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A B S T R A C T   

Copy Number Variation Regions (CNVR) were subjected to pedigree analysis to contribute to the understanding 
of their segregation patterns. Up to 492 Gochu Asturcelta pig individuals forming 478 different parents-offspring 
trios (61 different families) were genotyped using the Axiom_PigHDv1 Array (658,692 SNPs). CNVR calling, 
performed using two different platforms (PennCNV and QuantiSNP), allowed to identify a total of 344 candidate 
CNVR on the 18 porcine autosomes covering about 106.8 Mb of the pig genome. Sixty-nine CNVR were iden-
tified, to some extent, in both the parents and the offspring and were classified as segregating CNVR. The other 
candidate CNVR were called in one or more progeny but in neither parent and classified either as singleton or 
recurrent de novo CNVR. Segregating CNVR were, on average, larger and more frequent than the recurrent de 
novo CNVR (444.8 kb vs 287.9 kb long and 34 vs 5 individuals, respectively). In any case, segregating CNVR did 
not conform to strict Mendelian inheritance patterns: estimates of average paternal and maternal transmission 
rates ranged from 11.0 % to 13.4 % and mean inheritance rate was below 21 %. This issue should be carefully 
considered when interpreting the results of CNV studies. Segregating CNVR, present across generations, are 
unlikely to be artifacts or false positives and can be hypothesized to be important at the population level.   

1. Introduction 

Genomic segments ranging in size from 50 base pairs (bp) to several 
megabases (Mb) differing in structure due to the occurrence of insertion, 
duplication or deletion events are usually referred to as Copy Number 
Variations (CNV; Feuk et al., 2006; Scherer et al., 2007). CNV have been 
used as informative markers in association studies for economically 
important traits in livestock (Chen et al., 2012; Wang et al., 2015; Ber-
gamaschi et al., 2020; Qiu et al., 2021; Ding et al., 2022; Mo et al., 2022) 
due to their influence on phenotypic variability via the modification of 
gene structure and gene expression (Conrad et al., 2010; Wang et al., 
2021; Wei et al., 2022). However, studies identifying CNV in different 
populations within species cannot be compared straightforwardly. Some 
genomic regions seem to be prone to recurrent CNV formation (Carvalho 
and Lupski, 2016). Accumulation of CNV across these genomic regions is 
not uniform and different livestock populations show differences in CNV 
prevalence. Therefore, CNV-based reports tend to show large differences 

at the breed level, mirroring their particular population histories (Fon-
tanesi et al., 2011; Xie et al., 2016; Rafter et al., 2018; Bovo et al., 2021). 

The identification of CNV may be challenged by noisy signals of SNP 
arrays selected and tested on the basis of their use in SNP genotyping 
(Winchester et al., 2009). However, CNV are unlikely to be artifacts or 
false positives if called across generations (Ramayo-Caldas et al., 2010; 
Fernández et al., 2014; Keel et al., 2019). However, little is known about 
the inheritance patterns of CNV and studies aiming at the assessment of 
the accordance of CNV variation with Mendelian inheritance are scant. 
Although CNV have been assumed as structurally similar to micro-
satellites, their behavior departs considerably from such kind of markers 
and, for instance, unlike SNPs and microsatellites, CNV cannot be 
accurately predicted using imputation algorithms (Rafter et al., 2020). 
Samarakoon et al. (2011), using a segregating population of cloned 
progeny lines of Plasmodium falciparum, found that only 26.5 % of the 
CNV identified were present in the parent lines and segregated in the 
progeny population. 

Abbreviations: CNV, Copy Number Variations; CNVR, Copy Number Variations Regions; bp, base pairs; Mb, megabases; HMM, hidden Markov models; sdnCNVR, 
singleton de novo CNVR; rdnCNVR, recurrent de novo CNVR; sCNVR, segregating CNVR. 
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The present research aimed to contribute to the ascertainment of the 
segregation patterns of CNV regions (CNVR). To deal with this task, a 
complex pedigree of the endangered Gochu Asturcelta pig breed was 
available. Gochu Asturcelta is an extremely endangered pig breed that 
was subjected to a conservation programme in Asturias (Northern Spain) 
starting from 6 founders only (Menéndez et al., 2016a,b). Gochu 
Asturcelta is one of the last representatives of the ancient Celtic-Iberian 
pig strain of the Iberian Peninsula (Menéndez et al., 2016c). The Gochu 
Asturcelta pedigree was used to follow Mendelian inheritance of CNVR 
across parents-offspring trios and families to contribute to a better un-
derstanding of the nature of those genomic alterations. 

2. Materials and methods 

2.1. Samples and genotyping 

A Gochu Asturcelta pig pedigree including 492 individuals previ-
ously analyzed in Arias et al. (2022) was genotyped using the Axiom 
Porcine Genotyping Array (Axiom_PigHDv1; 658,692 SNPs). The typed 
individuals were born from 1999 to 2009 (including three founders) and 
sampled in 14 different farms included in the breeding programme of 
ACGA. They belonged to 61 different families (descendants of the same 
parental couple), and formed 478 parents-offspring trios. Offspring ge-
notypes derived from 15 genotyped boars and 28 genotyped sows and 
obtained from 96 different litters. Family size (number of offspring per 
parental couple) varied from 1 to 34. The individuals typed are repre-
sentative of the initial stages of the recovery programme of the Gochu 
Asturcelta pig breed and included up to four complete generations in 
their genealogies. 

The software Axiom Analysis Suite v4.0.3 (Thermo Fisher Scientific, 
Waltham, MA) was used to create both genotypic and intensity data 
useful for CNV calling and standard.ped and.map files useful for com-
plementary analyses. SNPs with ambiguous chromosome locations and 
SNPs located on either sexual chromosomes or mitochondrial DNA were 
excluded. SNPs were mapped using the Sscrofa genome build 11.1 
(Groenen et al., 2012). 

2.2. CNV calling and editing 

Following a previously published strategy (Goyache et al., 2021, 
2022) two different platforms, PennCNV (Wang et al., 2007) and 
QuantiSNP (Colella et al., 2007), were used to perform CNV calling from 
the autosomes of each individual in the dataset. PennCNV and Quan-
tiSNP were run using default parameters. Both software suites imple-
ment hidden Markov models to detect CNV based on the log of the ratio 
between the observed and the expected probe hybridization intensity of 
SNPs and the proportion of B alleles at a SNP. The probability of change 
in copy number between adjacent SNPs is dependent on their distance. 
However, whereas PennCNV uses a transition matrix to model realistic 
copy number transitions, QuantiSNP runs under a Bayesian framework 
to estimate probabilities for copy number states. In this respect, 
following the authors’ recommendations, CNV identified with Quan-
tiSNP with a Log Bayes Factor lower than 10 were not considered 
informative and, therefore, filtered out. 

CNVR were first constructed within calling platform (either 
PennCNV or QuantiSNP) through merging, across individuals, over-
lapping CNV by at least 1 bp using the merge function of the software 
BedTools (Quinlan and Hall, 2010). The upper and lower bounds of 
these overlaps were considered potential CNVR within software. Finally, 
candidate CNVR were defined as the upper and lower bounds of the 
overlaps between potential CNVR identified within each calling plat-
form using the intersectBed function of the BedTools software. 

The distribution of the candidate CNVR identified across porcine was 
illustrated using the RIdeogram package of R environment (Hao et al., 
2020). 

2.3. Pedigree-based analyses 

The program COLONY v.2.0.6.8 (Wang, 2019) was used to verify 
parentage in the pedigree. 

Candidate CNVR were arbitrarily coded as dominant markers 
(presence/absence) according to their identification in a given individ-
ual. The program CERVUS 3.0 (Kalinowski et al., 2007) was used to 
identify the CNVR present in the offspring which were not present in 
either the father or the mother of the individual. 

Following Samarakoon et al. (2011), candidate CNVR were classified 
into three different categories according to their presence in the parents 
or the offspring: a) ‘singleton de novo’ CNVR (sdnCNVR), defined as 
CNVR occurring in one individual (progeny) only; b) ‘recurrent de novo’ 
CNVR (rdnCNVR), defined as CNVR occurring in multiple progeny but in 
neither parent; and c) segregating CNVR (sCNVR) were identified in at 
least one of the parents and in at least one of the progeny. 

Consistency of the presence of CNVR with the rules of Mendelian 
inheritance was assessed using the –mendel option of the program PLINK 
V 1.9. The software iterates through all trios and all variants checking 
for these errors (Chang et al., 2015). Considering the presence of CNVR 
in the parents, the origin of the violation of Mendelian inheritance was 
assigned to the father, the mother, or the offspring. 

Following Keel et al. (2019) either the paternal and maternal 
transmission rates and inheritance rate for each parents-offspring trio 
and family in the pedigree were computed as follows: (a) in each parent- 
offspring pair, CNVR in one of the parents (either father or mother) also 
called in the offspring were counted and then divided by the total 
number of CNVR calls in the parent; and (b) CNVR calls in the offspring 
also present in at least one parent were counted and then divided by the 
total number of CNVR in the offspring. Ideal paternal and maternal 
transmission rates would be 50 % and inheritance rates would be 100 % 
(Keel et al., 2019). 

2.4. Check for consistency of the results obtained 

As an internal control for the consistency of the approach used to the 
identification of candidate CNVR, sCNVR were also identified on the 
potential CNVR identified using either the PennCNV or the QuantiSNP 
calling platforms. Furthermore, paternal and maternal transmission 
rates and inheritance rate were computed on the sCNVR identified on 
the potential CNVR identified using either the PennCNV or the Quan-
tiSNP software. 

3. Results 

PennCNV allowed to identify 5,450 CNV on the 492 individuals 
typed (Table S1). QuantiSNP mapped 2,558 CNV with a Log Bayes 
Factor > 10 (781 of them with Log Bayes Factor > 30) on 457 pigs 
(Table S2). 

3.1. Construction and segregation patterns of candidate CNV regions 

Overlapping CNV across individuals allowed to construct 2,160 po-
tential CNVR (29 % identified in one individual only) using PennCNV 
results (Table S3) and 934 potential CNVR (21 % identified in one in-
dividual only) within QuantiSNP results (Table S4). These potential 
CNVR comprised about 82.1 Mb and 161.5 Mb, respectively. Over-
lapping between the potential CNVR identified using the two calling 
platforms allowed to identify a total of 344 candidate CNVR on the 18 
porcine autosomes (Table S5; Table 1). Candidate CNVR covered about 
106.8 Mb, with a mean length of 0.31 Mb. Twenty candidate CNVR were 
identified in one individual only, whereas 12 candidate CNVR were 
identified in>50 individuals. 

The candidate CNVR identified in each individual (and their parents) 
of the pedigree used are listed in Table S6. According to the frequency of 
the CNVR in the pedigree (Table S5), 20 candidate CNVR were classified 

K.D. Arias et al.                                                                                                                                                                                                                                 



Gene 854 (2023) 147111

3

as singleton de novo, 255 (74 % of the total) were classified as recurrent 
de novo, and the remaining 69 candidate CNVR were classified as 
segregating. Their distribution across porcine autosomes is illustrated in 
Fig. 1. sCNVR were called in 412 out of 478 parents-offspring trios and 
60 out of 61 families. sCNVR covered about 30.7 Mb and were, on 
average, larger (444.8 kb) than rdnCNVR (287.9 kb; Table 1). Moreover, 
sCNVR were identified in 418 different parents-offspring trios and, on 
average, in 34 individuals belonging to 20 families (33 % of the total) 
whereas the mean number of individuals and families in which 
rdnCNVR were identified was 5 and 4.5 (7 % of the total number of 
families), respectively. 

Fig. 2 shows two pedigrees illustrating the patterns of familial 

segregation in two typical examples of rdnCNVR (CNVR256) and sCNVR 
(CNVR41). Although CNVR256 could be identified in the offspring of a 
four generations pedigree including different fullsib families, analyses 
failed in identifying them in the parents. However, although CNVR41 
segregated in the offspring of boar 20 and one of its granddaughters 
(sow 107), it could not be identified in the 107′s father (boar 66). Fig. 2 
illustrates the fact that sCNVR could not be identified in all parental 
generations in a pedigree. 

3.2. Inheritance and transmission rates 

Both rdnCNVR and sCNVR showed a marked deviation of Mendelian 
expectations. Most mismatches (69 %) were identified on sCNVR 
(Table 1). Mendelian inheritance errors assessed for sCNVR were 
balanced across members of the parents-offspring trio, therefore sug-
gesting that some systematic causes, such as the sex of the parents or 
pedigree depth, would not affect the failure in identifying the presence 
of a sCNVR in an individual. Although rdnCNVR were identified in the 
offspring only, up to 54 % of the mismatches identified for rdnCNVR 
were assigned to one of the reproductive individuals (Table 1). 

A full description of the computations carried out to estimate 
paternal and maternal transmission rates and inheritance rate are given 
in Supplementary Table S7 and summarized per both parents-offspring 
trio and family in Table 2. Both at the trio and the family level, mean 
values computed were always very low suggesting a strong deviation of 
Mendelian proportions. A particular case can illustrate this fact (Sup-
plementary Table S7): individual 883 and its father (486) carried 6 
different sCNVR having an ideal paternal transmission rate of 50 %; 
however, pig 883 shared two sCNVR with its mother only (individual 
477; maternal transmission rate of 13.3 %). Altogether, the inheritance 
rate computed for individual 883 was 75 %. Although this was the 
highest inheritance rate in our data set, it departed from the ideal in-
heritance rate of 100 %. Average paternal and maternal transmission 
rates at both the family and the trio levels ranged from 13.4 % to 11.0 % 

Table 1 
Description of the CNVR identified in Gochu Asturcelta pig per candidate CNVR 
class.   

CNVR class  

Singleton Recurrent Segregating Whole  

de novo de novo CNVR dataset 
Number of CNVR 20 255 69 344 
Number of 

Mendelian 
mismatches     

assigned to the 
Father 

0 578 2,146 2,724 

assigned to the 
Mother 

0 915 2,404 3,319 

assigned to the 
Offspring 

20 1,264 1,672 2,956 

Mean CNVR 
length (kb) 

132.8 
[12.6;409.3]a 

287.9 [3.9; 
3,683.6] 

444.8 
[10.5;3,077.1] 

310.4 

Mean Number of 
individuals 

1 [1;1] 5 [1;41] 34 [3;187] 11 

Mean Number of 
Families 

1 [1;1] 4.5 [1;18] 20 [2;45] 7  

a Minimum and maximum values are given in brackets. 

Fig. 1. Ideogram illustrating, per porcine autosome, the distribution of the 20 singleton de novo (in blue), the 256 recurrent de novo (in green) candidate CNVR, and 
the 69 candidate segregating (in red) CNVR identified in Gochu Asturcelta pig. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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and from 12.4 % to 13.4 %, respectively. Paternal and maternal trans-
mission rates were zero for 108 and 76 individuals in the pedigree 
meaning that they did not share sCNVR with either their fathers or their 
mothers (Supplementary Table S7). Mean inheritance rate was below 21 
% and very similar at both the trio and the family levels. 

3.3. sCNVR identification on potential CNVR 

Segregation patterns of the potential CNVR identified using either 
the PennCNV or the QuantiSNP software (Supplementary Tables S8 and 
S9) allowed to classify 35 (out of 2,160) and 34 (out of 934) potential 
CNVR as sCNVR for the programs PennCNV and QuantiSNP, respec-
tively (see also Supplementary Tables S3 and S4). Potential sCNVR 
identified using PennCNV covered about 7.6 Mb of the porcine genome 
and involved 269 parent-offspring trios. Potential sCNVR identified 
using QuantiSNP covered roughly 19.7 Mb and involved 272 parents- 
offspring trios (including the 269 trios identified using PennCNV). 
Within porcine chromosome, all potential sCNVR identified using 
PennCNV overlapped with others identified using QuantiSNP (Supple-
mentary Table S10). Furthermore, the 35 and the 34 potential sCNVR 
identified using the programs PennCNV and QuantiSNP, respectively, 
could be merged into 33 consensus potential sCNVR covering 20.1 Mb 
(Supplementary Table S10). 

Table 2 gives mean values for the transmission and inheritance rates 

computed for the potential sCNVR identified within calling platform. 
Full descriptions of the computations carried out are given in Supple-
mentary Tables S11 and S12. Consistently with the similar sets of 
parents-offspring trios involved, the mean values obtained were very 
close no matter the calling platform considered (either PennCNV or 
QuantiSNP). The paternal and maternal transmission rates were about 
threefold higher than those computed on the candidate sCNVR identi-
fied using the combined results of the two software used. Furthermore, 
mean inheritance rates were from 164 % to 203 % higher than those 
computed on the candidate sCNVR identified using the combined 
results. 

4. Discussion 

Several technological issues including genotyping platforms, noisy 
signals, calling algorithms and quality control criteria, affect CNVR 
identification (Winchester et al., 2009; Zheng et al., 2012; Fernández 
et al., 2014; Keel et al., 2019). Moreover, CNV are assumed to mirror the 
particular breeding histories of the populations studied (Chen et al., 
2012; Xie et al., 2016; Bovo et al., 2021). Altogether, such factors cause a 
significant variation between CNVR identified among populations with 
little CNVR overlap among different reports, which is usually assumed to 
be lower than 30 % (Xie et al., 2016; Keel et al., 2019; Qiu et al., 2021; 
Panda et al., 2022). 

Fig. 2. Two pedigrees illustrating the variation of a recurrent CNVR (CNVR256) and a segregating CNVR (CNVR41). Numbers below squares (males) and circles 
(females) correspond to the identifications of the individuals. Filled squares and circles indicate the identification of a CNVR in a given individual. Open dots have 
been included in filled squares or circles to facilitate the identification of segregation events. 
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Consequently, applying stringent criteria to select informative CNVR 
is a requisite for the presentation of results of general interest. Although 
the use of Real-Time PCR is the best way to validate CNV (Ramayo- 
Caldas et al., 2010; Xie et al., 2016; Ma et al., 2017; Keel et al., 2019), it 
is not always possible and, frequently, researchers consider CNV only 
when they are identified in separate analyses using different calling 
platforms (Rafter et al., 2018; Goyache et al., 2021, 2022). Here we 
propose the use of pedigree information to select CNVR that are present 
across generations. CNVR formed by overlapping CNV recalled by at 
least two different platforms but also showing Mendelian inheritance 
across generations are unlikely to be artifacts or false positives. 

One can argue that the use of one calling platform only may be 
enough to identify sCNVR properly in the case of the availability of 
dense SNP array data such as in the current analysis. However, our re-
sults suggest that this alternative approach severely underestimates the 
number of sCNVR identified and, more importantly, limits the identifi-
cation of target genomic areas putatively spanning CNV alterations of 
major interest. Merging the results of different CNV calling platforms 
allows to identify longer genomic areas potentially carrying CNV al-
terations and, therefore, increases the number of parent-offspring trios 
in which CNV segregation potentially occur. 

In general, sCNVR are relatively large genomic regions identifiable 
across generations in relatively high frequency that can represent ge-
netic variation of importance at the population level. In contrast, 
rdnCNVR can be more likely responsible for between-individuals genetic 
variation. This doesn’t mean that rdnCNVR are of negligible genomic 
importance. Samarakoon et al. (2011) reported that rdnCNVR spanned 
many genes with a potentially important role in performance. However, 
if the goal is the ascertainment of the genetic background of a given 
population the use of rdnCNVR, even if their frequency is relatively 
high, may not be justified. CNVR studies not using genealogical data are 
likely to give upward biased estimates of both the number and the length 
of CNVRs (Zheng et al., 2012; Fernández et al., 2014). 

4.1. Inheritance patterns of CNVR 

The CNVR identified did not conform to strict Mendelian inheritance 
patterns. Indeed, both sdnCNVR and rdnCNVR completely departed 
from Mendelian expectations as they were called in neither parent. 
However, it is hardly assumable that de novo CNVR are due to somatic 
mutations. The sdnCNVR and the rdnCNVR summed 80 % of the total 
CNVR identified and somatic mutations could never be so frequent 
(Samarakoon et al., 2011). Moreover, somatic mutations (i.e. de novo 
CNVR) could affect either paternal and maternal transmission rates but 
not inheritance rates (Keel et al., 2019). Both sdnCNVR and rdnCNVR 
probably occur due to the same causes than sCNVR. The segregation 
patterns of the de novo and the segregating CNVR have marked simi-
larities and classical pedigree-based analyses of Mendelian inheritance 
have problems in separating their behavior. The main difference be-
tween sCNVR and rdnCNVR is that the latter could never be identified in 
a parental generation. It would be expectable that rdnCNVR had Men-
delian errors assignable to the offspring only in a similar way than in the 
case of the sdnCNVR. However, our results informed that Mendelian 
errors in rdnCNVR were assigned to different members of the parents- 
offspring trio. The presence of rdnCNVR in individuals acting as fa-
thers or mothers would lead to this deviation from the expectations. 

Furthermore, the computation of paternal and maternal transmission 
rates and inheritance rates clearly illustrates that sCNVR fit Mendelian 
segregation patterns at a broad scale only. The current transmission and 
inheritance rates are significantly lower than those previously reported 
in pig using 12 parents-offspring trios only (Keel et al., 2019) but also 
lower than those reported in humans (Zheng et al., 2012) using 752 
complete family trios. The strategies used to identify sCNVR, the average 
CNVR length, SNP array density, and the size of the pedigree available 
may underly the estimates’ differences among reports. In this respect, 
when sCNVR were identified using one calling platform only, paternal 
and maternal transmission rates were biased upwards when compared 
with those obtained with the candidate sCNVR approach and similar to 
the rates computed on the small Keel et al.’s data set (2019). However, 
they were significantly higher than those computed on the larger Zheng 
et al.’s (2012) pedigree (Table 2). 

In any case, the Gochu Asturcelta pig pedigree used allowed us to 
check the consistency of Mendelian inheritance using multiple offspring 
of the same parental couple giving an accurate idea about the ‘real’ error 
rates in the transmission of CNVR from one generation to another. 
Although the deviation from Mendelian inheritance patterns of CNVR is 
more likely to be due to technical issues associated with SNP arrays 
calling rather than to the genomic nature of CNVR, the understanding of 
the error process is necessary if the goal of identifying CNV alterations is 
their use in association studies (Zheng et al., 2012; Keel et al., 2019). 

4.2. General discussion 

From a strict genetic marker perspective, CNVR would be affected by 
Allele-Drop-Out and (ADO) and Allele-Drop-In (ADI) effects. Both 
sdnCNVR and rdnCNVR can be classified as ADI loci (alleles that are 
additional to the parental genotypes). In turn, sCNVR could be mainly 
considered ADO loci (i.e. ‘missing’ alleles at a locus according to 
parental genotypes). The deviations of the expected transmission and 
inheritance rates in our pedigree imply that CNVR should be considered 
loci displaying either null or partial null alleles (alleles always gener-
ating missing data or not, respectively; see Arias et al., 2022, for a recent 
review on ADI and ADO effects and their relationship with CNV 
alterations). 

Researchers are interested in using CNVR in the ascertainment of the 
relationship between genomic variation and performance due to the 
undoubtful importance of Copy Number alterations in phenotypic 
variation. However, from a genetic marker point of view, pedigree 
analysis shows that CNVR inheritance does not conform Mendelian 
rules. This illustrates that major difficulties exist in their satisfactory 

Table 2 
Mean and standard deviation (in brackets) of Paternal transmission rate, 
Maternal transmission rate and Inheritance rate per trio and family in which 
segregating CNVR (sCNVR) were called. Results are given for candidate sCNVR 
and potential sCNVR identified using either the PennCNV or the QuantiSNP 
software. For descriptive purposes, average values provided in previous studies 
(Keel et al., 2019; Zheng et al., 2012) are provided.   

Candidate1 

sCNVR 
Potential sCNVR Literature estimates  

Mean PennCNV QuantiSNP Keel 
et al. 
(2019) 

Zheng 
et al. 
(2012) 

Paternal 
transmission 
rate     

0.377  0.280 

per trio 0.110 
(0.103) 

0.345 
(0.352) 

0.343 
(0.352)   

per family 0.134 
(0.112) 

0.390 
(0.302) 

0.392 
(0.296)   

Maternal 
transmission 
rate     

0.414  0.280 

per trio 0.134 
(0.121) 

0.394 
(0.359) 

0.396 
(0.356)   

per family 0.124 
(0.084) 

0.344 
(0.299) 

0.349 
(0.298)   

Inheritance 
rate     

0.520  0.420 

per trio 0.209 
(0.209) 

0.372 
(0.402) 

0.343 
(0.386)   

per family 0.207 
(0.207) 

0.420 
(0.375) 

0.385 
(0.351)    

1 Candidate segregating CNVR constructed by intersecting potential CNVR 
identified using either the PennCNV or the QuantiSNP software. 
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identification. CNVR present to some extent in parents and offspring 
were the minority of the CNVR identified. However, such segregant 
CNVR are likely to represent ‘true’ genomic variation. Only an in-depth 
understanding of their patterns of variation, probably associated with 
calling errors, can contribute to the appropriate use of CNVR variation in 
such studies. The development of refined CNVR-calling strategies to 
identify ‘reliable’ CNVR will be an issue in genomic research. 
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