functions we have in C\ A uniform convergence to the
Stieltjes—Markov functions

S = iy, N = oo
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Markov chains
beyond birth and death
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Banded stochastic matrices

Stochastic matrices: all the entries in each row are
nonnegative and satisfy that its sum is 1

Multiple orthogonality, Favard and Markov Octuber 7th, 2022 65/78



Banded stochastic matrices

o0 01 0-.- e
1,0 1,1 1,2
Prp=1:
Tp70 ............................ Tp,p Tp,p-‘r]. -
Q . ’rp—l-l,l_ ......................... rp—l—l,p-‘r_l Tp-‘rl,p-ijz
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Banded stochastic matrices
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Banded stochastic matrices

_7"070 Fpjlececcecccooocoosass T0,p 0- 0 ............ T
1,0 1,1 . T1,p+1

0 2,1

T :
Tp+1,p  Tp+lp+l
’ Tp+lp+2
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Banded stochastic matrices
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Banded stochastic matrices

These stochastic matrices of Hessenberg type are connected to the monic

banded Hessenberg matrix 1" assuming that r;, ,+1 > 0, we have

Py = Hy TH;!

' 1
HII:dlaga’HlLl,H[LQ,...), Han:
r0,171,2 " Tn,n—1

Assuming that 7,41, > 0
Pr=H;'T"H;
1

Hy =diag(1,Hyr1,Hyo,...), I8 o =
T1,072,1 " Tn—1n

Markov chains can be described by the spectral methods we have
constructed for monic Hessenberg semi-infinite matrices with positive
bidiagonal factorization
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Banded stochastic matrices

Positive stochastic bidiagonal factorization (PSBF)
Prp =11 - - - 1L, Y with stochastic bidiagonal factors (a € {1,...,p})

[(IT4)0.0 I R TR RTRRRERS
(Ma)1,0  (Mg)1

0 (Ta)2,1  (g)2,2

II, = .
(Ia)sz2, (Ha)s,3
T070 TO,l 0 SRR
0. Tin Tio
T = o "ooq, ..
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Finite banded stochastic matrices

A finite matrix with a positive stochastic bidiagonal factorization is
oscillatory

Let us assume a banded stochastic matrix, Pry. Then, Pr; has a positive
stochastic bidiagonal factorization if and only if it is similar, via a positive

diagonal matrix, to a monic Hessenberg matrix 7" with positive bidiagonal
factorization

P][ZHl-“HpT T T:Ll---LpU

with Ly,..., L, positive lower bidiagonal matrices and U an upper
positive bidiagonal matrix

=] & = = Qe
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Finite banded stochastic matrices

PSBF vs PBF

Let us assume a banded stochastic matrix, P;;. Then, P;r has a positive
stochastic bidiagonal factorization if and only if it is similar, via a positive
diagonal matrix, to a monic Hessenberg matrix 7" with positive bidiagonal
factorization

P][:Hl"‘HpT — T:Ll”'LpU

with Ly, ..., L, positive lower bidiagonal matrices and U an upper
positive bidiagonal matrix
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Karlin-McGregor

1
— <k
o Hiyp g, TLI+1 " Tk=1,k
Ikl = = _
Hip, 1, Il =k
Thik+l  Ti—11, >k
T4 ThEl, <k
_ Hypy 1 =k
GI,l,k = — = Y Y
Hiyy 1
—, >k
Tht1,k " T1l-1
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Karlin-McGregor

Let us consider a Markov chain with transition matrix a PSBF
(p + 2)-diagonal matrix such that admits a positive stochastic bidiagonal
factorization. Then, there is sequence of multiple orthogonal polynomials

of type Il, {B,}2°,, and of type |, {AS), .. ,A,(@p)}j;o:o, associated with
positive Lebesgue—Stieltjes measures di)1, ..., d1, such that:
Karlin—McGregor spectral representation formula

The iterated probabilities have the following spectral representation

1
((Pr1)") s = O11,0 /0 (AVdyy (@) + - - + AP dypy ()2 By(x)

1
((Pr)") s, = Ori /0 (AW dyy (z) + - + AP dyy(2))a" By ()
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Karlin-McGregor

Spectral representation of generating functions

Spectral representation of generating functions. For |s| < 1, the
corresponding transition probability generating functions are

1
(Pr1(8))ks = @U,k,z/o (Al(l)dwl () + -+ Al(P)d%(x))M

1—sx

1
(PI(S))k;,l = @I’l’k/o (Al(cl)dwl ($) 4t A](gp)dd}p(ﬂf)) Bl(.%')

1—sx
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Karlin-McGregor

Spectral representation of generating functions

For k #£ [, the first passage generating functions are

Jo (AN dyy () + P dyp,(z)) Zele)
e = @mklf[; (AN dgpy (z) + - + A(p dypp () 212
fo ( d¢1 )+ +Ap)d¢p:1:)1 2

Fr(s =0

For k = [ the first passage generating functions are the same for type |
and Il, namely

Fil(s) =1

Jo (AN Ay () + - - + AP dgpy () 22

ST
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Karlin-McGregor

Recurrent vs transient
The Markov chain is recurrent if and only if the integral

diverges. Otherwise is transient
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Karlin-McGregor

Ergodic Markov chains

The Markov chain is ergodic (or positive recurrent) if and only 1 is a mass
point of dvn,d»,...,dy, with masses m; > 0 and ma,...,m, > 0,
respectively. In that case, the corresponding stationary distribution is

r=[m m-], = (APQ)my + -+ AP (1)m,)Ba(1)
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