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An effective Hamiltonian in Coulomb gauge is used to model Quantum Chromodynamics (QCD) at
the hadronic scale, including confinement through a linear potential plus an hyperfine correction due
to a transverse gluon exchange. Using standard many-body techniques, quarks are represented as
quasiparticles performing a Bogoliubov-Valatin rotation, diagonalizing the Hamiltonian. Minimizing
the Hamiltonian expected value, the mass gap equation is obtained, whose solutions are defined as
the vacua of the theory. This equation is solved numerically and an analysis of these vacua is carried
out. Finally, a comparison to typical models appearing in cosmology is shown.

I. INTRODUCTION

The spontaneous symmetry breaking (SSB) of the chi-
ral symmetry SU(2)L × SU(2)R in QCD (with two light
quarks) is responsible for many physical consequences.
One of them is the division of vacua (defined as extremal
points of the expected value of the Hamiltonian) in two
different classes: a chirally symmetric class and another
class which breaks chiral invariance. The first type of
vacua is the well known perturbative QCD vacuum |0〉.
Due to the SSB of the chiral symmetry, it is not the
ground state of the theory. The second type of vacua
can be studied diagonalizing the Hamiltonian through a
Bogoliubov-Valatin rotation, the same technique used in
the BCS theory for superconductivity, leading to a coher-
ent vacuum state of interacting quasiparticles. We will
denote the quasiparticle vacuum (or BCS vacuum) as |Ω〉
and this is precisely the ground state of the theory. The
QCD vacuum space can then be visualized like a Mexi-
can hat potential, with the perturbative vacuum at the
top of the hat.

However, QCD may possess excited vacuum states
called replicas or false vacua (see [1] for example) which
also break chiral invariance. Here is where we have to
understand a vacuum as an extremal point of 〈H〉. If
these replicas are truly metastable, the hadronic spec-
trum built on them would also be metastable yielding
new resonances, but the stability of the replicas will be
a topic of discussion through the paper.

This work has the following structure. In Sec. II we
develop the formalism of the model Hamiltonian used to
represent QCD. In Sec. III, we explain the BCS transfor-
mation and how it leads to the mass gap equation, whose
solutions are defined as the vacua of the theory and nu-
merically found. In Sec. IV we analyse the stability of
these solutions, the resulting vacuum picture and some
other properties of the mass gap equation solutions, such
as the quark condensate, the degree of symmetry break-
ing or at which temperature a gas of pions would pop-
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ulate the replicas. Finally, in Sec. V we try to look for
an analogy of this model in cosmology, in particular in a
scalar inflation theory.

II. EFFECTIVE HAMILTONIAN

As is well known, a perturbative approach to QCD is
only possible at high energies, where the coupling con-
stant is small compared to the scale of the theory. If we
have to deal with low energies, we need to make use of
other tools such as effective theories. In this work we
represent QCD in the Coulomb gauge

H = Hq +Hg +Hqg + VC , (1)

with

Hq =

∫
d3xΨ(~x)†(−i~α · ~∇+ βmq)Ψ(~x), (2)

Hg = Tr

∫
d3x [~Πa(~x) · ~Πa(~x) + ~Ba(~x) · ~Ba(~x)], (3)

Hqg = g

∫
d3x ~Ja(~x) · ~Aa(~x), (4)

VC = −1

2

∫
d3xd3y ρa(~x)V (|~x− ~y |)ρa(~y), (5)

by means of a model Hamiltonian. There Ψ and mq

are the (bare) quark field and mass, ρa(~x) = Ψ†xT
aΨx

and ~Ja(~x) = Ψ†xT
a~αΨx are the density and current of

colour respectively, with T a the generators of SU(3), g

is the QCD coupling, ~Aa are the gauge fields, ~Πa are

the conjugate fields and ~Ba are the non-abelian magnetic
fields defined by

~Ba ≡ ~∇× ~Aa +
1

2
fabc ~Ab × ~Ac (6)

with fabc the structure constants of SU(3). For a com-
plete analysis of the Coulomb gauge Hamiltonian see [2].

Let us focus on the potential VC of Eq. (5). Any
model of the strong interaction should reflect the phe-
nomenon of confinement, that is, the absence of isolated
color charged particles (such as gluons or quarks) in the
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spectrum. In this work, we model confinement through
the potential VC . The VC part accounts for a Cornell
potential, i.e. a Coulomb potential due to the exchange
of a gluon plus a linear part which is responsible for con-
finement:

VCornell(k) = −4π
αs
k2
− 8π

σ

k4
(7)

where αs is the coupling in QCD and σ is a string tension
constant, which can be inferred from experimental data
(for example, of charmonium spectrum) in Lattice QCD
calculations.

In particular, we use a modified Cornell potential nu-
merically fitted to pure Yang-Mills variational computa-
tions (see [3])

V (p) =


C(p) ≡ −8.07

p2

log−0.62
(
p2

m2
g

+ 0.82
)

log0.8
(
p2

m2
g

+ 1.41
) if p > mg

L(p) ≡ −
12.25m1.93

g

p3.93
if p < mg

(8)
where the low momentum component is (numerically)
close to a pure linear potential and the other term rep-
resents a renormalized high energy Coulomb tail.

Because chiral symmetry is a feature of quarks, not
gluons, Hg is omitted and we substitute Hqg by a generic
transverse hyperfine interaction VT due to the exchange
of a transverse gluon:

VT =
1

2

∫
d3xd3y ~Jai (~x)Uij(~x, ~y) ~Jaj (~y), (9)

Uij(~x, ~y) =

(
δij −

∇i∇j
∇2

)
~x

U(|~x− ~y |), (10)

U(p) =

C(p) if p > mg

− Ch
p2 +m2

g

if p < mg
(11)

with a Yukawa type interaction at low momentum and
Ch a constant determined by matching the high and
low momentum regions. This interaction is sensible for
transferred momenta not much larger than the dynami-
cal mass of the gluon mg, which we are using as a scale
of the theory.

III. BCS TRANSFORMATION AND GAP
EQUATION

As we stated in Sec. I, when chiral symmetry is broken,
a new type of vacua arises. Because |0〉 is no longer the
ground state of the theory but |Ω〉 instead, the theory
has a non vanishing quark condensate 〈Ω|Ψ̄Ψ|Ω〉 6= 0.
The formation of these pairs can be seen in analogy to
the formation of Cooper pairs in superconductors. So,
following with the analogy, it is standard to use the BCS
many-body techniques to analyse the non-chiral ground
state (or simply BCS vacuum) |Ω〉.

We begin by writing the plane wave expansion of the
quark field

Ψ(~x) =
∑
cλ

∫
d3k

(2π)3

[
ucλ(~k)bcλ(~k) + vcλ(−~k)d†cλ(−~k)

]
ei
~k·~x

(12)
with ucλ, vcλ the particle, antiparticle bare spinors, bcλ,
dcλ the particle, antiparticle bare annihilation operators,
λ the spin state and c = 1, 2, 3 the color index which will
be suppressed hereafter.

We can expand Ψ in terms of any complete basis, so
we choose to expand it using a new quasiparticle basis

Ψ(~x) =
∑
λ

∫
d3k

(2π)3

[
Uλ(~k)Bλ(~k) + Vλ(−~k)D†λ(−~k)

]
ei
~k·~x.

(13)
The two basis are related by a linear transformation
called Bogoliubov-Valatin transformation (see [4], [5] for
an in-depth treatment):

Bλ(~k) = αkbλ(~k)− βkd†λ(~k), (14)

Dλ(−~k) = αkdλ(−~k) + βkb
†
λ(~k). (15)

The coefficients αk, βk only depend on |~k|, are real and
c-numbers. This transformation is canonical if and only
if the new operators obey the same commutation laws as
the original ones

{Bk, B†k′} = {Dk, D
†
k′} = δkk′ . (16)

This implies |αk|2 + |βk|2 = 1 and we can implement this
transformation as a rotation, parametrized by an angle
θ(k) ≡ θk called the BCS angle, which is a function of
k. This parametrization yields the next relation between
the two basis

Bλ(~k) = cos
θk
2
bλ(~k)− λ sin

θk
2
d†λ(~k), (17)

Dλ(−~k) = cos
θk
2
dλ(−~k) + λ sin

θk
2
b†λ(~k). (18)

It is more convenient to work in terms of the gap angle
φk ≡ φ(k), which is related to the BCS angle by φ = θ+α,
where α is the perturbative mass angle which satisfies

sinα = mq/Ek, and Ek =
√
m2
q + k2. Then the rotated

quasiparticle spinors can be expressed in terms of the
original spinors as follows

Uλ(~k) = cos
θk
2
uλ(~k)− λ sin

θ

2
vλ(−~k)

=
1√
2

 √
1 + sinφk ξλ

√
1− sinφk ~σ · k̂ ξλ

 ,
(19)

Vλ(−~k) = cos
θk
2
vλ(−~k) + λ sin

θ

2
uλ(~k)

=
1√
2

−√1− sinφk ~σ · k̂ iσ2 ξλ
√

1 + sinφk iσ2 ξλ

 (20)
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with ξλ a two-dimensional Pauli spinor.
The trivial vacuum, defined by bλ|0〉 = dλ|0〉 = 0, is

related to the BCS vacuum, defined by Bλ|Ω〉 = Dλ|Ω〉 =
0, by the transformation

|Ω〉 = exp

(
−
∑
λ1,λ2

∫
d3k

(2π)3
(~σ · k̂)λ1λ2 tan

θk
2

×b†λ1
(~k)d†λ2

(−~k)

)
|0〉.

(21)

If we expand the exponential, we see the operators b†d†

create a quark/antiquark pair current, showing the BCS
vacuum as a coherent state of qq̄ excitations represent-
ing a 3P0 condensate. Notice that, in the infinite volume
limit, the trivial vacuum and the BCS vacuum are or-
thogonal 〈Ω|0〉 = 0.

The main goal of this work is to find and analyse the
vacua of this theory, that can be defined as extremal
points of the Hamiltonian expected value, which in the
new basis is

ρ ≡〈Ω|H|Ω〉
V

=

∫
d3k

(2π)3
[
− 6(kck +mqsk)

− 2

∫
d3q

(2π)3
V̂ (|~k − ~q |)(1− sksq − ckcqx)

+ 4

∫
d3q

(2π)3
Û(|~k − ~q |)(1 + sksq) + cqckŴ (|~k − ~q |)

]
(22)

where ρ is the energy density of the system such that∫
d3x ρ = H, sk ≡ sinφ(~k), ck ≡ cosφ(~k) and

Ŵ (|~k − ~q |) ≡ x(|~k|2 + |~q |2)− |~k||~q |(1 + x2)

|~k − ~q |2
Û(|~k − ~q |)

(23)

with x = k̂ · q̂. To minimize this expected value, we use
the gap angle φk as a variational parameter

δ〈Ω|H|Ω〉
δφk

= 0. (24)

This leads to an equality known in the literature as the
mass gap equation

ksk−mqck =
2

3

∫
d3q

(2π)3
V̂ (|~k − ~q |)[skcqx− cksq]

− 4

3

∫
d3q

(2π)3
(
cksqÛ(|~k − ~q |)− cqskŴ (|~k − ~q |)

)
.

(25)

The solutions φi(k) ≡ φik of this equation, substituted
with θk = φk−arctan(mq/k) in Eq. (21), are interpreted
as possible vacua of the theory, so we need to solve this
nonlinear integral equation. It is precisely the nonlin-
ear character of this equation what allows the existence
of other solutions besides the perturbative and the BCS
vacuum.

The angular integrals can be analytically evaluated

ksk −mqck =
1

6π2

∫ ∞
0

dq q2[skcqV1 − cksqV0

− 2(cksqU0 − cqskW0)]

(26)

where

In =

∫ 1

−1
dx I(|~k − ~q|)xn (27)

with I = V,U,W from Eqs. (22) and (23). Let us first
consider the chiral limit mq = 0. In this limit, it is
straightforward to check that we have the trivial solution
sinφk = 0. This solution is clearly the trivial vacuum |0〉
(there is no rotation). The non-trivial solutions on the
other hand need to be found numerically. In addition, in
this limit mq → 0 the mass gap equation is symmetric
under the exchange of the sinφk sign, that is, if sinφk is
a solution, then − sinφk is a solution as well.

For the case mq = 0, we find three solutions which can
be seen in Fig. 1. The first solution, φ0k, represents the
BCS vacuum |Ω〉. The next two solutions, φ1k and φ2k,
represent the two first excited vacua or replicas.

Once the mass gap has been solved, we can calculate
the vacuum quark-antiquark condensate given by

〈q̄q〉 ≡ 〈Ω|Ψ̄(0)Ψ(0)|Ω〉 = − 3

π2

∫ ∞
0

dk k2 sinφk. (28)

This condensate is quadratically UV divergent for mq 6=
0, so beyond the chiral limit we need to regulate this by
subtracting the trivial vacuum contribution

〈q̄q〉reg = − 3

π2

∫ ∞
0

dk k2
(

sinφk −
mq

Ek

)
. (29)

Although the bare quark mass is given by the parame-
ter mq, when we consider quasiparticles we can introduce
a dressed or constituent mass M(k) for the quasiparticle
(see [6] for further details). This constituent mass is re-
lated with the gap angle by

sinφ(k) =
M(k)

E
(30)

with E =
√
M2(k) + k2. So once we have found the

solutions φ0k, φ1k, φ2k, it is straightforward to calculate the
associated constituent masses. For the case mq = 0, the
dressed masses M(k) can be seen in Fig. 2. We can notice
the solutions are characterized by the nodes the mass plot
has, with the BCS solution having no nodes and the first
and second replica having one and two respectively.

We can try to add a small current mass of mq = 1 MeV
to the quark and analyse the solutions. In this case we
have only found two solutions instead of three (Fig. 3),
the BCS solution φ0k and the first replica φ1k. Although
we thoroughly examined the solution space, we weren’t
able to reproduce the second replica we find in the chiral
limit. This is probably caused by the addition of a small
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FIG. 1. The first three (non trivial) solutions of the mass
gap equation in the chiral limit mq = 0. We have analogous
solutions under the exchange sinφk ↔ − sinφk, but we choose
here to show only the first quadrant solutions.

FIG. 2. Constituent mass function of the quark M(k) in the
chiral limit mq = 0. From top to bottom, they correspond to
the φ0

k, φ1
k and φ2

k solutions.

FIG. 3. The first two (non trivial) solutions of the mass gap
equation with mq = 1 MeV. We show φ1

k with a sign change
to compare it with the chiral limit in Fig. 1.

FIG. 4. Constituent mass function of the quark M(k) with
mq = 1 MeV. From top to bottom, they correspond to the
φ0
k, and φ1

k solutions.
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current mass, which provokes the second replica to be
closer to the origin making it more numerically challeng-
ing. A more subtle study may be needed to find this
solution and more excited vacua. The dressed masses of
the solutions for the case mq = 1 MeV can be seen in
Fig. 4, showing the same behaviour as in the chiral limit
case.

IV. EXTREMAL POINTS ANALYSIS

Now that we have found several solutions for the mass
gap equation, we can analyse the properties of these repli-
cas. In [7], the Lisbon investigators have suggested that
in a similar model (with an harmonic potential) the vac-
uum replicas may be metastable. So the main objective
of this section is to check if in this model the excited
vacua we have found are metastable or unstable. If they
are indeed metastable, we can build a hadronic spectrum
in the replicas and study its properties. If they are not,
the system can classically decay from the replicas to the
BCS vacuum and no stable hadronic spectrum would be
possible in the excited vacua. From now on, we will only
study the solutions within the chiral limit mq = 0. This
is motivated by two main reasons. First, this is the limit
used in [7], where it is discussed that it is enough to study
this case, because the addition of a small current mass for
the quark mq = 1-5 MeV can be seen as a small increase
in the constituent mass of the quark M(k), not chang-
ing the general picture of the model. Second, it seems

logical to use the chiral limit in our case because it is
where we have found more solutions, so we have a richer
vacua structure. However, the analysis we will carry out
is completely analogous for a small current quark mass.

Although the mass gap equation solutions are extremal
points of the energy density (recall Eq. (24)), to study if
the replicas are metastable we need to calculate the sec-
ond functional derivative of the vacuum energy density

F (k, q) =
δ2〈Ω|H|Ω〉
δφqδφk

. (31)

The fastest way to asses the positivity (or otherwise)
of such a quadratic form is to look at the sign of the
eigenvalues of its matrix evaluated at each solution φik of
Eq. (25). If all the eigenvalues are strictly positive, i.e.
the matrix is definite positive, the solution corresponds
to a minimum. If the eigenvalues are all negative, it is
a maximum. Finally, if the eigenvalues are mixed, the
solution is a saddle point. In the first case and inter-
preting φk as a classical effective field, there would not
be any classical trajectory to decay from that solution to
another and the vacuum would be metastable. However,
in the last two cases there would be classical trajecto-
ries to decay and the vacuum would be unstable. The
eigenvalue equation for this matrix reads∫

d3q

(2π)3
F (k, q)ψi(q) = λiψi(k) (32)

which in the model of Eq. (22) leads to

λiψi(k) =6(kck +mqsk)ψi(k)− 4

∫
d3q

[
V̂ (|~k − ~q |)(sksq + cqckx) + 2Û(|~k − ~q |)sksq + 2ckcqŴ (|~k − ~q |)

]
ψi(k)

+ 4

∫
d3q

(2π)3

[
V̂ (|~k − ~q |)(ckcq + sqskx) + 2Û(|~k − ~q |)ckcq + 2sksqŴ (|~k − ~q |)

]
ψi(q).

(33)

TABLE I. Summary of the nature of the mass gap equation
solutions (vacua) for the model. Eq. (33) is discretized in a
grid of 600 points to yield mostly positive eigenvalues, but we
list here whether any of them is negative.

Vacuum Critical point # negative eigenvalues
Perturbative Saddle point 3

BCS Minimum 0
1st replica Saddle point 1
2nd replica Saddle point 2

We solve the eigenvalue problem numerically, finding
the results summarised in Table I. As we expected, the
BCS vacuum φ0k is a minimum, so it is stable and there
is, presumably, where the QCD hadronic spectrum lives.
Regarding the perturbative vacuum, it is a saddle point
and therefore it is unstable. Although from the men-

tal picture of the Mexican hat we introduced at the be-
ginning of the paper some might argue the perturbative
vacuum has to be a maximum, the Mexican hat is just
a graphical assistance to visualize the idea of the two
classes of vacua. Actually, we are working in the space
function L2 for the gap function sinφ(k), which is an in-
finite dimensional space and the vacuum picture is not as
clear as a Mexican hat. However, the instability of the
perturbative vacuum fits with the spontaneous symme-
try breaking of the theory and its (classical) decay to the
BCS vacuum. Finally, we find both replicas φ1k and φ2k
are saddle points and hence they seem to be classically
unstable.

As we mentioned before, the Lisbon investigators
found in [7] that these replicas are metastable. This fol-
lows from the orthogonality of the Fock spaces of the
vacua (in the infinite volume limit, although even for
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small volumes the Fock spaces are for all intents and pur-
poses orthogonal). This orthogonality prevents the decay
from one replica to another via the emission of particle-
antiparticle pairs, because it builds an effective infinite
potential between the replicas.

In that case, the stability is addressed at a second level,
examining the creation of meson-like qq̄ states over the
replica. They obtained that

〈Ωi|[H,
∫

d3kΨB†kD
†
−k]|Ωi〉 (34)

is a matrix with only positive eigenvalues, where |Ωi〉
i = 1, 2 is the first replica and second respectively. This
means all the meson excitations they found in the replicas
have positive mass squared (no tachyons) (see [8] for a
confirmation of this result).

So it is not possible neither to decay from the replicas
varying the gap angle (due to the orthogonality of the
Fock spaces) nor in a trajectory with a constant gap angle
emitting mesons (because the spectrum has no tachyons).
Hence the replicas may seem stable.

However, the discussion is subtle. If for any gap angle
the Fock spaces are orthogonal and hence it is not possi-
ble to decay, it would not be necessary for the spectrum
to sit at a minimum of H. It could just live in a state with
any gap angle, no matter how many descending classical
trajectories existed because the effective infinite potential
would prevent the particles from decaying. This is also
true for the case of the trivial vacuum |0〉 and the BCS
vacuum |Ω〉, as it would not be possible to decay from the
first to the second due to their orthogonality. Therefore
it seems possible that there is some physical mechanism
that allows the QCD vacuum to relax to the BCS vac-
uum, so decays within the replicas and the BCS vacuum
would be possible. If this type of mechanism exists, from
our previous analysis the replicas would seem to be un-
stable. However, further investigation and discussion is
needed to clarify the nature of the replicas.

During all this work, we have assumed that the quark
condensate is a spacetime-independent constant that fills
all the space. However, there is another possibility. Some
investigators (see for example [9]) argue that the quark
condensate is only a matter of hadrons, and therefore it
only exists within a bubble surrounding the hadron with
enough radius for the gluons and quarks to propagate,
while the rest of the space is “empty” in terms of the
condensate (in analogy to the old quark model). This
hypothesis, if correct, completely solves the QCD contri-
bution to the cosmological constant problem. However,
this hypothesis is far from being broadly accepted by the
scientific community.

Although the space is infinite-dimensional, there is
a visual check we can carry out to see the space of
vacua. We take a slice of L2 by choosing a curve f(k)
parametrized by α ∈ R. We force this curve to go through
the four solutions we have found (including the trivial)
and we evaluate 〈Ω|H|Ω〉 in f(k). Then we can plot the
energy density (which is just a number) as a function of

the parameter α. We have chosen the following curve in
the function space:

f(k) =

[
4

3
(φ2k − φtk)− 4(φ1k − φtk) + 4(φ0k − φtk)

]
α3

+
[
−2(φ2k − φtk) + 8(φ1k − φtk)− 10(φ0k − φtk)

]
α2

+

[
2

3
(φ2k − φtk)− 3(φ1k − φtk) + 6(φ0k − φtk)

]
α

+φtk
(35)

where φtk is the trivial solution. It is easy to check that
for α = 0 we are in the trivial vacuum f(k) = φtk, for
α = 1/2 in the BCS vacuum f(k) = φ0k, for α = 1 in
the first replica f(k) = φ1k and for α = 3/2 in the second
replica f(k) = φ2k. We have already calculated the energy
density as a function of φk in Eq. (22), so making use of
the angular integrals already defined in Eq. (27), we have
to numerically calculate

ρ = − 3

π2

∫ ∞
0

dk (k3ck +mqk
2sk)

− 1

4π4

∫ ∞
0

dk k2
∫ ∞
0

dq q2
[
V0(1− sksq)− V1ckcq

− 2U0(1 + sksq)− 2ckcqW0

]
(36)

in φ(k) = f(k) for α ∈ [0, 3/2]. In fact, as in the case
of the quark condensate, we have to subtract the trivial
vacuum contribution ρt = 〈0|H|0〉/V to control the UV
divergence:

ρreg = − 3

π2

∫ ∞
0

dk (k3(ck − 1) +mqk
2sk)

+
1

4π4

∫ ∞
0

dk k2
∫ ∞
0

dq q2
[
V0sksq + V1(ckcq − 1)

+ 2U0sksq + 2W0(ckcq − 1)
]
.

(37)

We can see in Fig. 5 the results for representing this slice
of the function space.

In this slice we recover the Mexican hat form for the
trivial and BCS vacuum, with the excited vacua follow-
ing. From the point of view of such slice, the replicas
(that we found are saddle points), look like maxima.
However, if we represent the same picture only with pairs
of vacua, using the parametrization

f(k) = αφik + (1− α)φjk (38)

as we can see in Figs. 6, 7 and 8, we recover the saddle
point appearance. From the trivial vacuum, the trajec-
tory is descending for both replicas. However, from the
BCS vacuum to the replicas the trajectory is ascending
in both cases. This is an illustration of the mixed eigen-
values we found for the replicas.

Turning to our numerical results, we found for the first
and second replicas respectively the following energy
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FIG. 5. Energy density along a slice of the function space
for the vacua in the chiral limit mq = 0. We plot ρreg −
ρBCS, whereρBCS is the regularized energy density of the BCS
vacuum φ0

k, so the BCS vacuum is the 0 energy level.

FIG. 6. Energy density along trajectories from the trivial
vacuum to the BCS vacuum and the two replicas.

FIG. 7. Energy density along trajectories from the BCS vac-
uum to the two replicas.

FIG. 8. Energy density along a trajectory from the first
replica to the second replica.
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densities:

ρ1 = (0.1181mg)
4 = 3.30 MeV/fm3, (39)

ρ2 = (0.1182mg)
4 = 3.31 MeV/fm3, (40)

where mg = 600 MeV is the scale for the theory and they
are measured from the BCS ground state φ0k.

Next we can calculate the quark condensate for each
solution by means of Eq. (29). In the chiral limit mq = 0
we have

〈q̄q〉φt = 0, (41)

〈q̄q〉φ0 = −(178 MeV)3, (42)

〈q̄q〉φ1 = (73 MeV)3, (43)

〈q̄q〉φ2 = −(61 MeV)3. (44)

Adding a small quark mass mq = 1 MeV we find

〈q̄q〉φ0 = −(189 MeV)3, (45)

〈q̄q〉φ1 = −(111 MeV)3. (46)

For this calculation we have recovered the small quark
mass case we found the solutions for in Sec. III because
it will help us to understand the sign of the quark conden-
sate. First, we can compare the value of the quark con-
densate in the BCS solution φ0k with recent Lattice esti-
mations of this value (see [10]). Our result is smaller than
the latest Lattice calculations of 〈q̄q〉φ0 = −(272 MeV)3.
Turning off the hyperfine interaction of Eq. (9), the value
of the condensate decrease to about −(120 MeV)3. We
therefore conclude an improved model may be needed to
reach the Lattice estimation for the condensate, includ-
ing higher order terms to the Hamiltonian.

Let us turn now to the sign of the quark condensate
and the dressed quark mass M(k). First, consider the
constituent masses M(k) we have shown in Fig. 2 and 4.
We can see in these figures the dressed mass has negative
parts, what seems unphysical. However, M(k) has to
be understood as an auxiliary function for a confined
quark, not like a physical mass. In fact, the masses of
the physical mesons can be calculated in the BCS vacuum
and in the replicas and they have positive mass (see [7],
[8]). Now consider the quark condensate calculated in
Eq. (29). We can see it has an explicit minus sign and the
result is expected to be negative, which is what happens
in all the solutions except for the first replica in the chiral
limit, as we can see in Eq. (43). We can understand the
change in the sign making use of the Gell-Mann-Oakes-
Renner relation

−〈q̄q〉mq(µ) = m2
πf

2
π (47)

where mπ and f2π are respectively the mass and decay
constant of the pion and µ is the renormalization scale.
This relation yields several interesting results. We now
understand that what is a physical quantity is not the
condensate or the quark mass, but the product of them
(eventually, mq(µ) → M(k = µ)). In that case, the

left side of the identity has to be positive, so if we have
a positive condensate, the dressed mass has to be neg-
ative. And this is exactly what happens for the first
replica in the chiral limit, as we can see in Fig. 2, the
dressed mass has mainly negative values. Notice the op-
posite happens with mq = 1 MeV, the quark condensate
is negative (Eq. (46)) because the dressed quark mass is
positive (Fig. 4).

The constituent quark mass M(k) characterizes the
degree of symmetry breaking. We can analyse how the
increase of the current quark mass mq affects the chiral
symmetry breaking. We plot the dressed quark mass
M(k) in the BCS vacuum φ0k for different values of mq

(Fig. (9)). We can see for a small value of mq = 5 MeV,
which is characteristic of the u and d quarks, the degree
of chiral symmetry breaking remains close to the chiral
limit mq = 0. When we increase the current quark mass
to mq = 30, 100 MeV, characteristic of the s quark, the
degree of chiral symmetry breaking has rapidly increased
and when we arrive to masses of about the c quark, with
mq = 1500 MeV, the symmetry is completely broken.

FIG. 9. Constituent quark mass of the BCS solution φ0
k for

different current quark masses. From bottom to top, mq =
0, 5, 30, 100, 1500 MeV. The subtraction of mq is convenient
to compare the relative intensity of vacuum chiral symmetry
breaking.

To finish this section, we can calculate at what tem-
perature a gas of pions (that are the first excitation ap-
pearing over |Ωi〉) populate the excited vacua. This will
give us some insight in how much temperature would be
necessary to reach the replicas and if the needed tem-
perature is lower than the phase transition from gas to
plasma, allowing the gas to occupy the replicas.

We use the energy density of the gas of pions calculated
in the frame of reference where the gas is at rest (see [11]
and references therein)

ρgas(T ) = g

∫
d3k

(2π)3

√
m2
π + k2

e
√
m2
π+k

2/T − 1
(48)

where g = 3 is the degeneration for the pion isospin
triplet, mπ is the pion mass and T is the temperature.
We can easily calculate this integral numerically for a
given temperature and then represent this energy density
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as lines in the vacuum space we have shown in Fig. 5,
so we can check at what temperature the gas is ener-
getic enough to populate the replicas if there is a mech-
anism allowing it. The results are shown in Fig. 10.
We can see both replicas are populated for tempera-
tures near T = 117 − 120 MeV. This result is compati-
ble with the gas occupying the replicas without reaching
the quark-gluon plasma phase, since the transition has
Tc ≈ 170 MeV. Moreover, it shows these replicas could
have been populated in the early stages of the universe,
and then decay with the decrease of temperature to the
BCS vacuum.

FIG. 10. Gas of pions populating the vacuum space for dif-
ferent values of the temperature. From top to bottom, each
horizontal red line represents the energy density of the gas for
a given temperature, with a 3 MeV decrease with each line.

V. COMPARISON TO COSMOLOGY

We can take advantage of the classical path to decay
from the replicas to the BCS vacuum to perhaps model
some early stage of the universe. So we are going to look
for an analogy for the scalar inflation theory in our model
(see [12] for an introduction to inflation).

Consider the inflaton scalar field φ(t, ~x) and an asso-
ciated potential V (φ) (units of energy density). Models
of inflation must fulfill a slow-roll condition to guaran-
tee a large enough number of e-foldings. This slow-roll
condition in the scalar inflaton model reads as(

EP
V

dV

dφ

)2

� 1 (49)

with EP the Planck energy EP =
√

1/G = 1.22 ·
1019 GeV. We are going to evaluate the left side of the
condition in our QCD model and compare it with the
slow-roll requirement for inflation.

In the model of Eq. (22), we use the quark condensate
〈q̄q〉1/3 as the scalar field φ (recall it is a 3P0 condensate
so it is a scalar and has energy cube units so we need
to take the cubic root to match the inflaton field dimen-
sions). Moreover, we identify the potential V (φ) with the
energy density expected value ρ. In order to study the
evolution of the system, we make use of the eigenvectors
we calculated through Eq. (33).

We choose the most negative eigenvalue of the replica
we are rolling from, which is the fastest path to decay,
and we use the corresponding eigenvector ψ(k). Then we
parametrize the trajectory as

ϕg(k) ≡ φr(k) + αψ(k) (50)

where φrk is one of the replicas. In particular, we explore
the case φrk = φ1k, i.e. the decay from the first replica to
the BCS vacuum. As we can see in Table I there is only
one negative eigenvalue for the first replica solution, so it
is the eigenvector associated with this eigenvalue the one
we will choose to make the gap angle evolve. So ϕg(k)
is the angle where we will evaluate the quark condensate
and the energy density for different values of α, which
will parametrize the evolution.

We calculate numerically the left side of Eq. (49), lead-
ing to (

EP
V

dV

dφ

)2

∼ 1038 � 1. (51)

Clearly the slow-roll condition is not fulfilled, the rolling
down the potential is much faster than what is needed
for an exponential expansion and therefore this model
would not be suitable for inflation. We can easily un-
derstand why this happens. The Planck constant is
EP ∼ 1019 GeV and from our numerical results we have

V = ρ ∼ 10−5 GeV4 ≈ (10−1mg)
4, (52)

dV

dφ
=

dρ

d〈q̄q〉1/3
∼ 10−5 GeV3 ≈ (10−2mg)

3. (53)

We can see the problem is V is much smaller than EP ,
so the term Ep/V is much bigger than the derivative
term dV/ dφ, making the whole result too large for the
condition to be satisfied. In terms of the energy scale mg

we have (
EP
V

dV

dφ

)2

∼
(

1017 GeV

mg

)2

. (54)

So in order to the slow-roll condition to be fulfilled, we
would need an energy scale of about 1018mg, which is
much higher than the QCD scale. So from our numerical
results we can conclude the analogy with inflation fails
for models at the QCD scale. A confining gauge theory
at a higher scale such as 1018mg should however work.

VI. CONCLUSIONS

In Sec. III, we have analysed the vacua of a simple
family of models of QCD in the Coulomb gauge. These
vacua were found solving numerically the mass gap equa-
tion, a non-linear integral equation. In the chiral limit,
we found four solutions, corresponding to the perturba-
tive vacuum, the BCS vacuum and two excited replicas,
confirming previous results in this type of models. For
the case of a small quark mass, namely mq = 1 MeV,
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we found analogous solutions but we were only able to
identify one replica, probably due to numerical issues.
This is also the case for more excited vacua in both
mq = 0, 1 MeV, as the solutions are closer to the y-axes
in each excited vacuum, so a very careful numerical anal-
ysis needs to be done in order to find further replicas.

In Sec. IV, we have analysed the nature of the vacua in
the chiral limit, confirming the metastability of the BCS
vacuum and finding the two replicas we obtained are clas-
sically unstable. The Lisbon investigators have suggested
in [7] that these replicas are in fact stable due to second
quantization issues. However, the discussion is subtle
and needs further consideration. We have also studied
the quark condensate in all the solutions, with the BCS
solution quark condensate smaller than the Lattice esti-
mations, suggesting more refined models including higher
order corrections would be needed to reach the Lattice
value. Moreover, we have analysed the degree of symme-
try breaking of the theory by means of the dressed quark
mass M(k), getting the expected result that for current
masses mq of about the s quark mass and beyond, the
degree of chiral symmetry breaking is much higher than
for smaller current masses of about the u and d quarks
masses (explicit mq chiral symmetry breaking induces
additional spontaneous breaking). In addition, we have
calculated that for a temperature of about 120 MeV, the
replicas could be populated.

Finally, in Sec. V, due to the instability of the repli-
cas, we have tried to look for an analogy in cosmology,
comparing it with a scalar inflation model. The slow-roll

conditions are trivially not fulfilled at the QCD scale,
so an analogy with inflation is only possible for similar
theories at a much higher scale.

As is stated in [7], a metastable phase would have im-
portant physical consequences. In a metastable replica
bubble, it is possible to have a stable hadron spectrum,
and therefore these excitations would be detectable in the
experiments, confirming the existence of excited vacua in
QCD. Even if these replicas are unstable, they could be
indirectly detected (see [1]). If we consider a small bub-
ble of about 5 fm for the replicas, the spectrum built
there would contain tachyons and therefor be unstable.
However, they may still live a finite amount of time com-
parable to the time of hadronic processes. Then this
process can go through an intermediate process of for-
mation of a local bubble and then a decay to the BCS
vacuum, via the emission of pairs of particles such as
pions. These could be detected experimentally, being a
signal of the existence of replicas in QCD. In any of the
cases, whether they are amenable to experimental detec-
tion is challenging, but the theoretical and experimental
efforts in the direction of understanding this false vacua
could be rewarded with a deeper understanding of QCD
vacua and the Standard Model in general [13].
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