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ABSTRACT 

Organic waste production has greatly increased following human sprawl and led to the 

development of landfills in recent decades. This abundant and reliable anthropogenic food 

source has favored several species, some of which consequently became overabundant. 

Landfills present hazards to wildlife, which may suffocate on plastic materials, tangle on 

cords, and get exposed to pollutants and pathogens. In response to environmental and public 

health concerns over the maintenance of landfills, the European Commission proposed to 

close the landfills. Our objective was to determine the impact of Landfill European Directive 

on the White Stork (Ciconia ciconia) whose population recovery and growth was linked to 

landfill exploitation. We implemented species distribution models to project future 

distribution in the absence of landfills in the Community of Madrid (Spain). Habitat 

suitability was estimated based on nest occurrence and we included data from land cover 

types, human population density, and two different climate change scenarios (i.e., emissions 

in low and high shared socioeconomic pathways). Given that protection measures, 

particularly implemented in protected areas, were associated with population recovery, we 

also evaluated the overlapping degree between protected areas and projected distribution. Our 

models predicted a sharp decline in breeding population distribution with landfill closure, 

reaching values similar to the 1984 breeding census when the species was categorized as 

threatened. Our results also suggest a decrease in maximum habitat suitability. Climate 

change also contributed to a reduction in breeding population distribution given model 

predictions for the extreme emission pathway (ssp5). Measures such as gradual change in 

landfill management, continuous monitoring of breeding populations, and evaluation of the 

White Stork use of natural feeding areas before and after landfill closure, should be 

considered.  

 

Keywords: anthropogenic food sources, Ciconia ciconia, climate change, landfill closure, 

management, species distribution model 
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LAY SUMMARY 

 Several animal species have thrived around landfills, which was particularly important for 

threatened species. 

 However, the Landfill European Directive (1999/31/CE) promote the landfill closure in 

the next decade. Knowing the impact of this Directive prior to its implementation should 

be a priority for the responsible authorities. 

 We projected habitat suitability and the future White Stork breeding population 

distribution in absence of landfill in the Community of Madrid (Spain) in two scenarios of 

climate change and growing urbanization. 

 Our models signalled landfill closure, climate change and urbanization growing, as the 

main threats to the White Stork breeding population. 

 We proposed gradual change in landfill management, continuous monitoring of breeding 

populations, and evaluation of the White Stork use of natural feeding areas, to determine 

the actual relevance of landfill closure in breeding populations. 

 

Drástica reducción de la distribución de la población de Cigüeña blanca predicha en 

ausencia de vertederos 
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RESUMEN 

La producción de residuos orgánicos se ha incrementado tras la expansión del ser humano y 

ha dado lugar al desarrollo de los vertederos en las últimas décadas. Esta fuente de 

alimentación antrópica predecible y abundante ha favorecido a varias especies, algunas de las 

cuáles se han convertido en super-abundantes. Los vertederos presentan ciertos riesgos para 

la fauna, tales como ahogamiento por plásticos, nudos y cuerdas, y la exposición a 

contaminantes y patógenos. En respuesta a la inquietud por la salud pública y el medio 

ambiente debido al mantenimiento de los vertederos, la Comisión Europea propuso el cierre 

de los vertederos. Nuestro objetivo era determinar el impacto de la Directiva Europea de 

Vertederos en la Cigüeña blanca, Ciconia ciconia, cuyo crecimiento poblacional estuvo 

asociado a la alimentación en vertederos.  

Hemos implementado modelos de distribución de especies para proyectar la distribución 

futura de la población en ausencia de vertederos en la Comunidad de Madrid (España). La 

idoneidad del hábitat fue estimada basándonos en la presencia de nidos e incluimos 

información del tipo de cobertura del suelo, densidad de la población humana y dos 

escenarios climáticos distintos (i.e., trayectorias socioeconómicas compartidas de bajas y de 

altas emisiones). Dado que las medidas de conservación, implementadas especialmente en las 

áreas protegidas, estuvieron asociadas con la recuperación de la población; también 

evaluamos el grado de solapamiento entre las áreas protegidas y la distribución proyectada. 

Nuestros modelos predicen un declive agudo en la distribución de la población reproductora 

tras la clausura de los vertederos, alcanzando valores similares a los del censo reproductor de 

1984 cuando la especie estaba catalogada como amenazada. Nuestros resultados también 

sugieren una disminución de la idoneidad del hábitat en el futuro. El cambio climático 

también contribuyó en la reducción de la distribución de la población reproductora según las 

predicciones de nuestros modelos en la trayectoria de emisiones extremas (ssp5). Deberían 

ser consideradas medidas tales como el cambio gradual en la gestión de los vertederos, 

seguimiento continuo de las poblaciones reproductoras, y la evaluación del uso de las 

cigüeñas de fuentes de alimentación naturales antes y después del cierre de los vertederos. 

Palabras clave: Fuente de alimentación antrópica, Ciconia ciconia, cambio climático, 

landfill closure, species distribution model, management 
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INTRODUCTION 

Human-induced changes have deeply transformed ecosystems and wildlife communities 

(Vitousek et al. 1997). In addition to direct actions, such as landscape transformation or 

species translocation, anthropogenic food sources are important factors impacting animal 

biodiversity and distribution (Oro et al. 2013, Newsome et al. 2015). In developed countries, 

millions of tons of food generated by humans end up in landfills annually (Stenmarck et al. 

2016). Many animal species, particularly birds, have developed strategies to take advantage 

of this abundant and predictable food source (Plaza and Lambertucci 2017). Anthropogenic 

food provides numerous benefits to wildlife, including reduced energetic costs (Gilbert et al. 

2016, Soriano-Redondo et al. 2021) and increased body size, higher reproductive output, and 

greater offspring survival (Tortosa et al. 2002, Steigerwald et al. 2015, López-García et al. 

2021), potentially resulting in rapid population growth. 

The competition process between and within species can decrease with increasing 

abundance and reliability of resources (Restani et al. 2001, Corman et al. 2016). In addition 

to increased reproduction, wildlife is attracted to landfills and adjacent areas for both 

breeding and foraging, explaining resource selection and alterations in distribution of some 

populations (Duhem et al. 2008). The continuous abundance of anthropogenic resources has 

also been correlated with alterations in migration patterns and seasonality. For instance, some 

migratory birds use anthropogenic sites, such as landfills, as important stop-overs, while 

others may shorten or suppress migratory behavior (Flack et al. 2016, Rotics et al. 2017, 

Arizaga et al. 2018). The increase in density of a particular species at these sites can promote 

competitive displacement of species, resulting in an ecological impact on trophic webs and 

homogenization of local community composition (Malekian et al. 2021).  

All of these changes in avian behavior and distribution can translate to the 

aggregation of birds and abnormally high densities that usually produce conflicts with 

humans such as nuisance activity, damage to buildings, or even health issues (Hatch 1996, 

Belant 1997, Vergara et al. 2007a). Additionally, the risk of bird collision with power-lines 

and airplanes increases with proximity to landfills (Garrido and Fernandéz-Cruz 2003, 

Moreira et al. 2018, Pfeiffer et al. 2020, Marcelino et al. 2021). The conflicts of human and 

wildlife generally change the human perception of animals to so-called pest species (Belant 

1997, Payo-Payo et al. 2015). 

Landfills are generally associated with several environmental risks, including soil 

contamination, greenhouse gases, hazardous emissions, and water pollution from runoffs 

(Butt et al. 2008, Vaverková 2019). Landfills also pose important challenges to wildlife. For 

instance, decomposing organic waste provides the optimal environment for a number of 

pathogens to proliferate (Plaza and Lambertucci 2018, Tauler-Ametlller et al. 2019, Martín-

Maldonado et al. 2020). Additionally, ingestion of plastics poses choking and injury hazard, 

while heavy metals and other pollutants may intoxicate birds (Peris 2003, Henry et al. 2011, 

Muñoz-Arnanz et al. 2011).  

As a consequence, the European Union passed environmental policies to reduce the 

production of human refuse, diminish the percentage of biodegradable waste at landfills, and 

transform the organic waste in compost or biofuel by 2030 (Landfill Waste Council European 

Directive 1999/31/CE and Directive 2018/850/CE). The new waste facilities will prevent 

wildlife access to refuse while the ―old‖ open air landfills will be closed or substantially 

modified (Directive 2008/98/CE and Directive 2018/850/CE). 

The recent landfill legislation may come at cost to some wildlife. Landfills have been 

associated with recovery of multiple populations of threatened and endangered species 

(Tortosa et al. 2002, Rumbold et al. 2009, Tauler-Ametller et al. 2017, Arnold et al. 2021). 

For example, the Western European population of White Storks (Ciconia ciconia) was 

suffering a generalized sharp decline between the 1950s and 1980s (Barlein 1991). This 
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decline was mainly associated with habitat loss and changes in agricultural practices (Barlein 

1991, Senra and Ales 1992, Schulz 1999). A total of only 6,753 White Stork breeding pairs 

was reported by the National Census of 1984 in Spain, the lowest number of nesting pairs 

ever recorded (Lázaro et al. 1986). The conservation campaign in the following years and the 

White Stork’s exploitation of landfills resulted in the rapid recovery of their breeding 

population in Western Europe (Schulz 1999, Tortosa et al. 2002, Massemin-Challet et al. 

2006). Although many studies discuss the potential effects of change in waste management 

on species that rely on landfills (see references in Plaza and Lambertucci 2017), only a few 

have explored the effects of landfill closure, for example, on Yellow-legged Gull (Larus 

michahellis) (Payo-Payo et al. 2015, Delgado et al. 2021, Pinto et al. 2021). In this species, 

the absence of landfills forced them to shift diet preferences but the scarcity in alternative 

feeding sources negatively impacted their population dynamics (Steigerwald et al. 2015, 

Zorrozua et al. 2020). Similar to gulls, White Storks may return to feeding sources used 

before landfill development and exploitation.  

In addition to facing the shifts in landfill management, White Storks need to cope 

with climate change. In the Iberian Peninsula, White Storks naturally have a diet mostly 

based on earthworms, insects, amphibians and freshwater fishes (Lázaro 1982, Carrascal et 

al. 1990). However, these groups of prey are sensitive to extremely warm or cold 

temperatures and/or variation in precipitation and hydrological systems, such as increasing 

drought periods in our region (Corn 2005, Bosch et al. 2007, Fourcade and Vercauteren 2022, 

Harvey et al. 2022). Therefore, climate change may affect the abundance and distribution of 

potential prey, modifying population dynamics of White Storks (Dallinga and Schoenmakers 

1987, Zheng et al. 2016). In addition, this variation in prey availability may interfere with the 

phenology of White Storks. Warmer weather advances the dates they reach the breeding 

grounds, resulting in lower breeding success (Gordo et al. 2007, Martín et al. 2021). 

We focused on the breeding population of White Storks of Community of Madrid, 

Spain where the number and location of main landfills were nearly constant over the last 35 

years. Our main objective was to evaluate the potential future impact of landfill closure on 

breeding population distribution and habitat suitability (Hirzel and Le Lay 2008), in a species 

that heavily relies on these landfills, under different climate change scenarios (i.e., climatic 

variables in the lowest and the highest shared socioeconomic pathways (Riahi et al. 2017)). 

We categorized both areas of high stork suitability for White Storks and areas with potential 

habitat loss or gain in 30-yr  (2050) and 50-yr (2070) projections. We also evaluated the 

relevance of the landfills and other anthropo-ecological variables (e.g., land cover class, 

distance to water bodies, human density, etc.) in our models and we determine the effect of 

landfills, controlling by other anthropo-ecological variables, in the nest site selection in 2021. 

The combined use of both climate and habitat variables improves the predictive accuracy of 

species distribution models (SDMs) (Barbet-Massin et al. 2012). Finally, we predicted the 

effectiveness of protected areas to serve as breeding habitat. 

 

MATERIALS AND METHODS 

 

Study Area and Data Collection 

All the municipalities of the Autonomous Community of Madrid (central Spain) were 

surveyed between the first week of March to the end of June in 2021 (Figure 1). Nests were 

monitored based on methodology from previous National and European censuses (Schulz 

1999, Molina and Del Moral 2005). During the complete census of the region, we recorded 

nest location and occupancy during each visit. Most nests were visited 3 to 5 occasions, but 

only 1 visit was possible in some locations. For the latter, we conducted these single visits 

during the peak of the breeding season (i.e., end of April to middle of May) and considered 
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nests to be occupied if breeding adults or nestlings were sighted. This method allows us to 

detect ~90% of breeding pairs within the nesting season (Aguirre and Vergara 2009). We 

assumed that our sampling effort is representative of the total White Stork breeding 

population in central Spain. 

Landfill locations were obtained from PRTR-España, the Spanish Registry of 

Emissions and Pollutant Sources (https://en.prtr-

es.es/Informes/InventarioInstalacionesIPPC.aspx). During the breeding season of 2021, there 

were 4 active landfills in the study area (Alcalá de Henares, Colmenar Viejo, Pinto y Las 

Dehesas) (Figure 1). White Storks were frequently observed feeding in all of them. The first 

landfill was opened in 1978 within our study area, but White Storks were not observed to 

forage at that location until the mid-1980s (Chozas 1983, Blanco 1996).  

In response to our recent finding that landfill exploitation altered habitat use in White 

Storks (López-García et al. 2022 in review), we gathered locations of breeding populations 

from the national census of 1984 (Lázaro et al. 1986) to project the future distribution of 

White Storks in the future absence of landfills. Overall, 215 occupied nests were recorded in 

1984. We recorded 2327 occupied nests in 2021.  

 

Anthropo-Ecological Variables 

Based on the previously acquired knowledge of this species’ habitat use during the breeding 

season (Carrascal et al. 1993, Radović et al. 2015, Orłowski et al. 2019, Hmamouchi et al. 

2020, Bialas et al. 2021), we selected a set of environmental variables to estimate the 

potential distribution of breeding pairs (Supplementary Material Figure S1). Corine Land 

Cover layers were reclassified into 7 land cover classes (López-García and Aguirre 2023): 

urban areas (CLC class 1); arable fields (CLC class 21); other agricultural land (CLC class 22 

and 24, except 244); pastures, meadows & agro-forestry areas (CLC class 231, 321 and 244); 

forests (CLC class 31 and 32, except 321); non-suitable habitat (CLC class 33); and inland 

waters (CLC class 41 and 51). We discarded forests, inland waters, and non-suitable areas 

from our dataset. Urban areas were defined based on a human population density layer (i.e., 

urban extents [UE] have a population density of ≥1,000 persons km
–2

; Supplementary 

Material Table S1). Distances between landfills, water bodies or urban areas, and nests were 

measured with a Distance matrix tool. Furthermore, we incorporated information on the 

current climate from WorldClim database version 2.1 (Supplementary Material Table S1). 

We used a resolution of 30 arc-sec (grid cell of 1  1 km size) for all the ecological and land 

cover variables. 

To ensure the independence of variables, we performed a hierarchical cluster analysis 

showing the similarity among all variables in a dendrogram, following the methodology 

presented by Polidori et al. (2021) (Dormann et al. 2013). We used one of the most 

commonly suggested methods based on the correlation matrix, the Ward-clustering (Harrell 

2001) (Figure 2A). The distance-threshold to form the clusters was established at 0.3 (i.e., 

<70% correlation). Among the 15 variables that passed this threshold, we chose the most 

derived variable in each cluster. Finally, we calculated a variance inflation factor (VIF) (Lin 

et al. 2011) and eliminated redundant variables that overestimated the variance (VIF > 5) 

(Stine 1995) (Supplementary Material Figure S1). The final set of selected variables included 

12 variables (Supplementary Material Table S1). 

We used QGIS 3.16.11 Hannover open-source software (QGIS Development Team 

2022). 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/advance-article/doi/10.1093/ornithapp/duad021/7190169 by U

niversidad C
om

plutense M
adrid user on 16 June 2023



Acc
ep

ted
 M

an
us

cri
pt

 

 

Future Climate Variables 

We gathered bioclimatic variables from WorldClim (CanESM5; 

https://www.worldclim.org/data/cmip6/cmip6climate.html) with 30 arc-sec resolution to 

explore changes in population dynamics in response to different climate change predictions. 

We selected a conservative and an extreme emission pathway (Shared Socioeconomic 

Pathways SSP1-2.6 and SSP5-8.5, respectively) for each scenario. Projections were 

calculated for 2 periods, 2041–2060 (2050) and 2061–2080 (2070). Predictions are referred 

herein as 2050–ssp1, 2050–ssp5, 2070–ssp1 and 2070–ssp5 for simplicity. We also obtained 

human population density and measured distance to urban areas from Global 1-km 

Downscaled Population Base Year and Projection Grids Based on the SSPs, v1.01 

(https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-

projection-ssp-2000-2100-rev01). We used Corine Land Cover 2018 to assess potential 

distribution of breeding pairs in our projections.  

 

Species Distribution Model 

We estimated the habitat suitability of White Storks through a set of SDMs using the 

occurrence data of nests surveyed in 2021 (n = 2,327), where Storks are known to use 

landfills. Habitat suitability is a type of potential distribution measure that relates 

environmental variables to the likelihood of occurrence of a species. In our case, habitat 

suitability relates the 12 selected anthropo-ecological variables to the occurrences of White 

Stork nests in the study area (Hirzel and Le Lay 2008). This parameter represents by values 

between 0 and 1, the low or high suitability (correspondingly) of the habitat at a scale of 1  1 

km for the species.  

We performed six different algorithms using the biomod2 library (Thuiller et al. 

2019): generalized linear model (GLM), generalized additive model (GAM), artificial neural 

network (ANN), Classification Tree Analysis (CTA), maximum entropy (MaxEnt) and 

Random Forest (RF). GLM represents an extension (i.e., a generalization) of the classical 

linear regression method (McCullagh and Nelder 1989). GAM does not use parametric 

shapes but rather let the data find the best solution, applying a selection of local smoothing 

functions along the predictors (Hastie and Tibshirani 1990). ANN find complex relations 

among the predictors, with a high tolerance to data uncertainty, and provides predicted 

variable patterns instantaneously (Ripley 1996). CTA uses an iterative optimization algorithm 

that searches to optimize a dichotomous decision key for explaining a dependent variable 

from a set of independent predictors (Breiman et al. 1984). MaxEnt is a correlative machine 

learning method that estimates a species’ potential distribution by finding the probability 

distribution using the highest uniformity (i.e., maximum entropy; Elith et al. 2006). RF is 

another machine learning method that developed out of Classification and Regression Trees 

and uses a collection of tree-structured weak learners comprised of identically distributed 

random vectors where each tree contributes to a prediction for the predictors (Breiman 2001). 

The average ensemble model based on 34 iterations of these 6 algorithms (204 

individual models) was used to predict the potential distribution of White Storks. The 

construction of background and pseudoabsences were based on a 1-km buffer from each nest 

based on the previous acquired knowledge of the species (Olsson and Bolin 2014, Zurell et 

al. 2018, Orłowski et al. 2019). In the areas within the buffers, we generated 10,000 random 

points to generate the background points, and outside these areas, we generated the same 

number of nest occurrences as random points to construct the pseudoabsences. 

Presence and pseudoabsence data of nest sites were split in 75/25% to generate an 

external Area Under the receiver operating characteristic Curve (AUC) evaluation for the 

final models, independently of the internal AUC evaluation of each individual model 

generated by biomod2. The 204 individual models were tested and only models with AUC > 
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0.7 were chosen (i.e., good to excellent performance of the model following the scale of 

Thuiller 2003). A final ensemble average model was then obtained. Finally, the final average 

model was evaluated though the external AUC test with 25% of the data. AUC value of the 

final model was 0.98, indicating an excellent discrimination capability. A cut-off value of the 

final model based on the lowest suitability values among all occurrences was also calculated 

with the bm_FindOptimStat function (0.532) to establish the areas of presence (>0.532) and 

absence (<0.532) of White Storks nests. 

We projected habitat suitability considering scenarios in which there were no landfills 

as a source of food under EU regulations. As the 2021 occurrences were strongly influenced 

by landfills (see Results), we cannot use them without biasing resource selection. To emulate 

the conditions that Storks would be subject to in the absence of landfills, we used nest survey 

data from 1984 (n = 215), when these birds did not yet forage at landfills. We performed 

another ensemble SDM with these occurrences and with the same methodology described 

above to obtain habitat suitability in future scenarios. Finally, we projected this model into 4 

future scenarios with the variables concerning 2050 and 2070 (2050–ssp1, 2050–ssp5, 2070–

ssp1 and 2070–ssp5) (see the future variables section below). AUC of this model was 0.98 

and cut-off value was 0.547. 

 

Statistical Analysis 

We use the function BIOMOD_RangeSize to evaluate change between 2021 and future White 

Stork breeding distribution in our study area. This function determines percent potential 

changes breeding distribution. Breeding population distribution in future scenarios was based 

on presences or absences of nests obtained from the cut-off value of the habitat suitability of 

each scenario We also considered the overlap between present and future distributions and 

the protected areas in Madrid. We considered the Peñalara National Park and Natura 2000 

areas as protected areas (Figure 1). 

 We performed a GLM with binomial distribution and logit error structure to 

determine differences in nest site selection (presence vs absence) in relation to environmental 

variables in the predicted model of 2021. Nest site selection is defined as the occupation of a 

particular nest site from all possible sites based on the characteristics of the environment. 

 We performed a logistic regression to evaluate habitat suitability variation, measured 

as changes in habitat suitability in each future scenarios, as a response to environmental 

variables. 

All statistical and spatial analysis were performed on R, v 4.2.2 program (R 

Development Core Team, 2015) using RStudio Software, v 1.1.453 (RStudio Team, 2015). 

 

RESULTS 
 

Breeding Population Distribution and Habitat Suitability 

Our methodology included all nests observed in each grid cell, allowing us to establish a 

relationship between habitat suitability and nest density in our projections. Therefore, higher 

nest density implies higher habitat suitability and vice versa. Suitability decreased in areas far 

from water bodies and far from urban areas with high human population density in all our 

projections (Table 1). Areas with high presence of power lines, higher percentage of 

agriculture fields and arable lands, higher forest coverage, lower percentage of pastures & 

agro-forestry, lower isothermality, and higher precipitation were also associated with reduced 

suitability (Table 1). In addition, average temperature of the warmest annual quarter had a 

significant negative impact on suitability in the extreme emission pathway, ssp5 (Table 1). As 

a result, projected higher suitability areas were located in floodplains of main rivers (Jarama, 

Henares, Manzanares and Tajo) and valleys of the Northern region and the West 
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municipalities of Madrid, which are associated with livestock (Figure 2). 

Areas with higher habitat suitability in 2021 were estimated to show the highest 

declines in nest density based on our projections: 2050-ssp1 (Est = –0.013 ± 0.0004, t = –

31.82, p < 0.0001), 2050 – ssp5 (Est = –0.013 ± 0.0004, t = –34.05, p < 0.0001), 2070-ssp1 

(Est = –0.013 ± 0.0004, t = –32.23, p < 0.0001), 2070-ssp5 (Est = –0.013 ± 0.0004, t = –

34.27, p < 0.0001). Therefore, our projection points out that nest density also declines in 

future scenarios (Figure 2). 

 

Nest Site Selection in 2021 

The ensemble model for 2021 distribution clearly revealed that the most important variable is 

distance to landfill (Figure 3). Other relevant variables influencing the suitability are distance 

to urban areas, distance to water bodies, percentage of forest cover, and climatic variables 

(isothermality, average temperature of the warmest annual quarter, and higher precipitation) 

(Figure 3).  

However, the most relevant variables in 1984 were human population density 

(39.84%), isothermality (22.35%), forest (18.27%), arable lands (17.78%), distance to water 

bodies (17.04%) and pastures & agro-forestry (12.73%). 

White Storks significantly prefer areas near landfills (Est = –0.002 ± 0.0001, Wald = 

–4.877, p < 0.0001), near water bodies (Est = –0.001 ± 0.0001, Wald = –3.958, p < 0.0001), 

with high percentage of pastures & agro-forestry (Est = 0.014 ± 0.004, Wald = 3.223, p < 

0.0001), lower percentage of arable lands (Est = –0.029 ± 0.005, Wald = –5.52, p < 0.0001), 

higher isothermality (i.e., day-to-night temperatures oscillations relative to the summer-to-

winter annual oscillations; , Est = 1.178 ± 0.244, Wald = 7.026, p < 0.0001), lower maximum 

temperature (Est = –0.227 ± 0.101, Wald = –2.257, p = 0.024) and lower precipitation in the 

coldest quarter (Est = –0.046 ± 0.017, Wald = –2.655, p < 0.0001) (Figure 4). Moreover, our 

ensemble model seems to show that White Storks avoided urban areas (Est = 0.0001 ± 0.001, 

Wald = 3.88, p = 0.008) in 2021 (Figure 4). None of the other environmental variables were 

significant (p > 0.05). 

 

Range Distribution Loss 

The actual breeding population distribution of White Storks in 2021 is 321 grid cells (321 

km
2
) and the model prediction estimation is 289 grid cells (289 km

2
) in 2021. Our models 

predicted a large reduction in the breeding population in all future scenarios. For instance, the 

distribution range of the breeding population diminished by 56.40% in 2050-ssp1 and 70.16% 

in 2070-ssp1 (Figure 5), compared to 2021. Pronounced breeding population declines were 

predicted in the extreme emission pathway scenario, declining by 77.16% in 2050-ssp5 and 

92.73% in 2070-ssp5 when compared to distribution ranges from 2021 (Figure 5). Both 2050-

ssp5 and 2070-ssp5 highlight the high impact of climate change on White Stork breeding 

populations; the distribution ranges are even lower than the smallest distribution range 

recorded for this species (in 1984), when breeding area was 73.36% smaller than in 2021. 

The model projections also showed an interesting spatial pattern. Loss of potential 

distribution range mainly occurred in the nearby area of 3 out of the 4 major landfills of 

Community of Madrid (Colmenar Viejo, Pinto and Las Dehesas). In fact, the potential 

distribution range in the nearby area of Alcala de Henares (East landfill) increased in 2050-

ssp1, 2050-ssp5 and 2070-ssp1 when compared to Henares River (Figure 5).  

Protected Areas 

In 2021, more than a half of the predicted breeding areas overlapped with protected areas 

(62.28%). While the potential breeding population distribution area decreased in our 

projections (see above), the percentage of potential distribution of breeding areas overlapping 

with protected areas in 2050-ssp1 (69.05%), 2050-ssp5 (65.15%) and 2070-ssp1 (63.95%) 
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remained similar to population distribution in 2021. However, the percentage of overlap with 

protected areas decreased to 42.86% in the extreme emission pathway scenario in 2070 (i.e., 

2070-ssp5).  

 

DISCUSSION 

Our projections showed a significant reduction in population distribution and suggested a 

decline in the habitat suitability in the absence of landfills. Our model results agreed with 

predictions from previous studies in gulls and vultures (Duhem et al. 2008, Tauler-Ametller 

et al. 2017), supporting the importance of close proximity to landfill in nest-site selection 

above every other variable. This indicates the role of landfills as reliable and abundant food 

resources during breeding season (López-García et al 2021).  

Several processes potentially underly the predicted reduction in Stork population 

distribution and suitability in the absence of landfills. As a consequence of landfill closure, 

breeding pairs may increase range size to cope with the decrease in food abundance (Zurell et 

al. 2018) while food uncertainty reduces feeding success rate (Cowie 1977, Olsson and Bolin 

2014). Larger home ranges along with food uncertainty would produce an increase in 

energetic demands and less time devoted to parental investment (Schoener 1971). Lower 

feeding rates may have negative effects on body condition and nourishment of both adults 

and nestlings (Tauler-Ametlller et al. 2019, Pineda-Pampliega et al. 2021), impacting adult 

survival and breeding success (Steigerwald et al. 2015, Delgado et al. 2021). Unsuccessful 

breeding pairs would likely progressively replace original nesting areas with areas with 

higher availability of food resources (Vergara et al. 2006). Secondly, the absence of extra 

food-supply promotes intra-specific competition and territoriality (Hixon 1980), restricting 

breeding opportunities for young breeders and poor-quality individuals (Vergara et al. 

2007b). In fact, we found the strongest declines of future suitability in areas near landfills 

with higher suitability in 2021. Third, this sudden change in anthropogenic food resources 

was described to directly lead to diet shifts in gulls (Zorrozua et al. 2020, Spelt et al. 2021). 

The increase in pressure on natural prey may produce temporary imbalances of the system 

with potential ecological consequences such as local extinctions of some prey species. 

In addition to the effect of landfill closure, our projections show that climate change 

can have dramatic consequences on future breeding population distribution. Future climate 

predictions indicate extreme temperatures, lower precipitation, marked seasonality, and 

extreme climatic phenomena (e.g., droughts and frost events) which may relocate European 

birds to more temperate areas (Barbet-Massin et al. 2012). According to this, our study 

region, which is characterized by a Mediterranean climate, would likely see White Storks 

shift their distribution towards areas with higher isothermality (i.e., showing the thermal 

―stability‖ of a region relative to annual variations in temperature), such as floodplains or 

valleys as our results suggested. These geographic regions overlap with areas typically 

preferred by White Storks, and their protection should be considered to preserve this species 

(Carrascal et al. 1993, Nowakowski 2003, Radović et al. 2015). Higher maximum 

temperatures and short periods of extreme precipitation have previously been demonstrated to 

have a direct negative impact on body condition and survival of nestlings (Carrascal et al. 

1993, Jovani and Tella 2004, Fasolǎ-Mǎtǎsaru et al. 2018).  

Climate change also indirectly impacts population dynamics through variation in 

abundance and distribution of food resources whereas land-use changes may decrease most 

suitable feeding areas. While our study population showed consistent preference for breeding 

areas with pasture and agro-forestry and near water bodies, similar to other European 

populations (Radović et al. 2015, Zurell et al. 2018, Bialas et al. 2020), several studies 

forecasted a decrease in pastures in the future mainly due to the scarcity of water and land-

use changes (Riahi et al. 2017, Fitton et al. 2019). Furthermore, scarce precipitation may 
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reduce several typical prey species of White Storks (e.g., amphibians, earthworms or insects) 

(Markovic et al. 2014, Wessely et al. 2017, Fourcade and Vercauteren 2022). Nonetheless, 

the ability of generalist species to exploit new food resources, like invasive species, may 

mitigate landfill closure and climate change effects in some areas of the breeding distribution 

(Negro et al. 2014). 

Our models showed that increasing urbanization restricted the already limited White 

Stork population distribution in future scenarios. Even when White Storks show some 

tolerance to human presence, as demonstrated by their habit of constructing nests on 

buildings, this species is not typically found in densely populated urban areas (Hmamouchi et 

al. 2020). High human densities induce physiological stress in White Storks, and the high 

percentage of impervious cover in massive cities reduces their access to food resources 

(Garroway and Sheldon 2013, Lowry et al. 2013, Blas et al. 2018). 

Effective conservation measures have been diluted as White Stork population have 

increased in the last decades (ALG personal observation). Deterrent devices as well as nest 

removal have been promoted or, at least, treated with permission by administration entities 

(Garrido and Fernandéz-Cruz 2003, Vergara et al. 2007a, Moreira et al. 2018). It is 

particularly noticeable that current protected areas overlap with a significant percentage of 

the current population distribution but not in the 2070-ssp5 scenario, when projected 

population distribution is more restricted. This highlights the potential risk of White Storks to 

become endangered again. 

This study provides relevant information that can be used in strategic planning for the 

management of wildlife which rely on landfills. Landscape-scale planning for restoration and 

conservation of wetlands, as well as pastures and meadows, should be a priority in areas 

adjacent to landfills in addition to a gradual landfill closure process. Furthermore, periodical 

monitoring programs of breeding populations along with GPS tracking of fledglings and 

breeding individuals are excellent tools to evaluate population dynamics and determine 

changes in habitat use (Rodríguez et al. 2012, Bouten et al. 2013). 

 

Conclusions 

In summary, our model projections of White Stork breeding population showed a strong 

reduction in range of distribution and habitat suitability of this species in all future scenarios 

in the absence of landfills. This reduction could become dramatic when we consider the 

extreme emission pathway and human population expansion (ssp5). However, landfill closure 

does not necessarily imply the collapse of the White Stork population. Gradual changes in 

landfill management, protection of natural feeding areas, and a reduction in environmental 

pollution and greenhouse gas emissions may contribute to White Stork conservation and may 

likely allow their population to adjust to landfill closures with no severe declines. 
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Figure 1. Map of our study area, the Community of Madrid. Rivers and water bodies are 

represented in blue and the Municipality of Madrid by the dark grey area in the center of the 

map. The protected natural areas of this region are marked in green. Landfills are represented 

by triangles and numbered: (1) Colmenar Viejo, (2) Alcalá de Henares, (3) Las Dehesas, and 

(4) Pinto. 

 

Figure 2. Habitat suitability in 2021 (A) and in future scenarios (B). Maps (B) show a 

decrease in the maximum habitat suitability in future, which are even more pronounced in 

extreme emission pathway scenarios (ssp5). Landfills are represented by white triangles. 

High suitability is represented in red and low suitability in blue. 

 

Figure 3. Importance of the variables considered in our models: in 2021 (A) and in 1984 (B) 

with different algorithms: general linear model (GLM); artificial neural network (ANN), 

classification tree analysis (CTA), Random Forest (RF), maximum entropy (MaxEnt), 

generalized additive model (GAM), and the ensemble model (Mean). Landfill is the most 

important variable independently of the algorithm that we use. Variables: Landfill = distance 

to the nearest landfill; Water distance = distance to water bodies; Length power lines = length 

of the power lines; Agri = percentage of agricultural crops; Arable = percentage of arable 

lands; Index Forest = coverage of forest and density of trees; Pasture & AF = percentage of 

pastures and agro-forestry areas; Urban distance = distance to urban areas; Human dens = 

density of human population; Isotherm = Isothermality; Max temp = Maximum temperature 

of the warmest annual quarter; Cold quarter precip = precipitation of the coldest annual 

quarter. 

 

Figure 4. Differences in the environmental variables between the presence points and 

absence points. Outliers with a value more than 1.5 times the interquartile range are shown as 

circles. 

 

Figure 5. Changes in potential breeding population distribution of White Stork in 

Community of Madrid in absence of food availability from landfills and with different 

climate change future scenarios (ssp1 and ssp5). Landfills are represented by white triangles. 

Names corresponding to each landfill can be found in Figure 1. 
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Table 1. Predicted future habitat suitability variation considering different environmental 

variables under each respective climate-change scenario. *** Indicates the significance p < 

0.001. 
 
Variables Estimate SE t value p  

2050-SSP1      

Water distance –0.001 0.001 –48.775 <0.0001 *** 

Power lines 0.002 0.001 9.644 <0.0001 *** 

Agri –0.090 0.004 –21.205 <0.0001 *** 

Arable –0.123 0.003 –45.552 <0.0001 *** 

Index forest –0.151 0.006 –23.697 <0.0001 *** 

Pasture & AF 0.028 0.003 9.496 <0.0001 *** 

Urban distance –0.001 0.001 –33.216 <0.0001 *** 

Human dens –0.002 0.001 –29.331 <0.0001 *** 

Isotherm 1.002 0.096 10.398 <0.0001 *** 

Max temp –0.023 0.088 –0.261 0.794  

Cold quarter precip –0.017 0.002 –7.886 <0.0001 *** 

2050-SSP5      

Water distance –0.001 0.001 –43.818 <0.0001 *** 

Power lines 0.001 0.001 8.465 <0.0001 *** 

Agri –0.056 0.004 –14.451 <0.0001 *** 

Arable –0.093 0.002 –37.476 <0.0001 *** 

Index forest –0.118 0.006 –19.988 <0.0001 *** 

Pasture & AF 0.033 0.003 12.103 <0.0001 *** 

Urban distance –0.001 0.001 –37.163 <0.0001 *** 

Human dens –0.002 0.005 –33.776 <0.0001 *** 

Isotherm 1.113 0.098 11.408 <0.0001 *** 

Max temp –0.277 0.083 –3.326 <0.001 *** 

Cold quarter precip –0.018 0.002 –8.711 <0.0001 *** 

2070-SSP1      

Water distance –0.001 0.001 –46.248 <0.0001 *** 

Power lines 0.001 0.001 9.152 <0.0001 *** 

Agri –0.075 0.004 –18.27 <0.0001 *** 

Arable –0.116 0.003 –44.126 <0.0001 *** 

Index forest –0.143 0.006 –22.944 <0.0001 *** 

Pasture & AF 0.031 0.003 10.808 <0.0001 *** 

Urban distance –0.001 0.001 –33.194 <0.0001 *** 

Human dens –0.002 0.001 –31.616 <0.0001 *** 

Isotherm 0.719 0.096 7.459 <0.0001 *** 

Max temp 0.096 0.085 1.120 0.263  

Cold quarter precip –0.019 0.002 –9.474 <0.0001 *** 

2070-SSP5      

Water distance –0.001 0.001 –38.505 <0.0001 *** 

Power lines 0.001 0.001 9.671 <0.0001 *** 

Agri –0.052 0.004 –13.945 <0.0001 *** 

Arable –0.073 0.002 –30.837 <0.0001 *** 

Index forest –0.098 0.007 –17.294 <0.0001 *** 

Pasture & AF 0.035 0.003 13.355 <0.0001 *** 

Urban distance –0.003 0.001 –38.42 <0.0001 *** 

Human dens –0.002 0.001 –39.513 <0.0001 *** 

Isotherm 1.395 0.104 13.41 <0.0001 *** 

Max temp –0.602 0.086 –7.013 <0.0001 *** 

D
ow

nloaded from
 https://academ

ic.oup.com
/condor/advance-article/doi/10.1093/ornithapp/duad021/7190169 by U

niversidad C
om

plutense M
adrid user on 16 June 2023



Acc
ep

ted
 M

an
us

cri
pt

 

 

Cold quarter precip –0.013 0.002 –6.461 <0.0001 *** 

 

Variables: Water dist = distance to water bodies; Power lines = length of the power lines; 

Agri = percentage of agricultural crops; Arable = percentage of arable lands; Index forest = 

coverage of forest and density of trees; Pasture & AF = percentage of pastures and agro–

forestry areas; Urban distance = distance to urban areas; Human dens = density of human 

population; Isotherm = Isothermality; Max temp = Maximum temperature of the warmest 

annual quarter; Cold quarter precip = precipitation of the coldest annual quarter. 
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Figure 1 
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Figure 3 
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Figure 5 
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