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Summary

Data from a divergent experiment for birthweight (BrW) environmental

variability were used to estimate genetic parameters for BrW trait and its

environmental variability by fitting both homoscedastic (HO) and heteros-

cedastic (HE) models. A total of 5 475 records of BrW from animals born

from inbred dams, and 7 140 pedigree records were used. The heritability

of BrW using the model HO was 0.27, with the litter effect much more

important, 0.43. The model HE provided a genetic correlation between

the trait and its environmental variability that was very high and nega-

tive, �0.97, and a high value for the additive genetic variance for environ-

mental variability, suggesting an artefact in the model. The residual

skewness was found to be essentially null. A model considering the

genetic correlation null was also fitted, and used to obtain the breeding

values for the selection process. Moreover, the trait was considered as

maternal resulting in similar estimates under the model HO, but more rea-

sonable for the genetic correlation between the trait and its environmen-

tal variability of 0.48 with a value of 0.25 for the additive genetic variance

regarding environmental variability under the model HE. This led to the

conclusion that environmental variability of BrW in mice must be selected

via dams. Estimated parameters in a reduced dataset without inbred

animals did not substantially change this conclusion.

Introduction

The aim of the genetic selection in animal breeding

has traditionally been the increase of the mean for the

productive traits. Today, some of these traits have

reached an optimum level (Angel 2007) and others

are delimitated by production quotas, i.e. dairy pro-

duction (O’Donnell et al. 2011). Hence, there is an

increasing interest in the homogeneity of the animal

production that would decrease the cost of handling

and production that ultimately would increase the

profitability of the farm (Bolet et al. 2007). Regarding

the homogeneity of the birthweight trait, this would

lead to a reduction in the mortality of young animals,

easiness to manage in groups, improved welfare and

to create homogeneity in the final products (Damg-

aard et al. 2003) that would increase their economic

value. Moreover, birthweight is a very important trait

in multiparous species like rabbit (Bodin et al. 2010)

or pig (Berard et al. 2008) where the homogeneity

within the litter determines the competitiveness

between young animals and the percentage of sur-

vival (Damgaard et al. 2003; Garreau et al. 2008). The

small size and generation interval of the mouse make

this laboratory mammal a good model for this kind of

trait and species (Moreno et al. 2012). On the other

hand, the existence of a genetic background affecting

the variability of a trait has been demonstrated and it

differs from the one controlling the trait mean, so a

genetic selection can be done on the variability of a
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trait reducing it and reaching homogeneity in the trait

(Scheiner & Lyman 1991) that is called canalization.

SanCristobal-Gaudy et al. (1998) proposed a model

that makes it possible to determine simultaneously

the genetic parameters for the mean and for the vari-

ability with an EM-REML algorithm. Sorensen &

Waagepetersen (2003) extended this method to

obtain results using a Bayesian approach, and Ib�a~nez-

Escriche et al. (2010) developed a freely available soft-

ware called GSEVM for this approach.

The aim of this research was to estimate and discuss

the genetic parameters for birthweight environmental

variability in a mouse population designed for a diver-

gent selection experiment for birthweight variability,

as well as studying if birthweight environmental

variability must be considered an individual or mater-

nal trait.

Materials and methods

Experimental population

The experimental population analysed here started

from a preexisting mouse population originating from

a balanced genetic contribution of three inbred mice

lines: BALB/c, C57BL and CBA. The three-way

crossed population was maintained in panmixia

during 20 generations, thus ensuring high levels of

both genetic and phenotypic variabilities.

From this panmictic population, a total of 30 males

and 66 females were randomly selected to be mated

with BALB/c inbred females and males respectively to

evaluate them. Inbred animals were considered

genetically the same individual across the experiment

so the genetic differences between offspring can only

be associated with the parent selected from the preex-

isting population. Each selected male was mated with

4 inbred females and each selected female was mated

once with an inbred male. During the birth period,

pregnant females were checked every 24 h, and the

newborns were weighed and identified within 24 h

after birth. To establish the lines, the six males and

twelve females with the highest and lowest additive

genetic value for the environmental variability were

selected to create two divergent selection lines, high

variability line and low variability line, respectively.

From the second generation onwards, no females

were evaluated, but their Genetic Breeding Values

(GBVs) were obtained as a consequence of an animal

model evaluation. However, evaluation of males

continued, 30 individuals were evaluated every gen-

eration using the above procedure. All the processes

were repeated for five additional generations. A

scheme of the experimental design is shown in

Figure 1.

Animals within lines were mated following a mat-

ing design determined by simulated annealing

(Fernandez & Toro 1999) that maximizes the mean

GBV of the progeny without exceeding the coancestry

level determined by the standard solution. Under this

standard fictitious solution, each of the best six males

would be mated with two females, and three and two

males from the offspring of the two mates, would be

selected to be evaluated in the next generation. The

optimal solution is thus found by allowing the males

to be mated with up to three females and a maximum

of four males were selected from each mating. After

carrying out the real matings, a second simulated

annealing process was carried out accounting for the

real number of males and females born.

Two different subsets of data can be defined as

follows: the evaluation dataset, gathering the records

from the evaluation periods in which all the mothers

are females from the inbred line BALB/c, and the

nucleus dataset, with the records belonging to the

matings in the nucleus, in which all the progenitors

belong to the population under selection. Notice that

records from the matings of inbred males and outbred

females of the first evaluation were not considered in

any dataset.

The data of individual birthweight (BrW) obtained

from all the litters and the pedigree that included 10

generations of the panmitic population were used to

evaluate the selected progenitors. The final evaluation

dataset contained a total of 5 475 records of BrW from

736 litters. The mean � SD for the litter size (new-

borns) and for the BrW (g) were 7.77 � 2.77 and

Figure 1 Scheme of the experiment.
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1.51 � 0.22 respectively. All the inbred females were

considered to be the same animal in the pedigree. The

total number of individuals included in the analysed

pedigree was 7 140 that included 10 generations back

of known pedigree in the panmitic population. The

nucleus dataset contained 756 BrW records from 88

litters belonging to 84 females with a total of 2 112

individuals in the pedigree, and in this case, the

mean � SD for the litter size (newborns) and for

the BrW (g) was 8.97 � 3.02 and 1.57 � 0.21,

respectively.

Models

Two models were fitted to estimate the genetic param-

eters both using a Bayesian approach. The first was a

homoscedastic model (HO), which is a classical addi-

tive genetic model that includes the assumption of

homogeneity of the environmental variation:

yi ¼ xibþ ziaþwicþ ei

With:

a

c

� �
�N

0

0

� �
;

Ar2a 0

0 Ir2c

� �� �

where yi is the BrW of animal i; b is the vector for sys-

tematic effects; a is the vector of direct animal genetic

effect; c is the vector of unknown for litter effect; xi, zi
and wi are the incidence vectors for systematic, ani-

mal and litter effects respectively; ei is the residual; A

is the numerator relationship matrix, I is the identity

matrix of order equal to the number of litters; r2a is

the additive genetic variance, and r2c is the litter effect

variance.

The second model is a heteroscedastic model (HE)

developed by SanCristobal-Gaudy et al. (1998) which

assumes that the environmental variance is heteroge-

neous and partially under genetic control:

yi ¼ xibþ ziaþwicþ e
1
2
ðxib

�þzia
�þwic

�Þei

where * indicates the parameters associated with

environmental variance; b and b* are the vectors of

the systematic effects; a and a* are the vectors of the

direct genetic effect; and c and c* are the vectors of

the litter effect. Incidence vectors xi, zi and wi have

been defined in the previous model HO. Although not

relevant in the evaluation dataset in which only one

mother is present, in the nucleus dataset it must be

noted that c and c* are fitting the litter effect, but it is

assumed that they are also fitting most of the mater-

nal effect as observed by Ib�a~nez-Escriche et al.

(2008a) when analysing litter weight trait in a similar

population of mice. Correlation between direct and

maternal effects was not accounted for, given that the

mother is unique in the evaluation dataset, the

amount of data was limited in the nucleus dataset,

and there is no software available to solve such a com-

plex model HE.

The genetic effects a and a* are distributed together

and are assumed to be Gaussian:

a

a�

� �
�N

0

0

� �
;

r2a qrara�
qrara� r2a�

� �
�A

� �

where A is the additive genetic relationship matrix;

r2a is the additive genetic variance of the trait; r2a� is

the additive genetic variance affecting environmental

variance of the trait; q is the coefficient of genetic cor-

relation, and ⊗ denotes the Kronecker product.

The vectors c and c* are also assumed to be inde-

pendent, with c� �Nð0; Icr2c� Þand c�Nð0; Icr2c Þ where

Ic is the identity matrix of equal order to the number

of litters and r2c and r2c� are the litter effect variances

affecting respectively, the BrW mean and its environ-

mental variability (Ib�a~nez-Escriche et al. 2008a). A

version of this model (model HEq0) was also fitted

with the genetic correlation null.

The model HO was solved by using the TM program

(Legarra 2008) while the model HE was solved by

using the GSEVM program (Ib�a~nez-Escriche et al.

2010). A version of GSEVM was developed ad hoc to

force the genetic correlation to be null. Also REML

estimations were obtained using VCE software

(Neumaier & Groeneveld 1998) to estimate parame-

ters under model HO to check the consistency of the

Bayesian estimations.

All the models applied to the evaluation dataset

included period of birth (6 levels), litter size (14

levels) and sex (male, female, unknown) as system-

atic effects, and the litter (736 levels) and additive

genetic effect (7 140 levels) as random effects besides

the residual effect.

The same models were also used to estimate genetic

parameters in the nucleus dataset with the aim of

measuring the role of maternal effect, by comparison

with results obtained in the evaluation dataset in

which we assume a unique mother for all records and

then the absence of maternal effect. In this case, the

number of levels was of 6 periods of birth, 11 litter

sizes, and the same 3 for sex regarding systematic

effects, and 88 litters and 2 112 additive genetic

effects regarding random effects. In this subset, each

individual BrW was also analysed by assuming to

belong to the mother of the newborn to check if the

birthweight environmental variability could be con-

sidered as a maternal trait. In this case, the mother
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effect would comprise half the additive effect of the

newborn and the whole maternal effect. Then, the

variance of this effect would comprise a quarter of

the additive genetic variance under model HO plus

the maternal additive variance and the covariance

between direct and maternal effects. Therefore, it

should be possible to assess the existence of maternal

determination of the trait by comparing the additive

variance under this model with a quarter of the addi-

tive variance under model HO. Both the homoscedas-

tic model HOm and heteroscedastic model HEm above

were fitted. In this case, the number of individuals in

the pedigree was 1 425 and only 756 records were

available.

All the priors chosen for the different parameters

estimated were plane except for model HEm where

the little amount of data and the little size of the pedi-

gree did not make it possible to use it, so a scaled-

inversed-chi-squared distribution with 4 degrees of

freedom and a scale parameter of 0.036 was chosen as

a prior for the variances affecting the mean, while the

same kind of distribution with 4 degrees of freedom

and a scale parameter of 0.6 was chosen for variances

affecting the variability of the trait. The prior for the

correlation was plane between �1 and 1. All estima-

tions were carried out checking different priors to

ensure that estimations were independent of them.

To inspect the goodness of the models, the pheno-

types of the last generation were excluded from the

analysis and were used for validation (Efron & Tibsh-

irani 1993).

When the trait is measured at an inadequate

scale, the estimation of genetic parameters is errone-

ous (Yang et al. 2011). A study of the skewness of

the residuals of the model was necessary to establish

whether this artefact of the model was not influenc-

ing our results. To check if the model fitted the

observed data y, a comparison between the observed

data and simulated values yrep obtained from the

marginal posterior predictive distribution of replicate

data was carried out (Gelman et al. 2004). A discrep-

ancy measure T(y, h) was considered to determine

systematic differences between the observed and the

simulated data and, therefore, a possible failing of

the model. T corresponds to the skewness coefficient

of the distribution of the standardized estimate of

the residuals and depends on the data and maybe

on h, an unknown vector of parameters of the

model under evaluation (Yang et al. 2011). Given

h(j) for the jth iteration, the residual standardized zi
for each animal i was estimated and the skewness

T (z, h(j)) of the distribution of these estimates was

calculated as:

T z; hðjÞ
� �

¼
1
n

Pn
i¼1ðziÞ3

1
n

Pn
i¼1ðziÞ2 � 1

n

Pn
i¼1 zi

� 	2� �3=2

Besides each iteration, the yrep data for each animal

were simulated and its standardised residual zrep,i was

calculated; therefore, it was directly simulated from a

standard normal distribution. The skewness T (zrep,

h(j)) of the distribution of these estimates was also cal-

culated. The distribution of the difference T (z, h) � T

(zrep, h) should be centred on zero to determine that

the model fits the data correctly.

Results

The estimates of the genetic parameters under the

three models in the evaluation dataset are given in

Table 1. The mean of the marginal posterior distribu-

tion for the heritability (h2) of BrW using model HO

was found to be 0.27, with the litter component (c2)

more important, 0.43. Regarding r2a, the HE models

gave similar estimates (11.00 9 10�3 for HE and

10.96 for HEq0) to model HO (12.30 9 10�3). The

estimates for r2c were also very similar across all the

three models, between 19.80 9 10�3 for model HE

and 17.73 9 10�3 for model HEq0. All the models

provided larger estimates for r2c than for r2a with a

maximum for r2c , almost twice r2a for model HE.

The parameters affecting environmental variance of

the trait were estimated only by the HE models. In the

evaluation data set (Table 1), the estimate for r2a� was

1.13 for model HE and slightly increased for model

HEq0 reaching 1.29. Regarding the estimate for r2c� it

was higher for model HEq0 (0.52) than for model HE

(0.45), even though they were similar too. In both

models, the estimate for r2a� was abnormally large and

higher than for r2c� (2.5 times higher for both model

HE and model HEq0).
The mean of the marginal posterior distribution

for the genetic correlation between the trait and its

variability for model HE was extremely high and

negative, �0.97. This value was unexpected given

that the correlation between the variance of the

birthweight and the litter weight was 0.00 in the

evaluation dataset and 0.20 in the nucleus dataset.

A check was carried out to inspect the relationship

between birthweight variability and litter size. Vari-

ance of BrW within litter averaged, 0.0224, 0.0210

and 0.0189, for respectively litter sizes between 2

and 4, between 5 and 9, and between 10 and 14.

Although higher litter sizes seem to have a lower

variance, differences between litter size groups were

very low.
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To assess the influence of the maternal effect, the

same parameters estimated in the evaluation dataset

were also estimated in the nucleus dataset and are

shown in Table 2. Given that the total number of

records for this subset of the data base may not be

enough to estimate correctly all the parameters, these

results have to be considered with caution. Discrepan-

cies between REML and Bayesian estimates ranged

from 0% (c2 for model HO in the nucleus dataset) to

60% (h2 for model HOm in the nucleus data set), and

were realistic on the light of the approximated stan-

dard error (REML) and standard deviations of poster-

ior distributions (Bayesian). Obviously, discrepancies

were higher when working in the nucleus data set

and particularly under the maternal model. As a con-

sequence, only general and rough conclusions will be

drawn from the analyses concerning the nucleus

dataset. In this case, the estimates of the variances

and genetic correlation did not converge for model

HEq0, and therefore, these results are not presented

in Table 2. Regarding the additive genetic variance of

the mean of the trait for model HE, its estimate of

18.87 9 10�3 was around twice the estimates for the

model HO, 10.18 9 10�3, and for the models when

the evaluation dataset was analysed. This model HE

was the only model where r2a had a higher estimate

than the one for r2c . The estimate of the litter variance

for model HE was 14.92 9 10�3, nearly the same than

for model HO, 17.04 9 10�3. The estimate of the

additive genetic variance for the variability r2a�
reached its maximum value for model HE (1.53)

together with the highest estimate of the litter vari-

ance for the variability r2c� (1.27) that was around 2.5

times higher than for models with the evaluation

dataset. As before, the value for r2a� is higher than the

one for r2c� . The estimate of the genetic correlation

was �0.72 therefore negative but less extreme than

before. Note, however, that the limited size of the

dataset advises for only focusing on the trends in the

change in the parameters, and in this sense, no impor-

tant differences were seen between datasets.

When the trait was considered as maternal, the esti-

mate for the variances affecting the mean for models

HOm and HEm were roughly the same and their val-

ues were around 12.5 9 10�3. According to the above

criteria of focusing only on striking changes, it must

be pointed out that the estimates for r2a� and for r2c�
were very similar and had a more reasonable magni-

tude (0.25 for r2a� and 0.24 for r2c�) than for the rest of

HE models, and the genetic correlation when the trait

is assigned to the mother becomes positive and with a

non extreme value of 0.48.

Heritabilities and the litter component were in this

case lower (0.23 and 0.38 under model HO and 0.25

Table 1 Mean and SD (in brackets) of the marginal posterior distribution for the BrW genetic parameters estimated with only the records belonging

to matings in the evaluation periods under the homoscedastic (HO), heteroscedastic (HE) and heteroscedastic assuming the genetic correlation null

between genetic effect (HEq0) models

Model r2a(9103) r2c (9103) r2a� r2c� qa,a* h2 c2

HO 12.30 (5.161) 18.97 (1.447) – – – 0.27 (0.101) 0.43 (0.036)

HE 11.00 (0.323) 19.80 (1.108) 1.13 (0.096) 0.45 (0.067) �0.97 (0.019) – –

HEq0 10.96 (1.238) 17.73 (1.263) 1.29) (0.256) 0.52 (0.116) 0 – –

r2a and r2a� are the additive genetic variance affecting, respectively, the BrW mean and its variation; r2c and r2c� are the litter effect variances affecting,

respectively, the BrW mean and its variation; qa,a* is the coefficient of genetic correlation; h2 is the estimate for the heritability of the trait mean; c2 is

the estimate for the ratio of the permanent environmental variance to phenotypic variance.

Table 2 Mean and SD (in brackets) of the marginal posterior distribution for the BrW genetic parameters estimated with only the records belonging

to matings in the nucleus under the homoscedastic (HO) and heteroscedastic (HE) models. Each individual BrW was also analysed by assuming that it

belonged to the mother of the newborn (HOm and HEm models)

Model r2a(9103) r2c (9103) r2a� r2c� qa,a* h2 c2

HO 10.18 (5.934) 17.04 (4.527) – – – 0.23 (0.124) 0.38 (0.074)

HE 18.87 (0.453) 14.92 (2.392) 1.53 (0.480) 1.27 (0.426) �0.72 (0.111) – –

HOm 12.35 (8.518) 12.35 (6.139) – – – 0.25 (0.153) 0.27 (0.130)

HEm 13.73 (4.364) 12.46 (3.400) 0.25 (0.091) 0.24 (0.076) 0.48 (0.359) – –

r2a and r2a� are the additive genetic variance affecting, respectively, the BrW mean and its variation; r2c and r2c� are the litter effect variances affecting,

respectively, the BrW mean and its variation; qa,a* is the coefficient of genetic correlation; h2 is the estimate for the heritability of the trait mean; c2 is

the estimate for the ratio of the permanent environmental variance to phenotypic variance.
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and 0.27 under model HOm). However, they are not

comparable given that in maternal models, it is

assumed that the additive effect under model HOm

accounts for mother genes, which affect the BrW of

its progeny and half the genes of the progeny which

control its own birthweight.

Moreover, for most of the parameters, the standard

deviations of the marginal posterior distributions were

large as a consequence of a small data set, and no fair

conclusions can be derived from the comparisons

between homoscedastic models.

The reasons to estimate genetic parameters under a

forced null genetic correlation between the trait and its

environmental variability are as follows: Figure 2

shows the GBV of all the animals for the trait mean

versus the GBV concerning the environmental vari-

ance estimated with model HE and model HEq0 using

a dataset obtained as the mix of the two subpopula-

tions seeking to maximize the available information.

The shape of these graphs reflects the value of genetic

correlation q for the mixed dataset, �0.95, hence the

graph corresponding to model HE described a line of

dots with a negative slope and the one corresponding

to model HEq0 described a spot cloud. The six animals

of the last generation with the highest and lowest GBV

for the environmental variance estimated with model

HEwere highlighted on both graphs. On the graph cor-

responding to model HE, these animals were clearly

separated between lines and had extreme GBVs for

both trait mean and its genetic environmental vari-

ance, although their values were not the most extreme

regarding the whole population. When these animals

were highlighted on the model HEq0 graph their GBVs

for the environmental variance were not extreme any-

more, but it can be appreciated that animals with

extreme positive (negative) additive GBV for environ-

mental variance still had quite high (low) GBV for the

trait mean. Under this model HEq0, coefficients of vari-
ation of litters belonging to the selected males were

0.11 and 0.08 respectively for high and low variability

lines, showing that the model provides reasonable

solutions.

After solvingmodel HO using the evaluation dataset,

the residuals were estimated and their distribution was

drawn (Figure 3), showing a roughly Gaussian pattern

suggesting absence of skewness. Figure 4 shows the

histogram of posterior realization of the discrepancy

measure designed to test the residual skewness of the

data. The mean and median of the marginal posterior

distribution of the residual skewness using the evalua-

tion dataset were roughly zero, which indicates that

the conditional distribution of the data was symmetric.

Discussion

In this article, we present genetic parameters for BrW

and its environmental variance in mice. The analyses

(a) (b)

Figure 2 Genetic values for BrW and its variability using heterogeneous variance model considering null (right 1b) or not (left 1a) the genetic correla-

tion. Square (round) spots correspond to the genetic value of the selected animals for the last generation for highest (lowest) variability if the genetic

correlation is not considered null.

Figure 3 Distribution of estimated residuals based on the homoscedas-

tic model.
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were carried out in an experimental population espe-

cially designed for divergent selection for the environ-

mental variance of this trait. To carry out the artificial

selection process, the trait was assigned to the individ-

ual owner of the performance and, aiming at as larger

data set as possible, model HE by SanCristobal-Gaudy

et al. (1998) was fitted to the whole dataset to carry

out the prediction of the GBVs, and to perform with

them the genetic evaluation.

Evaluation and nucleus populations should be con-

sidered as different populations, first because of the

genetic background and second because of the differ-

ent pedigree structure. Data from the evaluation

population belong to progeny of inbred females con-

sidered as a unique mother, while data from the

nucleus have a classical pedigree structure. Given the

little number of data in the nucleus, the only sensitive

models are the ones analysing the evaluation popula-

tion data. Therefore, although genetic evaluation was

made in the whole mixed dataset, as it belongs to two

different populations, the genetic parameters have

been obtained using two different datasets, the evalu-

ation dataset and the nucleus dataset. Also, alterna-

tive procedures have been essayed in the search for

explanations to some results.

Regarding the magnitude of the genetic parameters,

under model HO for the evaluation dataset, the heri-

tability for the BrW mean (0.27) was found to be

higher than that reported previously (0.03) by

Gutierrez et al. (2006) for the mean individual birth-

weight of the litter, which is related but obviously

different as it was assigned to the mother unlike here.

Furthermore, it is a lower variable trait given that the

analyses were performed on the mean and not on the

individual birthweight. Overall, genetic direct effects

estimated in a model free of all maternal effects are

not null, are heritable and could be selected. Even

when the additive genetic variance of 12.03 9 10�3

for the BrW seems to be low, the corresponding

heritability makes a genetic response possible if a heri-

tability of this magnitude was selected (Moreno et al.

2012). Under model HE, the genetic parameters were

found to be generally different also from those

reported previously (Gutierrez et al. 2006) for the

mean individual birthweight. These estimates are in

fact incomparable, given that working on mean birth-

weight leads to study the environmental variability

between litters, whereas when this model is applied

for individual birthweight, what the analysis is study-

ing is the within litter variability. Thus, the additive

genetic variances for the mean (11.00 9 10�3) was

lower, and for its variability (1.13) was higher, than

respectively 19 9 10�3 and 0.90, values previously

reported by Gutierrez et al. (2006) for the less variable

mean individual birthweight. The litter effect vari-

ances for the mean (19.80 9 10�3) and for its vari-

ability (0.45) were also higher than 13.60 9 10�3 and

0.23 as previously reported by Gutierrez et al. (2006).

Gutierrez et al. (2006) reported that the estimated

additive genetic variance was maintained and addi-

tional random environmental variance decreased

when model HE was fitted and compared with the

model HO, whereas Ib�a~nez-Escriche et al. (2008a),

working on weight gain in mice, noted that model HE

showed an important increase in the additive genetic

variance when compared with model HO, accompa-

nied by a much less important decrease in the vari-

ance of the additional random component that is

exactly what is observed in the present study in the

nucleus dataset. In this study, the estimation of the

additive genetic variance was maintained around a

value of 11 9 10�3 for model HO and HE as for

Gutierrez et al. (2006) where it was maintained at

0.02. Regarding the litter effect variance, its estimate

was also maintained when model HE was considered

which, is not the case for Gutierrez et al. (2006),

where it decreased considerably (from 0.06 to 0.01)

nor for Ib�a~nez-Escriche et al. (2008a), where it

decreased slightly. Even so, in all cases, model HE

changed the ratio between the additive genetic vari-

ance and the litter effect variance in the direction of

favouring genetic selection for BrW mean.

Regarding the estimated genetic correlation

between the trait and its environmental variability,

the obtained extreme value forced us to rethink the

way the selection was going to be carried out. When

the genetic correlation was extreme in the current

genetic selection experiment for environmental vari-

ability (as happened here in both dataset), the selec-

tion would be on the GBV for the trait mean because

Figure 4 Histogram of the posterior predictive realization of T (z,

h) � T (zrep, h) designed to test residual skewness of the data.
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it was estimated better than the one for its variability.

This was the reason why we decided to fit the model

that sets the genetic correlation to null value (model

HEq0). In Figure 2a, it can be appreciated what would

happen if the model HE would have been chosen for

selection. If the animals were selected using the model

HE, what would be selected is certainly their GBVs for

the mean trait, but maybe not the one for their envi-

ronmental variability. This fact is reflected in

Figure 2b, where it can be seen that the animals

selected based on their extreme environmental vari-

ability GBV (using model HE), once the correlation is

set to a null value, they only maintained their

extreme GBV for the mean, but not the one for the

variability that are spread out in all the range of val-

ues. So, given that the high value of the correlation

for model HE (Table 1) would turn the experiment

meaningless, the model HEq0 considering the genetic

correlation null was carried out. Surprisingly, the

other genetic parameters obtained using model HEq0
were not really affected by the extreme change in the

genetic correlation as seen when compared with the

ones obtained using model HE (Table 1). Moreover,

cross-validation test provided very similar correlations

between the real and the predicted data of the next

generation, with model HO being the best (0.44),

model HEq0 the worst (0.38) and model HE interme-

diate (0.40). Therefore, the genetic selection in this

experiment was based on the GBVs for environmental

variability obtained using the model considering the

genetic correlation null.

Zhang et al. (2005) reported the existence of the

whole range of genetic correlations between traits and

their variability. Sorensen & Waagepetersen (2003),

working on litter size in pigs, found a strong negative

genetic correlation of �0.62; Ros et al. (2004), work-

ing on adult weight of snails, reported a value of

about 0.80 for the same parameter postulating that

skewness of residual distribution provided informa-

tion about the genetic correlation between the traits

and their variability, which was reaffirmed by

Gutierrez et al. (2006). However, Rowe et al. (2005),

analysing 35-day body weight of broiler chickens, cal-

culated the value of a similar parameter to be about

�0.10, similar to that estimated by Ib�a~nez-Escriche

et al. (2008b) for weight at slaughter in pigs. Gavrilets

& Hastings (1994) and Hill (2002) postulated that high

genetic correlations between traits and their variabil-

ity suppose that, due to pleiotropic effects, most alleles

of genes controlling the mean can also act on the vari-

ance. Gutierrez et al. (2006) found an extreme posi-

tive genetic correlation when the trait was the mean

individual birthweight which, in that case, was a trait

related to the litter and consequently assigned to the

mother owner of the litter. In that case, as com-

mented before, the model HE is considering the vari-

ability between litters instead of within litters. The

extreme value found here for the genetic correlation

is, in any case, rare and it is widely the most extreme

one published in the literature for this kind of trait

(Hill & Mulder 2010). It seems that it would only

appear when the genes affecting the phenotypes are

strongly linked or are the same if no artefact is affect-

ing the estimation. In this case, the correlation means

that high GBVs for BrW mean would be associated

with low GBVs for their environmental variability

and vice versa. But this explanation did not seem to be

consistent and perhaps this extreme value is simply

the consequence of an artefact in the model.

Yang et al. (2011) described in litter size data for

pigs and rabbits that an inadequate scale of the trait

would lead to spurious estimations of genetic parame-

ters and among them the genetic correlation between

the additive genetic values for the traits and its envi-

ronmental variability. Therefore, under negative

skewness, those individuals away from the mean

value will be in the left-hand side of the distribution

and the model would provide a negative genetic

correlation, such as those distributions drawn by Gut-

ierrez et al. (2006) for litter size and litter weight in

mice, but they would only be a consequence of the

scale the trait was measured. Likewise, under positive

skewness, such as for mean individual birthweight in

mice (Gutierrez et al. 2006) or that for fibre diameter

in alpaca (Guti�errez et al. 2011), the distribution

would provide a false-positive genetic correlation.

This artefact of the model would be reflected when

the distribution of residual skewness is not centred on

zero. In this case, the distribution of residuals seemed

to be rather symmetric (Figure 3), and the mean and

the median of the residual skewness distribution

drawn at Figure 4 were roughly zero, which indicates

that there was normality at the level of the condi-

tional distribution of the data. Then the genetic corre-

lation value for model HE (�0.97, Table 1) cannot be

explained by an inadequate scale of the trait and no

Box-Cox transformation (Box & Cox 1964) is needed

to induce normality and linearity in the conditional

distribution of data. In fact, the best Box-Cox transfor-

mation of the trait in terms of null skewness was that

providing the most extreme genetic correlation. The

fact that this value cannot be explained by this

hypothesis does not mean that this value has a biolog-

ical explanation.

Another surprising result is the enormous magni-

tude of the additive genetic component regarding
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environmental variability under models HE and

HEq0. Genetic coefficient of variation of the environ-

mental variability can be approximated by the

squared root of r2a� (Hill & Mulder 2010). This parame-

ter was 1.13 under model HE and 1.29 under model

HEq0, which were far above the maximum value

reported in the review by Hill & Mulder (2010).

Genetic variance components both for the trait and

for the environmental variability could have been

overestimated as a consequence of the extreme

genetic correlation found between them. However,

and surprisingly, these components were roughly the

same when the genetic correlation was forced to meet

a null value.

Another issue that required clarification was the

possible influence of animals from inbred lines that

appear in the data set as being a unique individual.

This is the first time that these animals are present in

this kind of selection experiments and this could be

interfering in the model providing an irregular struc-

ture of data, or perhaps the assumption of there

always being the same animal is far from reality. To

compare with a dataset under maternal influence,

analyses were carried out in the nucleus dataset.

Unfortunately, this subset accounted for a scarce

number of records, and results have to be interpreted

with extreme caution in the light of the discrepancies

found when parameters were compared with REML

estimates. For example, no results are shown regard-

ing the model HEq0, given that it did not converge,

and also standard deviation for all the parameter

increased. In this scenario, some conclusions are far

from being considered definitive, but some interpreta-

tions can be made. For example, the estimate of r2a
considerably increased for model HE (18.87 9 10�3)

probably because of a more important genetic varia-

tion in the registered progenies although no increase

in this sense was observed for model HO. Another

interesting point is that estimates of r2c were not so

robust and they decreased when moving from model

HO (17.04 9 10�3) to model HE (14.92 9 10�3)

together with the simultaneous, but stronger increase

in the estimates of r2a, in the sense of favouring artifi-

cial selection processes complementing previous stud-

ies (Gutierrez et al. 2006; Ib�a~nez-Escriche et al.

2008a). In this case, r2c� seems to be overestimated

with a value of 1.27. Again estimates of r2a� (a high

value of 1.53) and q (an extreme negative value of

�0.72) under model HE were difficult to interpret and

were in the direction of the same parameters obtained

with the evaluation data set. Therefore, and this is

one of the conclusions provided by analyses in the

nucleus dataset, it does not seem that inbred animals

were responsible for the most anomalous results.

However, until this issue is solved, it would be better

not to include inbred lines in such an experiment

because the use of inbred females is not suitable for

analysis of maternal trait. Even if the use of an inbred

line to remove some parasite effects in the genetic

evaluation can procure very interesting results and is

a good way to estimate direct genetic effects free of

maternal effects, it should only be done after ensuring

that the trait is correctly chosen and assigned.

In order to find an explanation for these results, the

trait was considered as a maternal trait even when the

mice experiment was designed to evaluate males. As

previously considered, environmental variability of

the birthweight trait should be related, for instance, to

the foetus ability to overcome the different uterine

stiffness achieving the body size determined by its

genotype. As maternal trait the environmental vari-

ability of birthweight should be regarding uterine

conformation aspects leading to similar or different

rooms at different points of the uterus. If the trait was

uniquely determined by the additive effect of the

newborn, then the estimate of r2a under model HOm

would be a quarter the estimate of r2a under model

HO. But if it was also determined by the maternal

effect, then the estimate of r2a under model HOm

would comprise a quarter the estimate of r2a under

model HO, plus the variance of the genetic maternal

effect, plus the covariance between both genetic

effects. As this estimate under model HOm was largely

higher than a quarter the estimate of r2a, the trait

seems to be at least partially dependent on the

mother. Therefore, as BrW is not only under genetic

control of the dam, but also under control of direct

effects, it can be expected that BrW environmental

variability would also be similarly controlled by direct

and maternal effects and not only maternal.

There is more evidence of the advantage of mater-

nal selection when considered the environmental

variability of the trait. Big changes arose when com-

paring model HEm with the previously mentioned

results under model HE, by only keeping the estimate

for the r2c component, but resulting in a much more

reasonable estimate of r2a� (0.25) if it is assumed that it

approximates the square of the genetic coefficient of

variation of the environmental variability (Hill &

Mulder 2010). Moreover, the extreme negative

genetic correlation between the trait and its variability

did not appear in this case, but a positive high with no

extreme genetic correlation between them of 0.48,

accompanied by an estimate of r2a of 13.73 9 10�3

under model HEm, less important than that of

18.87 9 10�3 under model HE. As noted before,
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Gutierrez et al. (2006) already obtained a positive

genetic correlation of 0.97 when the trait was the

mean individual birthweight, which was assigned to

the mother as here under model HEm. The estimate

of r2c� was reduced from 1.27 under model HE to 0.24

under model HEm, which is more believable accord-

ing to the corresponding estimates of the other com-

ponent r2a� . On the other hand, a null genetic additive

variance would have been obtained in the evaluation

dataset if the trait was entirely maternal, but this was

not the case. The trait seems to be partially under

individual genetic control and further but not totally

under maternal control. Unfortunately, we do not

have software that can solve the model by SanCristo-

bal-Gaudy et al. (1998) with a genetic maternal effect

affecting the mean and the variability of the trait.

Thus, alternatively, the genetic background of the

BrW and its variability seem to be partially and prefer-

ably maternal, and the artificial selection could be

carried out by assigning the BrW value to the mother

considering the trait as entirely maternal and having

several records for each female. That was successfully

done for rabbit birthweight by Garreau et al. (2008)

where young rabbit weights were considered as a

repeated trait of the female. This analysis has provided

some clear conclusions but they have to be concret-

ized. Unfortunately, the design of the experiment was

thought to select individuals instead of mothers, lead-

ing to having only one mother in the whole evalua-

tion dataset, from the inbred line, with thousands of

offspring. The nucleus dataset only provided rough

information as it contains only 84 mothers having

basically one litter each. Note also that changes in r2a
were not between models HO and HOm, but between

models HE and HEm, suggesting that if BrW could be

assigned either to the individual or its mother, the

environmental variability of BrW would have to be

assigned definitively to the mother. Validation pro-

vided very low correlations in the nucleus dataset,

giving the best fitness to the model HEm, but with a

correlation of 0.14 between predicted and real values,

which should be considered meaningless. However,

HEm provided reasonable estimates for all the compo-

nents showing that a design such as that by Garreau

et al. (2008) in rabbits assuming the trait as maternal

should be better if artificial selection for environmen-

tal variability is of interest.

Finally, assigning BrW to the mother solves how to

proceed when the goal is the selection for modifying

its environmental variability. However the reasons for

the anomalous results when considering the trait as

belonging to the individual is still not clarified. For

example, the model by SanCristobal-Gaudy et al.

(1998) could be questioned and maybe others could

help shed light on this, such as the additive model

(Hill & Zhang 2004), the standard deviation model

(Garc�ıa et al. 2009) or the reaction norm model (Gav-

rilets & Hastings 1994). Further research seems to be

needed.
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