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Abstract 
After 32 generations of a divergent selection experiment for residual variance of birth weight in mice, two divergent lines were thus obtained: 
the heterogeneous line (H-line) and the homogeneous line (L-line). Throughout the generations, differences were observed between the two 
lines in traits such as litter size, survival at weaning, and birth weight variability caused by unidentified environmental conditions. The L-line exhib-
ited advantages in terms of higher survival rates, larger litter sizes, and less sensitivity to changes in food intake. The study is an examination of 
the effects of climate as an environmental factor on the performance of these animals. Climate factors including maximum, minimum, and mean 
temperature (T), humidity (H), and TH index; at three stages (the fecundation, a week before the parturition and the parturition), were linked to 
a birth weight dataset consisting of 22,614 records distributed as follows: 8,853 corresponding to the H-line, 12,649 to the L-line, and 1,112 to 
the initial population. Out of the 27 analyzed climatic variables, the maximum temperature 1 wk before parturition (MXTW) was identified as the 
most influential when comparing heteroscedastic models with the deviance information criterion. The order of Legendre polynomial to apply in 
the following random regression model was tested by a cross-validation using homoscedastic models. Finally, MXTW was compared on how 
it affected the two divergent lines by analyzing predicted breeding values (PBV) obtained from a random regression heteroscedastic model. 
The mean PBV of the H-line in the first generation showed a range of 0.070 g with a negative slope, which was 35 times higher than the range 
obtained for the L-line, which varied within 0.002 g. In the last generation of selection, the H-line exhibited greater instability of PBV across 
temperatures, with a difference of 0.101 g between the maximum and minimum mean PBV, compared to 0.017 g for the L-line. The standard 
deviations of the slopes in the H-line were more dispersed than in the L-line. Unlike the H-line, the L-line had slopes that were not significantly 
different from 0 throughout the generations of selection, indicating greater stability in response to MXTW variations. The H-line exhibited a 
higher sensitivity to changes in MXTW, particularly in birth weight, with the L-line being more stable. The selection for uniformity of birth weight 
could lead to less sensitive animals under environmental changes.

Lay Summary 
Two mice lines obtained by divergent selection for birth weight residual variance were used to determine whether environmental factors could 
differently affect the homogeneous and heterogeneous lines. The maximum temperature 1 wk before parturition (MXTW) had the higher impact 
on the birth weight of the animals. A random regression model showed the individual trajectory of birth weight throughout the changes in 
MXTW. It was evident that the homogeneous line is less susceptible to changes in climate. This result, therefore, supports the hypothesis that 
the selection for homogeneity in production animals is more advantageous. More robust animals are obtained that can better cope with changes 
in climate without compromising their productive traits.
Key words: climate effects, homogeneity, quantitative genetics, random regression, robustness, welfare
Abbreviations: DIC, deviance information criterion; F, fecundation; H-line, high variability line; HPD, highest posterior density interval; L-line, low variability line; 
P, parturition; PBV, predicted breeding values; RH, relative humidity; T, temperature; THI, temperature humidity index; W, 1 wk before parturition

Introduction
Robustness is becoming an interesting selection criterion in 
breeding programs (Herrero-Medrano et al. 2015) especially 
in the current scenario of extreme weather events becoming 
more common. This trait is defined as less sensitivity to envi-
ronmental changes, thus allowing for the same expression of 
an animal’s production potential under wide environmental 
conditions. The reduction of environmental variability in some 
productive traits was key at increasing animal robustness and 

welfare (Mormede and Terenina, 2012) while decreasing the 
costs of handling and production, creating a positive relation-
ship between animal welfare and farm benefits.

A successful divergent selection experiment was conducted 
to modify the residual variance of birth weight in mice (Mus 
musculus), resulting in two genetic divergent lines: a heteroge-
neous line with higher birth weight residual variance (H-line) 
and a homogeneous line with lower birth weight residual 
variance (L-line). In the present experiment, the trait was 

Received July 24, 2023 Accepted October 17, 2023.

© The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, 
please e-mail: journals.permissions@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article/doi/10.1093/jas/skad350/7321145 by O

U
P site access user on 17 January 2024

mailto:icervantes@vet.ucm.es
journals.permissions@oup.com


2 Journal of Animal Science, 2023, Vol. 101 

assigned to the mother, thus the selection was being done via 
the dam (Formoso-Rafferty et al. 2016a).

Subsequent studies on this mice population showed posi-
tive correlated responses of homogeneity for some interesting 
traits such as higher litter size and higher survival (Formo-
so-Rafferty et al. 2016b) without additional energy costs. 
These studies also showed higher feed and reproductive effi-
ciency (Formoso-Rafferty et al., 2018, 2019) showing the 
L-line having a better performance compared with the H-line. 
Moreover, the L-line females showed a superior reproductive 
longevity (Formoso-Rafferty et al., 2022) with higher embryo 
and fetal survival (Formoso-Rafferty et al., 2023) demon-
strating a higher robustness of the homogeneous line over the 
heterogeneous one. Furthermore, rabbits with higher with-
in-litter homogeneity of birth weight exhibited higher produc-
tivity associated with larger uterine horns (Bolet et al., 2007). 
Due to the selection experiment, the L-line showed uniform 
pup birth weights within litters and across litters (El-Ouazizi 
El-Kahia et al., 2022; Gutiérrez et al., 2022). All these differ-
ences between the two divergent lines could be because of 
a distinct response to unidentified environmental factors. To 
further characterize the advantages of homogeneity, an analy-
sis was done of the response of the populations obtained from 
the selection experiment to identified environmental factors, 
such as the climatic variables. Since the environment effect 
exerted on each individual is different, the climatic variable 
should be considered and studied by fitting a random regres-
sion model.

Random regression reaction norm models based on Leg-
endre polynomials are commonly used to analyze the genetic 
variance and covariance components for a given trait over 
the whole trajectory of an environmental continuous covari-
ate. This approach is widely used to determine the effect of 
heat stress in dairy milk production (Brüegemann et al. 2011; 
Carabaño et al., 2014) and to improve in local sheep breeds 
thermotolerance (Carabaño et al., 2021).

As mentioned above, the two mice lines obtained from 
the divergent selection experiment for residual variance 
of birth weight assume a heterogeneous residual variance 
associated with environmental factors not yet identified. 
This leads to an analysis of the genetic breeding value for 
birth weight across the range of a specific environmental 
factor such as climatic variables related to temperature 
and humidity. The aim of the present study was to apply 
random regression models with a heterogeneous residual 
variance, but including the climatic variable to prove that 
homogeneous individuals tended to maintain their birth 
weight genetic value throughout all the range of a climatic 
variable.

Materials and Methods
The dataset for this study came from two mice lines, high 
and low variability lines, resulting from a divergent selection 
experiment conducted to modify the residual variance of 
birth weight. Both divergent lines were started from an initial 
population originating from a balanced genetic contribution 
of three inbred mice lines (BALB/c, C57BL, and CBA) main-
tained in panmixia (Formoso-Rafferty et al., 2016a). The 
animals used were housed at the experimental facility of the 
Department of Animal Production of the Veterinary Faculty 
of the Complutense University of Madrid. The housing and 
management conditions of the animals were in accordance 

with the Spanish legislation RD 53/2013 on the basic rules for 
the protection of animals used in experiments and other scien-
tific purposes (Boletín Oficial del Estado 2013) and approved 
by the Animal Experimentation Committee (PROEX 224/18). 
During 32 generations (the experiment is still running at the 
time of writing), the genetic evaluation of the mice popula-
tion was performed using a heteroscedastic model developed 
by SanCristobal-Gaudy et al. (1998), where the environmen-
tal variance was assumed to be heterogeneous and partially 
under genetic control.

Temperature in degree Celsius and humidity as a percent 
were automatically registered every 4 h using ESCORT Con-
sole 2.12.07 from Escort Data Loggers Inc. The temperature–
humidity index taken every 4 h (THI) was also calculated 
according to the equation described by Hahn et al. (2009): 
THI = 0.8T + RH(T − 14.4) + 46.4, where T is the tempera-
ture expressed in degree Celsius and RH the relative humid-
ity expressed between 0 and 1. To obtain the variables under 
study, we calculated the maximum (MX), minimum (MN), 
and mean (MD) values of T, H, and THI at three different 
stages: the fecundation (F) at 21 d before the birth date, a 
week before the parturition (W), and the parturition date (P). 
A total of 27 climatic variables were analyzed, combining the 
three values for the three climate parameters and the three 
different stages when they were measured. A model without 
any climatic variables was also analyzed.

This study was conducted on the 24th generation of the 
ongoing selection experiment (using all previous generations 
since the initial one). However, in the instances where the cli-
matic variables were unavailable for certain generations, the 
corresponding birth weight records were excluded from this 
study, thus losing the data from six generations (generations: 
9, 14, 15, 18, 21, and 22). The remaining climatic variables 
at the three different stages of the animal development were 
associated with the birth weight of 22,614 individuals, 8,853 
corresponding to the H-Line, 12,649 to the L-Line, and 1,112 
to the initial population having a maximum of two litters 
each female. After data filtering, the information registered 
corresponded to 18 generations of selection. The pedigree 
data set contained 29,737 individuals including 18 gener-
ations of selected animals and five generations traced back 
from the initial population.

First, to analyze the climatic variable with the most impact 
on birth weight, the heteroscedastic model applied during the 
selection process as previously defined but sequentially fitting 
each of the climatic variables defined above. The model equa-
tion was:

yi = xib+ zim+wic+ e1/2(xib∗+zim∗+wic∗) ε i� (1)

where yi is the birth weight of the individual i, * indicates 
the parameters associated with residual variance; b and b* 
are the vectors of the systematic effects that include genera-
tion (18 levels), litter size (from 2 to 17, 16 levels), sex (male, 
female, or unknown, 3 levels), parity number (2 levels), and 
the climatic variable (one for the 27 climatic variables of the 
study as covariate); m and m* are the vectors of the maternal 
genetic effect; c and c* are the vectors of the litter effect as 
random effects; xi, zi, and wi are the corresponding incidence 
vectors and finally εi ~ N (0, 1). This model accounts for the 
maternal genetic correlation between the trait and its vari-
ability (ρmm*).
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The genetic effects m and m* are distributed together and 
are assumed to be Gaussian:
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where A is the additive genetic relationship matrix; σ2
m is 

the additive genetic variance of the trait; σ2
m∗ is the additive 

genetic variance affecting environmental variance of the trait; 
ρ is the coefficient of genetic correlation; and ⊗ denotes the 
Kronecker product.

The vectors c and c* are also assumed to be independent, 
with c ∼ N(0, Icσ2

c ) and c∗ ∼ N(0, Icσ2
c∗), where Ic is the iden-

tity matrix of equal order to the number of litters, and σ2
c  and 

σ2
c∗ are the litter effect variances affecting the BW mean and 

its environmental variability.
At this step no random regression was applied, 27 models 

were analyzed, one for each climatic variable with its mini-
mum, maximum, and mean value and 3 time points. To com-
pare models and select the specific climatic variable which 
most influenced the individual birth weight from the 27, 
the deviance information criterion (DIC) was used; with the 
lower DIC, being the better model (Spiegelhalter et al., 2002). 
Since this first analysis was solved with a Bayesian approach, 
to determine the relevance of the climatic variable, the high 
posterior density interval (95%) of the marginal posterior 
distribution was computed to check whether this interval 
included 0 or not to declare b as relevant or not.

The second step was to determine the order of Legendre 
polynomial that will be applied later on to the heterogeneous 
random regression model. At this step, a homoscedastic model 
was fitted to avoid the over parameterization in the hetero-
scedastic model. A cross-validation approach was applied to 
evaluate the prediction ability of the different models (Tib-
shirani and Efron, 1993; Browne, 2000). The models used in 
this case were homoscedastic, by applying random regression 
and the Legendre polynomials order that varied in each case:

yi = xib+ r(v, legv) + r(m, legm) + r(c, legc) + ei� (2)

where yi is the birth weight of the individual i; b is the vec-
tor of the systematic effects (sex, generation, litter size, and 
parity number); xi is the incidence vector; r is a polynomial 
of random regression applied over; v is the vector containing 
the values of the selected climatic variable and with a Legen-
dre polynomial (legv); m is the vector of the maternal genetic 
effect with its Legendre polynomial (legm); and c is the vector 
of the litter effect also with its Legendre polynomial (legc). 
First and second order of Legendre polynomials were assayed 
for legv, legm, and legc with a total of eight combinations.

For each model, the entire data set was divided into a train-
ing data set containing the first 17 generations with 21,612 
birth weight records (95.6%) to estimate the parameters and 
fit each model, and a validation data set which correspond to 
the last generation with 1,002 birth weight records (4.4%). 
The last generation was used as the validation set because 
the focus was on predicting birth weight in the next gener-
ation of selection imitating the selection process for select 
parents based on progeny performance. The predicted birth 
weights of the validation data set were reconstructed using 
the solutions for the model effects previously obtained with 
the training data sets (climate variable, sex, parity number, 

litter size, and breeding values for each animal). Climate vari-
able was modelled as covariate random regressed, using the 
corresponding Legendre polynomial coefficient to reconstruct 
the data. Regarding generation effect, the average of different 
levels of generation effect was used since it was not possible 
to estimate the value for the validation set (the same for each 
animal then it is not affecting the results). No litter random 
effect was summed up because the mean of the expected dis-
tribution was zero. Finally, the breeding value decomposed by 
the random regression was included and scaled by the corre-
sponding Legendre polynomial coefficient. To compare real 
and predicted performances of the validation set, the Pear-
son’s correlations (ρ) between real and predicted data were 
calculated. The model with the highest correlation value was 
used to determine the most appropriate order of Legendre 
polynomial.

Finally, after having compiled the information that was 
obtained from the previous analyses (i.e., equations (1) 
and (2)) that defined the most influencing climatic variable 
(1) and the order of Legendre polynomials which fitted the 
model better (2), this information was then fitted to a random 
regression heteroscedastic model, including the same effects 
previously listed, to study how the climatic variable selected 
in the previous analysis (1) affected the breeding values of 
each line of selection:

yi = xib+ r(v, legv) + r(m, legm) + r(c, legc) + e1/2(xib∗+zim∗)εi�  
� (3)

All the parameters were denoted in the previous model equa-
tions (1) and (2).

Statistical analyses were later performed to compare the 
mean regression coefficients of the Legendre polynomial 
between lines in the former and the latter generations.

The heteroscedastic model to select the most influencing cli-
matic variable in the birth weight was analyzed in a Bayesian 
scenario using GSEVM software (Ibáñez-Escriche et al. 2010). 
To determine the order of Legendre polynomial with homosce-
dastic models, VCE was used (Groeneveld 2010). Finally, anal-
yses with the random regression heteroscedastic model was 
performed using ASReml software (Gilmour et al., 2015).

Results
There were no differences in the genetic parameters esti-
mated across the 27 models assaying each climatic variable. 
The model without any climatic variable had a genetic vari-
ance for the birth weight of 0.0056 (±0.0007) and 0.0490 
(±0.0090) for birth weight residual variance. The genetic cor-
relation between the birth weight and its environmental vari-
ability was 0.4563 (±0.1211). Table 1 shows the regression 
coefficients affecting the birth weight and its environmental 
variability corresponding to each 27 climatic covariates and 
the DIC value obtained under each model. The lowest DIC 
was obtained under the model including the MXTW and its 
regression coefficient for the mean trait (b) showed that as the 
MXTW increased by 1 °C, the mean birth weight decreased 
by 0.0106 g. Regarding relevance, 10 out of the 27 climatic 
variables that were studied appeared to have the highest pos-
terior density interval (HPDI) of the marginal posterior distri-
bution that does not include 0 on the mean birth weight. Six 
of them corresponded to climatic variables measured 1 wk 
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before parturition, specifically the temperature and the tem-
perature–humidity index: MNTW, MXTW, MDTW, MDIW, 
MNIW, and MXIW, and four were related to the parturition 
date: MNTP, MXHP, MDTP, and MDIP.

Nine out of the 10 models that had an impact on the birth 
weight provided a negative regression coefficient, which suggests 
that as the climatic variables increase, birth weight decreases. 
MXTW, as the variable that most affected the pup birth weight, 
was assayed under the random regression homoscedastic 
models to find the best Legendre polynomials to fit it. Table 
2 shows the Pearson correlations between real and predicted 
birth weight after performing the cross-validation analyses for 
the eight models analyzed with the different combinations of 
the two orders of Legendre polynomials tested. It is remarkable 
that the correlations obtained were all very similar. The model 
with the highest correlation (0.7794) was that included an order 
2 of the Legendre polynomial in the climatic variable and an 
order 1 both in the maternal genetic and litter effects.

Table 1. Deviance information criterion (DIC) obtained from the 28 models analyzed and its regression coefficients for the mean birth weight and its 
variability

Model DIC DIC-DICmin b (HPD95) b*(HPD95)

Non climate variable −68,658 66.99

Climate variables obtained the fecundation day

MNTF −68,669 55.63 −0.0021 (−0.0055, 0.0016) −0.0106 (−0.0333, 0.0120)

MNHF −68,647 77.69 0.0000 (−0.0010, 0.0009) 0.0005 (−0.0046, 0.0036)

MXTF −68,644 81.49 −0.0013 (−0.0052, 0.0016) −0.0075 (−0.0308, 0.0167)

MXHF −68,651 73.69 −0.0001 (−0.0011, 0.0007) 0.0047 (−0.0005, 0.0103)

MDTF −68,661 64.34 −0.0021 (−0.0057, 0.0017) 0.0062 (−0.0196, 0.0190)

MDHF −68,643 81.58 0.0000 (−0.0010, 0.0009) 0.0019 (−0.0052, 0.0096)

MDIF −68,641 83.54 −0.0006 (−0.0010, 0.0009) −0.0024 (−0.0115, 0.0135)

MNIF −68,650 75 −0.0025 (−0.0051, 0.0005) −0.0123 (−0.0205, −0.0045)

MXIF −68641 84.29 −0.0022 (−0.0055, 0.0010) −0.0011 (−0.0099, 0.0068)

Climate variables obtained 1 wk before parturition

MNTW −68,656 69.06 −0.0092 (−0.0121, −0.0056) −0.0053 (−0.0260, 0.0107)

MNHW −68,651 74.36 −0.0006 (−0.0015, 0.0001) −0.0043 (−0.0089, 0.0015)

MXTW −68,725 0 −0.0106 (−0.0145, −0.0069) −0.0170 (−0.0393, 0.0062)

MXHW −68,644 80.59 0.0003 (−0.0005, 0.0011) 0.0007 (−0.0035, 0.0046)

MDTW −68,651 73.85 −0.0110(−0.0153, −0.0063) −0.0228 (−0.0518, 0.0038)

MDHW −68,640 84.71 −0.0002 (−0.0011, 0.0008) −0.0012 (−0.0080, 0.0058)

MDIW −68,660 65.1 −0.0084 (−0.0118, −0.0057) −0.0142 (−0.0325, −0.0019)

MNIW −68,659 66.2 −0.0069 (−0.0098, −0.0034) −0.0078 (−0.0142, −0.0021)

MXIW −68,646 78.92 −0.0076 (−0.0095, −0.0055) −0.0108 (−0.0205, 0.0031)

Climate variables obtained at the parturition day

MNTP −68,651 74.29 −0.0045 (−0.0075, −0.0013) −0.0031 (−0.0218, 0.0257)

MNHP −68,640 84.96 0.0007 (−0.0002, 0.0016) −0.0021 (−0.0086, 0.0073)

MXTP −68,655 70.44 −0.0022 (−0.0056, 0.0018) −0.0035 (−0.0307, 0.0211)

MXHP −68,690 34.99 0.0009 (0.0001, 0.0018) −0.0028 (−0.0099, 0.0035)

MDTP −68,640 84.75 −0.0051 (−0.0092, −0.0014) 0.0056 (−0.0339, 0.0332)

MDHP −68,642 82.95 0.0010 (−0.0001, 0.0020) −0.0024 (−0.0087, 0.0031)

MDIP −68,640 85.12 −0.0027 (−0.0050, −0.0010) −0.0130 (−0.0291, 0.0040)

MNIP −68,657 67.53 −0.0024 (−0.0056, 0.0002) −0.0031 (−0.0304, 0.0195)

MXIP −68,648 76.69 0.0007 (−0.0014, 0.0023) −0.0041 (−0.0138, 0.0039)

The lowest DIC value is in bold. DIC: deviance information criterion, b (HPD95): regression coefficient for the mean (highest posterior density interval 
of their marginal posterior distribution), b*(HPD95): regression coefficient for the variance (highest posterior density interval of their marginal posterior 
distribution), climatic covariate was denoted as MD, MN, or MX meaning, respectively, mean, minimum, or maximum, followed by T for temperature (in 
ºC), H for humidity (in %), or I for THI, and ending by P, W, or F denoting, respectively, the parturition date, 1 wk before or fecundation date.

Table 2. Pearson correlations between the real and the predicted birth 
weight obtained from the random regression models with different 
Legendre polynomials

Models legv legm legc Pearson correlations

L(1,1,1) 1 1 1 0.7772

L(1,1,2) 1 1 2 0.7717

L(1,2,1) 1 2 1 0.7771

L(1,2,2) 1 2 2 0.7745

L(2,1,1) 2 1 1 0.7794

L(2,1,2) 2 1 2 0.7746

L(2,2,1) 2 2 1 0.7793

L(2,2,2) 2 2 2 0.7774

The model with the highest correlation is in bold.
legv: order of Legendre polynomial applied to the climatic variable, legm: 
order of Legendre polynomial applied to the maternal genetic effect and 
legc: order of Legendre polynomial applied to the litter effect.
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Once the best Legendre polynomials for the random regres-
sion model for MXTW was selected, a complete heterosce-
dastic random regression model was applied. The estimated 
genetic parameters were not different from those obtained 
in previous analyses and are not of concern in this study. 
However, there was a notable differential influence of the cli-
matic variable between lines. Figure 1 shows the individual 
and mean predicted breeding values (PBV) obtained for the 
selected mothers at the first and last generations of the selec-
tion experiment across the range of maximum temperature 1 
wk before the parturition. In the first generation of selection, 
there was a single group of animals with higher dispersion of 
the PBV at lower temperatures than at higher temperatures. 
The L-line had slight negative values in the first selection gen-
eration while the H-line had a more positive value trend in the 
PBV, but most individuals in both lines had a PBV closer to 
zero (Figure 1A). However, because of the response to selec-
tion in the 24th generation, there were two clearly different 
PBV groups depending on the line (Figure 1B).

The mean PBV for each selected line showed that the H-line 
for the first generation varied in a range between 0.070 (from 
0.019 and 0.089 g) with a negative slope, while the L-line 
varied within a range of 0.002 g (from −0.008 to −0.005 g) 

which is 35 times lower than the H-line. In the last generation 
of selection: PBV were more unstable across temperatures 
at the H-line with a difference of 0.101 between the maxi-
mum and the minimum mean PBV compared to 0.017 for 
the L-line.

The first-order coefficient of the Legendre polynomials for 
each animal was averaged within line and generation to study 
the difference in the slopes between lines within generation 
(Table 3). From the beginning of the experiment, the H-line 
slopes significantly differed from 0, showing that there was 
variability in birth weight breeding values caused by changes 
in MXTW. This instability across temperatures in the H-line 
was in contrast to the L-line, which from the beginning of the 
experiment showed no significant slopes, revealing mainly no 
changes in birth weight breeding values through the range of 
temperatures. A higher dispersion was also observed in the 
standard deviations of the slopes in the H-line when com-
pared with the L-line.

The slopes of these mean regression coefficients of the 
Legendre polynomial are worth showing in graph form and 
further explored (Figure 2). Higher absolute values were 
observed for the H-line in 14 out of the 18 analyzed genera-
tions while the L-line showed higher absolute values only in 

Figure 1. Individual predicted breeding values (grams) of the mothers selected (broken lines) at generations 1 (A) and 24 (B). Mean genetic trend within 
line is continuous in bold. Low variability line in blue and high variability line in red.
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three generations which means that the L-line individuals had 
slopes closer to 0 than those of the H-line. Specifically, the 
two highest mean slopes were obtained in the last two gener-
ations of the H-line, in contrast to no significant slopes in the 
L-line for those two generations.

Discussion
The two mouse lines obtained by Formoso-Rafferty et al. 
(2016a) through divergent selection for residual variance of 
birth weight led to several different characteristics between 
them: for example, the already expected reduction of the 
birth weight residual variance in the homogeneous line when 

compared with the heterogeneous line. The selection per-
formed in these two lines was based on the birth weight envi-
ronmental variance within litter, but the factors that caused 
this difference in variance were not still studied. In this study, 
it was hypothesized that there were some unidentified envi-
ronmental factors that might be causing birth weight vari-
ance that had different reactions depending on the different 
mouse lines. One of these unidentified environmental factors 
could be related to climatic conditions. Moreover, the climate 
is a fundamental factor in agriculture productivity and the 
change in the global climate causes an increasingly recurrent 
extreme weather events. Thus, it is necessary to seek livestock 
systems that ensure a high level of productivity despite all 

Table 3. Mean regression coefficients, standard deviation, and standard error of the mean regression coefficients of the Legendre polynomial

Generation High variability line Low variability line

n Mean StdDev StdErr P n Mean StdDev StdErr P

1 42 −0.0354 0.0405 0.0063 *** 41 0.0096 0.0335 0.0052 NS

2 40 −0.0285 0.0413 0.0065 *** 39 0.0012 0.0302 0.0048 NS

3 40 −0.0285 0.0413 0.0065 *** 43 −0.0026 0.0219 0.0033 NS

4 42 −0.0276 0.0375 0.0058 *** 42 0.0007 0.0209 0.0032 NS

5 38 −0.0384 0.0381 0.0062 *** 43 −0.0060 0.0174 0.0027 *

6 42 −0.0211 0.0291 0.0045 *** 40 −0.0059 0.0167 0.0026 *

7 40 −0.0122 0.0296 0.0047 ** 42 −0.0038 0.0303 0.0047 NS

8 43 −0.0218 0.0324 0.0049 *** 41 0.0008 0.0243 0.0038 NS

10 34 −0.0200 0.0393 0.0067 ** 41 −0.0191 0.0229 0.0036 ***

11 41 −0.0056 0.0455 0.0071 NS 42 −0.0240 0.0385 0.0059 ***

12 39 −0.0206 0.0557 0.0089 * 40 −0.0146 0.0243 0.0038 ***

13 41 −0.0078 0.0347 0.0054 NS 42 −0.0119 0.0247 0.0038 **

16 38 −0.0191 0.0378 0.0061 ** 42 −0.0342 0.0219 0.0034 ***

17 36 −0.0310 0.0444 0.0074 *** 42 −0.0312 0.0295 0.0045 ***

19 23 −0.0644 0.0521 0.0109 *** 39 −0.0418 0.0646 0.0103 ***

20 21 −0.0515 0.0238 0.0052 *** 35 −0.0218 0.0191 0.0032 ***

23 12 −0.0668 0.0470 0.0136 *** 35 −0.0013 0.0190 0.0032 NS

24 34 −0.0412 0.0233 0.0040 *** 41 0.0069 0.0283 0.0044 NS

n: number of individuals per generation; NS: no significance; *P < 0.05; **P < 0.01; ***P < 0.001.

Figure 2. Mean regression coefficients of the Legendre polynomial per generation and line. Low variability line in black (H) and high variability (L) line in 
gray. 0I: initial population.
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the changes in the environment (Nardone et al., 2010). In 
this study, a climatic variable was identified as one of those 
environmental factors that causes the variance of the trait. 
Random regression models enable the analysis of repeated 
records from individuals across the trajectory of a particular 
variable as the time or as the range of a climatic variable. This 
methodology can be then used whenever there is a relation-
ship between variables and time or age. This approach was 
successfully used to evaluate the genetic correlations between 
milk production traits and heat stress in dairy cattle in differ-
ent countries (Ravagnolo and Misztal, 2000; Brüegemann et 
al., 2011; Carabaño et al., 2014; Santana et al., 2015, 2017), 
and to analyze genetic effects of heat stress on female fertility 
(Ravagnolo and Misztal 2002).

Despite the conditions in the facilities where the mice are 
housed are controlled to be optimal and stress free, there 
are some seasonal changes in the weather that could modify 
animal performance. Depending on the stage of the animal 
development when these changes occur, these conditions 
could affect more or less the birth weight. The present study 
includes an analysis of the time and the climate variables that 
most affected the birth weight variance, with MXTW hav-
ing a major impact on the birth weight breeding value. It is 
also worth mentioning that at day 14 of gestation (one week 
before parturition) seemed to be the most sensitive period 
to climatic variables than the other two analyzed moments: 
fecundation and parturition. This gestation period is key 
for fetal survival since the mortality during this period was 
lower in the L-line than in the H-line (Formoso-Rafferty et 
al., 2023). The two selected lines behaved different to the 
MXTW. Interestingly, the first generation of selection had 
already a very different mean slope between lines. Formo-
so-Rafferty et al (2016a) reported that at the beginning of the 
selection experiment, there was a very high estimated genetic 
correlation between the birth weight and its environmental 
variability (0.73). In the first generation of selection, there 
was no genetic response to environmental variability of birth 
weight, but the response was to the trait (birth weight) itself. 
The differences observed in the mean PBV for birth weight 
between lines suggest that there was a genetic response to 
the selection in the sensitivity of the mice to MXTW in the 
first generation of selection, although this selection was not 
intense enough to be reflected in differences for birth weight 
variance between lines. In the last generation of the selection 
experiment, the L-line showed more stability across tempera-
tures compared to the H-line. The absolute value of the mean 
slope in the L-line was lower than in the H-line (0.0069 vs. 
−0.0412). The mean slope of the L-line, also, appeared not 
to be significant while the mean slope of the H-line was at 
a maximum and significant. These results suggested that the 
L-line had no changes in birth weight genetic value across 
temperatures, while the H-line individuals were more sensi-
tive to MXTW resulting in a decreased birth weight at higher 
temperatures.

The results of the present study are more interesting in 
the context of the selection experiment and the differences 
appearing between lines for many issues. The selection exper-
iment resulted in a homogeneous line with a more stable 
performance while the heterogeneous line showed more sensi-
tivity and higher instability regarding performance at changes 
in the environmental conditions. In addition, the low variabil-
ity line was less sensitive to challenges such as feed restriction 
(Formoso-Rafferty et al., 2019). Initially, these environmental 

conditions that caused more variability in the H-line over the 
L-line were unknown, but the present study has identified one 
possible environmental variable which is the MXTW that 
affects the individual birth weight.

These results added to those obtained in other studies 
previously mentioned on these selected mouse populations 
reinforce the fact that the selection for homogeneous environ-
mental variability in some traits are directly linked to a higher 
robustness. This is also supported by studies made in other 
species such as rabbits, where the homogeneous line obtained 
from a selection on litter size residual variance resulted in 
animals with higher litter sizes (Blasco et al. 2017). Even 
better welfare showed less susceptibility to diseases after an 
environmental stressor (Beloumi et al. 2020). In addition, the 
homogeneity in birth weights of pigs within litters ease their 
management and that is both more profitable and beneficial 
for farms, while the heterogeneity is a problem mainly for 
piglets with lower birth weights which suffer from a delayed 
growth (Foxcroft et al., 2006). The selection performed 
during the present experiment has shown that homogeneous 
animals are less affected by climate changes that result in high 
temperatures. This fact could be useful when applied to pro-
lific species breeding programs.

While robustness is in the spotlight of breeding programs, it 
is still a challenge to define a specific strategy for breeding for 
it. Moreover, there is no clear definition of what would be the 
criteria that correlates best for robustness. The way to address 
this issue is by considering a global robustness in the already 
selected animals by their birth weight residual variance. The 
present study includes an analysis on how sensitive this popula-
tion is to environmental challenges posed by climatic variables. 
This study contributes a new step at showing the advantages 
of the selection for homogeneity even when differences were 
not very large. In conclusion, the present study supports the 
selection for low birth weight residual variance, which could 
be advantageous as a selection method to provide animals less 
sensitive to changes in climatic variables.
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