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In this master thesis I describe the state of the art of the theoretical and experimental determi-
nations of the anomalous magnetic moment of the muon. Specifically, I have computed the tree and
one-loop level QED contributions and I have studied the remaining corrections to the theoretical
result. Regarding the experimental determination, I have studied and reviewed the experimental
setup, and I have also rederived and clarified the theoretical formalism needed to extract the final
result. In addition, I have estimated the effect of the synchrotron radiation, which has been omitted
in the literature.

I. INTRODUCTION AND MOTIVATION

The anomalous magnetic moment of the muon, aµ, has
a huge relevance nowadays due to the fact that there
exists a significant deviation between the Standard Model
prediction and the experimental value (see [1]),

athµ = 116591810(43) 10−11,

aexpµ = 116592061(41) 10−11,

⇒ ∆aµ(exp-th) = (251± 59)10−11 .

(1)

The discrepancy is of 4.2 standard deviations, and as a
consequence, it could hint to physics beyond the Stan-
dard Model. The aim of this work is to understand both
the theoretical and the experimental determinations.

In order to explain what the anomalous magnetic mo-
ment means, let me first consider a classical particle with
charge q and mass m orbiting in a circular loop of radius
r in the XY plane. Its angular momentum is

L⃗ = mr⃗ × v⃗ = mrve⃗z. (2)

In this situation, the charge, while moving, generates a
current I = q/T = qv/(2πr), where T = 2πr/v is the
movement period. Then, the particle carries a magnetic
moment

µ⃗ = IAn⃗ = Iπr2e⃗z =
qvr

2
e⃗z =

q

2m
L⃗, (3)

where I is the current generated, A the surface within
the trajectory and n⃗ the unitary vector normal to it. Due
to this magnetic moment the particle interacts with an

external magnetic field B⃗ in the following way

HM = −µ⃗ · B⃗. (4)

Similarly, when considering particles with spin S⃗,
which can be thought of as an intrinsic angular momen-
tum, they satisfy, in the presence of a magnetic field, an
equation similar to (3)

µ⃗ = g
q

2m
S⃗, (5)

where the g-factor is an adimensional constant.

From the non-relativistic limit of Dirac equation, we
will obtain g = 2 for all the charged leptons. That is
the Dirac equation prediction, but it is also the tree level
QED calculation. For this reason, the “anomalous” mag-
netic moment is any deviation from this Dirac simple
prediction. We will see in the next section that QED at
one loop introduces the first correction to this value, and
that there are many other contributions to the theoretical
determination of the g-factor. The anomalous magnetic
moment is usually parametrized as

aℓ =
gℓ − 2

2
, (6)

where the ℓ = e, µ, τ subindex runs over the three leptons
in the Standard Model.
Why are we so interested in the muon’s magnetic mo-

ment? What makes it different from ae or aτ? On the
one hand, it can be shown that the contributions to a
lepton anomalous magnetic moment from new physics at
an energy scale Λ verify (see [2] or [3] for more details)

δaℓ ∝
m2

ℓ

Λ2
. (7)

Due to (7), aµ is more sensitive to new physics than ae.
Moreover, ae is dominated by QED contributions up to
a high precision, but it is barely sensitive to hadronic,
weak and new physics effects.
On the other hand, although from (7) it follows that

aτ is more sensitive than aµ to new physics, τ has a
very short lifetime (ττ = 2.906 · 10−13 s, to be compared
with τµ = 2.197 µs) that does not allow for high preci-
sion studies. This fact is exhibited by the most stringent
bonds [4] for aτ at 95% confidence level

−0.052 < aτ < 0.013. (8)

Thus in practice, aµ is the most interesting anomalous
magnetic moment for New Physics searches.

This master thesis is organized as follows. In Section
II, I will obtain g = 2 from the non-relativistic limit of
the Dirac equation. Then, I will perform the theoreti-
cal calculation of aµ at tree and one-loop level in QED,
and next I will briefly comment the remaining Standard
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Model contributions together with some computations.
In Section III, I will describe the experimental determi-
nation of the anomalous magnetic moment of the muon,
with the theoretical analysis of the dynamical equations
of the particle and its spin polarization. Then, I will show
the experimental results, as well as their comparison with
the theoretical calculation. Finally, in Section IV, I will
discuss further contributions from the synchrotron radi-
ation in the experiment.

II. THEORETICAL CALCULATION OF aµ

A. g from the Dirac equation

Now, I will focus on the “non-anomalous” part of the
magnetic moment of the muon (of a lepton in general).
Let me consider Dirac equation in presence of an electro-
magnetic field, which describes wavefunction the evolu-
tion of fermions of spin 1

2 , mass m and charge e

i
∂Ψ

∂t
= (α⃗(p⃗− eA⃗) + eA0 + βm)Ψ, (9)

where Ψ is the fermion wavefunction, Aµ = (A0, A⃗) is
the electromagnetic four-vector, and, in Dirac represen-
tation, α⃗ = (αx, αy, αz) and β are

αi =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (10)

with σx, σy and σz the Pauli matrices. Observe that
we are considering c = ℏ = 1. In addition, the mass
dependence of the wavefunction can be expressed, in the
non-relativistic limit, as

Ψ =

(
φ
χ

)
e−imt, (11)

where φ and χ do not depend on m. Introducing (10)
and (11) in (9), we obtain the following equations{

i ∂
∂tφ+mφ = σ⃗(p⃗− eA⃗)χ+ (eA0 +m)φ,

i ∂
∂tχ+mχ = σ⃗(p⃗− eA⃗)φ+ (eA0 −m)χ,

or, reordering terms{
i ∂
∂tφ = σ⃗(p⃗− eA⃗)χ+ eA0φ,

i ∂
∂tχ = σ⃗(p⃗− eA⃗)φ+ (eA0 − 2m)χ.

(12)

The non-relativistic limit also implies that both the
kinetic and potential energies are negligible when com-
pared with the rest energy, i.e., |i ∂

∂tχ|, |eA
0χ| ≪ |mχ|,

and therefore the second equation gives us in this limit

χ ≈ σ⃗(p⃗− eA⃗)

2m
φ. (13)

If we put together (12) and (13), we get

i
∂

∂t
φ ≈ (σ⃗(p⃗− eA⃗))(σ⃗(p⃗− eA⃗))

2m
φ+ eA0φ. (14)

Using the following Pauli’s matrices property

(σ⃗b⃗)(σ⃗c⃗) = b⃗c⃗I + iσ⃗(⃗b× c⃗), (15)

with b⃗ and c⃗ arbitrary vectors, we have

(σ⃗(p⃗− eA⃗))(σ⃗(p⃗− eA⃗)) =

(p⃗− eA⃗)2 + iσ⃗((−i∇⃗−eA⃗)× (−i∇⃗ − eA⃗)) =

(p⃗− eA⃗)2 − eσ⃗(∇⃗ × A⃗+ A⃗× ∇⃗) =

(p⃗− eA⃗)2 − eσ⃗(∇⃗ × A⃗) = (p⃗− eA⃗)2 − eσ⃗B⃗,

(16)

where, in the third step, I have used that the operators

are acting on φ and ∇⃗ × (A⃗φ) = (∇⃗ × A⃗)φ− A⃗× (∇⃗φ).
Therefore, substituting (16) in (14), we obtain

i
∂

∂t
φ ≈

[
(p⃗− eA⃗)2

2m
− e

2m
σ⃗B⃗ + eA0

]
φ, (17)

also known as the Pauli equation. In this non-relativistic

equation, it is verified that S⃗ = σ⃗
2 . Taking this fact into

account, when comparing with (4) and (5), we find

µ⃗ =
e

m
S⃗ ⇒ g = 2. (18)

As promised, we have obtained the Dirac equation’s pre-
diction g = 2.

B. aµ at tree level in QED

Following mainly [5], I will prove that QED at tree
level predicts aµ = 0, according to Dirac equation’s pre-
diction. The idea is to apply the non-relativistic limit
to the interaction term between a muon and a magnetic
field at tree level in order to obtain a term of the form
−µ⃗B⃗ and identify the g-factor (same outline as in Dirac
equation’s case).

FIG. 1. Interaction between a muon and a magnetic field in
QED. At tree level, the interaction vertex is given in (19).

Therefore, we begin with the interaction term in QED

HI = −eψ̄(x)γµψ(x)Aµ(x), (19)

where ψ is the muonic field, ψ̄ = ψ†γ0 is its Dirac adjoint,
Aµ(x) is the four-vector of the electromagnetic field, and
γµ are the Dirac matrices, that we conveniently choose
in the Weyl representation

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (I, σ⃗), σ̄µ = (I,−σ⃗). (20)
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The free-particle solutions for the field ψ(x) in this
representation are

ψ(x) = u(p)e−ipx, u(p) =
1√
2Ep

(√
pσχ√
pσ̄χ

)
, (21)

where χ is a normalized 2-component spinor χ†χ = 1,
and Ep = (|p⃗|2 + m2

µ)
1/2. In the non-relativistic limit,

since |p⃗| ≪ mµ ≈ Ep, the solutions are simplified

u(p) =
1√
2Ep

(√
pσχ√
pσ̄χ

)
=

1√
2Ep

Ep

√
I − p⃗σ⃗

Ep
χ

Ep

√
I + p⃗σ⃗

Ep
χ


=

1√
2mµ

mµ

(
I − p⃗σ⃗

2mµ
+O(| p⃗

mµ
|2)
)
χ

mµ

(
I + p⃗σ⃗

2mµ
+O(| p⃗

mµ
|2)
)
χ

 =

=
1√
2

(
(I − p⃗σ⃗

2mµ
)χ

(I + p⃗σ⃗
2mµ

)χ

)
+O

(∣∣∣∣ p⃗mµ

∣∣∣∣2
)
.

(22)

And, due to the fact that we are interested in the in-
teraction of the muonic field with the magnetic field, we

can consider Aµ = (0,−A⃗). Together with (19) and (22),
this leads to

H′ := HIe
−i(p′−p)x = eū(p′)γiu(p)Ai(x) =

e

2
χ†

(
I +

p⃗′σ⃗

2mµ

)
σiAi

(
I +

p⃗σ⃗

2mµ

)
χ

− e

2
χ†

(
I − p⃗′σ⃗

2mµ

)
σiAi

(
I − p⃗σ⃗

2mµ

)
χ+O

(∣∣∣∣ p⃗

mµ

∣∣∣∣2
)

≈ eAiχ†

(
p⃗′σ⃗

2mµ
σi + σi p⃗σ⃗

2mµ

)
χ.

(23)

Using the property of the Pauli matrices σiσj = δijI+
iϵijkσk, equation (23) gets simplified

H′ ≈ eAiχ†
(
p′i + pi

2mµ
+ iϵijkσj p′k

2mµ
+ iϵijkσk pj

2mµ

)
χ

= eAiχ† (p
′ + p)i

2mµ
χ+ ieAiϵijk

(p− p′)j

2mµ
χ†σkχ.

(24)

The second term in (24) will provide us with the g-
factor. Recall we want to recast the Hamiltonian into a
−µ⃗B⃗ term. Let us then integrate the second term in (24)∫

d4xieAi(x)ϵijk
(p− p′)j

2mµ
χ†σkχei(p

′−p)x =∫
d4x

e

2mµ
ϵijkAi(x)

∂

∂xj

(
(χe−ip′x)†σkχe−ipx

)
=

−
∫
d4x

e

2mµ
ϵijk

∂Ai

∂xj
(x)(χe−ip′x)†σkχe−ipx =∫

d4x
e

mµ
Bk(x)sk(x) =

∫
d4x

e

mµ
s⃗(x)B⃗(x),

(25)

where sk(x) = (χe−ip′x)† σk

2 χe
−ipx is the density of spin,

i.e., Sk =
∫
d4sk(x). Comparing equation (25) with

HI = −g e
2mµ

S⃗B⃗ (and taking into account that we are

dealing with a charge −e) we finally obtain

gµ = 2 ⇒ aµ = 0, (26)

as I had advanced. Nevertheless, as we will see in the next
section, at one loop in QED we obtain the first correction
to aµ, i.e., the first theoretical prediction of an anomalous
magnetic moment of the muon (of a lepton in general).

C. aµ at one loop in QED

In this section I will calculate the first correction to
aµ. For this aim, we need to do a general analysis (valid
for any quantum field theory) of the most general form
of the vertex function and the terms which contribute to
aµ. Any correction to the diagram from figure 1 will have
an amplitude given by

M = −ieū(p′)Γµ(p′, p)u(p)ϵµ(p
′ − p), (27)

where Γµ is the vertex function and ϵµ is the polarization
vector of the electromagnetic field. As the diagram only
depends on the moments p′, p and the spin polarizations
of the muons, the most general vertex function is given
by1

Γµ(p′, p) = Aγµ +B(p′ + p)µ + C(p′ − p)µ

+iDσµν(p′ + p)ν + iEσµνqν ,
(28)

where σµν = i
2 [γ

µ, γν ], q = p′ − p, and A, B, ..., E are

scalar functions2 of q2.
However, we can further simplify (28). First, if we use

the Ward identity qµū(p
′)Γµu(p) = 0 (the conservation

of the electromagnetic current), we obtain3

ū(p′)
[
Cq2 + iDqµσ

µν(p′ + p)ν
]
u(p) = 0, ∀p′, p,

⇒ C(q2) = D(q2) = 0.
(29)

Additionally, making use of the Gordon identity

ū(p′)γµu(p) = ū(p′)

[
(p′ + p)µ

2mµ
+

iσµν(p′ − p)ν
2mµ

]
u(p), (30)

we can absorb the B term into the A and E terms in
(28), leading to the next general expression for the vertex
function

Γµ(p′, p) = F1(q
2)γµ + F2(q

2)
iσµν(p′ − p)ν

2mµ
, (31)

1 Notice that terms with γ5 are not allowed due to the parity
conservation of the electromagnetic interaction, and terms with
more than one γ matrix can be related to σµν and gµν using
{γµ, γν} = 2gµνI.

2 Because we have only two independent four-vectors p′µ and pµ,

and pp = p′p′ = m2
µ, pp

′ = − q2

2
+m2

µ.
3 Notice that, from the Dirac equation (/p+mµ)u(p) = 0, ū(p′)( /p′+
mµ) = 0, which, together with the antisymmetry of σµν guaran-
tee the conservation of the terms with A, B and E of (28).
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where F1(q
2) and F2(q

2) are the so-called Dirac and Pauli
form factors, respectively.

From the non-relativistic limit, we can interpret these
form factors. In the static limit, eF1(0) is the physical
charge, so the normalization condition F1(0) = 1 is taken
in order to maintain the charge e. In addition, F2(0) is
related with aµ, as we will see next. Within the non-
relativistic limit, we have4

u(p) =
1√
2

(
χ
χ

)
+O

(∣∣∣∣ p⃗mµ

∣∣∣∣) . (32)

For our purposes, as we did at tree level, we can

consider Aµ = (0,−A⃗). Remember that in this limit
mµ ≈ Ep, so we can approximate qµ = (0, q⃗). As a con-
sequence, we only have to consider the components σij

that are multiplied by the γ0 from ū(p′)

γ0σij =
i

2

(
0 I
I 0

)(
[σj , σi] 0

0 [σj , σi]

)
=
i

2
2iϵjik

(
σk 0
0 σk

)
= ϵijk

(
σk 0
0 σk

)
.

(33)

Consequently, the amplitude (27) is

M = M1 − ieū(p′)F2(q
2)
iσij(p′ − p)j

2mµ
u(p)Ai(x) ≈

M1 + eF2(0)A
i(x)ϵijk

(p′ − p)j

2mµ
χ†σkχ,

(34)

where M1 is the amplitude term proportional to F1(0)
which, after fixing F1(0) = 1, provides a g-factor g′µ = 2
(same calculation as at tree level). Comparing the term
with F2(0) in (34) with the second term of (24) (and
remembering that the amplitude has an extra i factor
with respect to the Hamiltonian density) we see that the
only difference is e → eF2(0). As a consequence, we ob-
tain an additional Hamiltonian term that adds an “extra
g-factor” g′′µ = 2F2(0). The two terms in (34) lead to

gµ = g′µ + g′′µ = 2 + 2F2(0) ⇒ aµ = F2(0) , (35)

which is the relation that justifies the standard definition
(6) of aµ.

Notice that if we apply the Feynman rules to get a
structure similar to (31) for an arbitrary the vertex func-
tion, we only need to calculate the terms with (p′ − p)ν
to identify F2(q

2). In the q2 → 0 limit it will provide
us with aµ. After these considerations, and taking into
account that there was no term with (p′−p)ν in (19), we
find again that aµ = 0 at tree level in QED.
From now on, I will focus on the one-loop calculation5,

with the strategy I have just explained: reach the struc-
ture (31) and identify F2(q

2), which will provide aµ.

4 Since the term with F2(q2) in (31) contains
(p′−p)ν
2mµ

, we are thus

approximating that term up to first order in
∣∣∣ p⃗
mµ

∣∣∣.
5 A similar analysis can be found in reference [6].

At one loop in QED, there is only one diagram (figure
2) that contributes to aµ (i.e., with a non-vanishing F2

term).

FIG. 2. The only Feynman diagram that contributes to aµ at
one loop in QED .

Using the Feynman rules, the vertex for the diagram
in figure 2 is

Γµ = −i e2

(2π)4

∫
d4k

Nµ(kν)

D(kν)
, (36)

with

Nµ(kν) = γν(/p′ − /k +m)γµ(/p− /k +mµ)γν ,

D(kν) = ((p′ − k)2 −m2 + i0)

· ((p− k)2 −m2 + i0)(k2 + i0),

(37)

where m = mµ. Let us now recast our expression in the
form (31). For this aim, we use the standard Feynman
trick and we work out the Dirac algebra. Taking into
account that the vertex always appears in the structure
ū(p′)Γµu(p), we arrive to

Γµ = −i 2e2

(2π)4

∫
d4k

∫ 1

0

dx

∫ 1−x

0

dy
N ′µ(kν , x, y)

D′(kν , x, y)3
, (38)

where in this case

N ′µ = Nµ
1 +Nµ

2 ,

Nµ
1 = −2/kγµ/k−γµ2m2(2x+ 2y − x2 − y2)

−γµ4pp′(1− x− y − xy),

Nµ
2 = 4mpµ(x− xy − y2) + 4mp′µ(y − xy − x2),

D′ = k2 + p′2(x−x2) + p2(y − y2)− 2pp′xy

−m2(x+ y) + i0.

(39)

Notice that from (31) and the Gordon identity (30), the
Nµ

2 term corresponds to −F2(q
2)(p′ + p)µ/(2m). Ad-

ditionally, only Nµ
1 is divergent, so the renormalization

scheme only changes that term, while the term with Nµ
2

remains unaffected. As we are only interested in F2(0),
performing the integration (38) only for Nµ

2 in the q2 → 0
limit, we can obtain F2(0) and aµ

(p+ p′)µF2(0)

2m
= lim

q2→0

ie2

8π4

∫
d4k

∫ 1

0

dx

∫ 1−x

0

dy
Nµ

2

D′3

=
(p+ p′)µ

2m

e2

8π2
⇒ aµ =

e2

8π2
=

α

2π
,

(40)

that is the anomalous magnetic moment of a lepton up
to one loop in QED.
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D. Other Standard Model contributions to aµ

The theoretical prediction of the anomalous magnetic
moment of the muon is decomposed in QED, Electroweak
and hadronic contributions

athµ = aQED
µ + aEW

µ + ahadµ . (41)

The QED contribution is given by a perturbative ex-
pansion, due to the smallness of its coupling constant α

aQED
µ =

∑
n

A(2n)
(α
π

)n
, (42)

where a
(2n)
µ is the QED contribution at n-loop level.

In the previous section we obtained the one-loop order
anomalous magnetic moment in QED. Making use of the
value of the fine-structure constant α−1 = (e2/(4π))−1 =
137.035999084(51), obtained from the precise experi-
mental value of ae [7], we can evaluate (40)

a(2),QED
µ =

α

2π
= 116140973.301(81)10−11 . (43)

This contribution is shared by the three charged leptons,
and it is the predominant one as can be observed in the
experimental values of ae [7] and aµ [1]

aexpe = 115965218.073(28)10−11,

aexpµ = 116592061(41)10−11.
(44)

At two loops in QED, many other diagrams that con-
tribute to aµ must be calculated (see figure 3): 7 dia-
grams involving only muonic lines (the so-called univer-
sal contribution) and 2 mass-dependent diagrams (where
electron and tau loops appear). Their contribution is

a(4),QED
µ = a

(4)
µ,uni + a(4)

µ,mass =

(
197

144
+

π2

12
− π2

2
ln 2

+
3

4
ζ(3)

)(α
π

)2
+

(
ce

(
mµ

me

)
+ cτ

(
mµ

mτ

))(α
π

)2
=

0.765857410(27)
(α
π

)2
= 413217.620(14)10−11 ,

(45)

where the mass-dependent contributions ce y cτ can be
found in [8]. Comparing (43) and (45), we can observe
that the two-loop contribution is three orders of magni-
tude smaller than the one-loop one, as we could expect
from (42) due to the small value of α.

FIG. 3. Two-loop contributions in QED to aµ. The first 7
diagrams correspond to the universal contribution, while the
last two diagrams are mass dependent.

Higher-order results in QED are much more involved:
at three loops there are 72 diagrams, the result for the
universal diagrams was given first by Remiddi and La-
porta in 1996 [9] (for the rest, see references in [8]); at
four loops the number of diagrams is 891, which were first
computed by Kinoshita, Laporta and their collaborators
during several decades, making use of numerical methods
(and even nowadays improvements and recalculations are
being made [10]). Furthermore, the five-loop contribu-
tion has been recently computed also by Kinoshita and
his collaborators [11].
Electroweak (EW) contributions are obtained similarly

to QED ones. At one loop, there are three diagrams (see
figure 4), involving the gauge bosonsW± and Z, and also
the Higgs boson. Their contribution (detailed in [12]) is

a(2),EW
µ = 194.82(2)10−11 , (46)

which is very small in comparison with the QED contri-
bution at one loop (43).

FIG. 4. Weak contributions to aµ at one loop.

At two loops in the EW sector, there are many more
diagrams containing quark loops, electromagnetic correc-
tions or hadronic effects. The first full two-loop computa-
tion without approximations was obtained by Czarnecki,
Krause and Marciano [13]. Furthermore, it has been es-
timated that the three-loop correction is negligible [14].
Finally, hadronic contributions must be taken into ac-

count. They are the most problematic calculations since
QCD is non perturbative at low energy. The leading cor-
rection (see figure 5(a)) is the hadronic vacuum polariza-
tion (HVP), which can be determined through causality
and unitarity (optical theorem), in terms of the experi-
mental σ(e+e− → hadrons) cross-section (different val-
ues depending on the experiment), which is known as a
data-driven determination.

FIG. 5. (a) Hadronic vacuum polarization contribution. (b)
Hadronic light-by-light scattering contribution.

Nevertheless, the most complex hadronic contribu-
tions arise from the so-called “light-by-light scattering”
(HLbL, figure 5(b)), because for long they were only cal-
culated using phenomenological models. Nevertheless, in
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the last years, an approach similar to the one employed
for the hadronic vacuum polarization has been developed,
leading to a data-driven determination of this contribu-
tion with few model dependencies (see [8]).

All the contributions I have mentioned in this sec-
tion (see [2, 8, 12, 15] for further details) are neces-
sary for the complete theoretical calculation, and ap-
pear in the White Paper of the “Muon g − 2 Theory
Initiative” [8], as can be seen in figure 6. It is interest-
ing to compare the orders of magnitude and uncertain-
ties of the different contributions: the main correction
comes from QED while the main contribution to the er-
ror comes from hadronic vacuum polarization at lowest
order (HPV(LO)) (it is limited by the experimental pre-
cision of σ(e+e− → hadrons)).

FIG. 6. SM contributions to aµ taken from the White Paper
of the “Muon g − 2 Theory Initiative” [8].

III. EXPERIMENTAL DETERMINATION OF aµ

After having examined the theoretical calculation, in
this section we want to understand how the experimental
value for aµ is obtained, i.e., our aim is to comprehend
the “Muon g − 2” experiment. I have mostly made use
of references [2, 12, 16].

A. Sketch of the experiment Muon g − 2

The g − 2 experiment consists in a muon storage ring
where highly polarized muons travel in an approximately
circular trajectory in the presence of a uniform magnetic
field. A precession of its magnetic moment is observed,
and from it aµ can be determined.
To begin with, I will focus on how the muons are pro-

duced. First, an accelerated beam of protons hits a tar-
get and charged pions are produced. Then, they decay
into a muon and a muonic neutrino (with branching ra-
tio ∼1). As in the experiment, we will consider the case
π+ → µ+ + νµ. Since pions are spinless and due to the
left-handed chirality of neutrinos6, we obtain a beam of
muons longitudinally polarized.

Then, muons are injected in a 14-meter-diameter stor-
age ring, which contains a uniform magnetic field that
forces them to travel in a approximate cyclotron trajec-
tory of angular frequency ωc (the motion is more complex

6 Indeed, the property required is the helicity, which is not exactly
conserved, since neutrinos have a small but non-vanishing mass,
and therefore chirality and helicity are not identical.

as we will see). In addition, the spin (or equivalently, the
magnetic moment) of the muon experiments a Larmor
precession [17], due to the magnetic field, of angular fre-
quency ωs. Both dynamics lead to an effective precession
of the spin around the flight axis, with angular frequency
ωa = ωs − ωc (see figure 7), given by

ω⃗a = − e

mµ

[
aµB⃗ −

(
aµ − 1

γ2 − 1

)
v⃗ × E⃗

c2
− aµ

γ

γ + 1

(B⃗ · v⃗)v⃗
c2

]
, (47)

where the electric field, normal to the circular orbit, is
necessary to maintain the beam focused (since electro-
magnetic repulsions tend to scatter muons in the beam).

FIG. 7. Muons and their spin dynamics in the storage ring.

As the last term of (47) is approximately zero (al-
though it introduces a correction), if we fix γ2 = (1 +
aµ)/aµ, known as “magic γ”, then (47) gets simplified to

ω⃗a = −aµ
e

mµ
B⃗. (48)

The magic γ has a value γmag ≈ 29.3, which leads to an
energy of Emag ≈ 3.1 GeV. Thus, if the muon beam is
accelerated to this energy, then (48) holds, and provides
aµ when ωa and B are measured. Moreover, the lifetime
of muons is greatly extended because of the Lorentz di-
lation (to 64.4 µs, while its rest lifetime is τµ = 2.2 µs),
which facilitates the measurements (in contrast to the aτ
case).
But, how do we measure ωa and B with high precision?

As muons are unstable, they decay with probability al-
most 1 to an electron and the two associated neutrinos

µ+ → e+ + νe + ν̄µ. (49)

In order to observe ωa, it is necessary a highly anisotropic
distribution of the decay with respect to the muon spin
direction in the rest frame. In this case, parity is maxi-
mally violated in (49), and as a consequence there exists
a big correlation between the direction of the emitted
positron and the muon spin direction in the rest frame
(see figure 8).

FIG. 8. Muon decay in the zero mass limit taken from [2].
White arrows represent the spin direction, while coloured ar-
rows are the motion directions of each particle.
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Additionally, as the beam is boosted at almost the
speed of light, the correlation in the laboratory frame
is even stronger (see figure 9). In any case, the angu-
lar distribution of the emission is strongly peaked in the
direction of the muon spin, and this gives a clear refer-
ence of the spin precession. In the experiment, positrons
from the muon decays are detected by electromagnetic
calorimeters inside the ring, and a global signal is recon-
structed. In figure 9 we can see this measurement, where
we observe an oscillatory signal of angular frequency ωa

together with a negative exponential e−t/(γτµ) from the
decay of the muons.

FIG. 9. Schematic drawing of the muon decay and represen-
tation of the measured signal.

Nevertheless, for the precise determination of the mag-
netic field, a complex procedure is needed. Making use
of Magnetic Nuclear Resonance and a probe of water, it
is found

B =
ℏωp

2µp
, (50)

where ωp is the Larmor angular frequency of a proton in
water and µp the modulus of the magnetic moment of
the proton. But (48) is not directly used since it would
require a highly accurate measure of e/mµ. Observe that

ωa

ωp
= aµ

e

mµ

B

ωp
= aµ

eℏ
2µpmµ

,

µµ = (1 + aµ)
eℏ
2mµ

⇒ 1

mµ
=

2µµ

(1 + aµ)eℏ
,

(51)

where I have used S = ℏ/2. From these two relations,
and defining R = ωa/ωp and λ = µµ/µp:

R = aµ
eℏ

2µpmµ
= aµ

2eℏµµ

2µp(1 + aµ)eℏ
=

aµ
1 + aµ

λ,

⇒ aµ =
R

λ−R
,

(52)

which is the formula actually used, since ωa, ωp and λ
(obtained from the hyperfine structure of the muonium
atom µ+e−) are accurately measured, leading to a high-
precision experimental determination of aµ.

B. Dynamical equations of the muon

Due to the fact that forces associated with the anoma-
lous magnetic moment are very weak in comparison with

the forces governing the “orbital” motion, we can study
separately both dynamics [12]. In this section we will fo-
cus on the movement of the muon in the storage ring. I
have tried to formalize the dynamical analysis presented
in [12] or [16], which are somewhat confusing or incom-
plete.
First, we will consider the motion in the presence of

an electromagnetic field. The effect on the muon µ+ is
given by the Lorentz force

F⃗ = e(E⃗ + v⃗ × B⃗), (53)

where e is the charge of the muon, v⃗ its velocity, and E⃗

and B⃗ the electric and magnetic fields, respectively. We
will consider relativistic dynamics, since v = |v⃗| ≈ c, and
we will work in cylindrical coordinates (ρ, θ, z), taking
the axis of the ring as the Z direction. In the absence

of an electric field, and for a uniform magnetic field B⃗ =
−B0e⃗z, the equations of motion (53) take the form

d(m(v)ρ̇)

dt
= m(v)ρθ̇2 − eρθ̇B0,

d(m(v)ρ2θ̇)

dt
= 0,

d(m(v)ż)

dt
= 0,

(54)

where m(v) = mµ/
√

1− v2/c2 and the second equation
is the conservation of the z component of the angular mo-
ment (it holds if ż(t = 0) = 0) instead of the θ-component
of the Lorentz force (less simple but equivalent in this
case). Observe that the energy is conserved

dE

dt
= F⃗ · v⃗ = 0 ⇒ E =

mµc
2√

1−
(
v
c

)2 = const, (55)

and therefore, v is also constant, i.e., the muon describes
a circular motion. Then, dp⃗ = p⃗dθ and

evB0 = |F⃗ | =
∣∣∣∣dp⃗dt

∣∣∣∣ = p

∣∣∣∣dθdt
∣∣∣∣ = pωc ⇒ ωc =

eB0

m(v)
, (56)

where p = m(v)v has been used. ωc is known as the
relativistic cyclotron frequency, the one appearing in the
definition of ωa. The radius of the orbit is

r0 =
v

ωc
=
m(v)v

eB0
. (57)

Actually, the Lorentz force has more terms, since due
to the electromagnetic repulsion of the muons of the
beam, a focusing system is required in the Z axis. For
this aim, an electric field is applied, which provides a
restoring force in the vertical direction, and a repulsive
one in the radial direction in the following way

E⃗ = (Eρ, Eθ, Ez) = (k(ρ− r0), 0,−kz), (58)
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where k is a positive constant. Note that |E⃗| must be
small enough such that the attractive radial force pro-
duced by the magnetic field would be stronger than the
radial repulsive electric force. This allows us to treat the
electric forces as perturbations following (54). There-
fore, the solution is ρ(t) = r0 + δρ(t), z(t) = δz(t), with
δρ(t) ≪ r0. We will neglect quadratic “δ” terms. Since
v⃗ is approximately in the θ direction and has an approx-
imately constant value close to c, δθ will be negligible,
and we can consider that the perturbations only affect to
ρ and z (as if corrections to v and θ where of a higher
order). With all this considerations, our equations are

d(m(v)ρ̇)

dt
= m(v)ρθ̇2 − eρθ̇B0 + ekδρ,

d(m(v)ż)

dt
= −ekz.

(59)

As v can be considered constant under our approxima-
tions, m(v) and r0 will be also constant, and we can use

the circular motion formula v = ρθ̇. If we apply these
approximations to (59), it is obtained

m(v)δ̈ρ = m(v)
v2

ρ
− evB0 + ekδρ,

m(v)z̈ = −ekz.
(60)

For the first equation, if we consider ρ = r0, then the first
two terms in the right side cancel within our approxima-
tions (it is just the right side term of the first equation in
(54)). Therefore, we have that evB0 = m(v)v2/r0. Using

m(v)
v2

ρ
= m(v)

v2

r0 + δρ
≈ m(v)

v2

r0

(
1− δρ

r0

)
, (61)

we get

m(v)δ̈ρ = −m(v)
v2

r20
δρ+ ekδρ. (62)

Defining n = kr0/vB0 (n < 1 since the magnetic force is
stronger than the electric one), we obtain the equations7

δ̈ρ = −v
2

r20
(1− n)δρ = −ω2

c (1− n)δρ,

z̈ = −v
2

r20
nz = −ω2

cnz,

(63)

which have the oscillatory solutions

ρ(t) = r0 +A cos(
√
1− nωct), z(t) = B cos(

√
nωct), (64)

with |A|, |B| ≪ r0. Therefore, we have obtained that
muons describe a circular motion, but when a focusing
electric field is introduced, the particles also perform sim-
ple harmonic motions in radial and vertical directions
known as “betatron oscillation”. This correction to the
circular motion will suppose a contribution to the pre-
cession frequency given in (47). In the Fermi National
Accelerator Laboratory (Fermilab) experiment, the ge-
ometry of the ring is more complex, but the dynamics
follow the same behaviour.

7 It has been used that ekr20/m(v)v2 = kr0/vB0 = n.

C. Dynamics of the muon spin polarization

Now, I am interested in the dynamics concerning the

muon spin polarization P⃗ in order to obtain the formula
(47). The analysis will be based on references [12] and

[18]. In the presence of a magnetic field B⃗, the muon
polarization changes according to

dP⃗

dt
= gµ

e

2mµ
P⃗ × B⃗, (65)

and as a consequence, the component of P⃗ perpendicular

to B⃗ rotates with angular frequency gµ
e

2mµ
B, while the

parallel one remains unchanged. Nevertheless, this result
is only valid in the rest frame of the muon.
Observe that there are infinite rest frames for a par-

ticle, all of them related by a rotation. In the labora-

tory frame, the polarization P⃗ is defined as the polariza-
tion measured in the rest frame obtained from the lab-
oratory system by a Lorentz boost. Since we are deal-
ing with accelerated particles, we need to work in “mo-
mentary”/“instantaneous” rest frames, and therefore re-
late the dynamics between them and with the laboratory
frame O.
For that aim, we need to consider a Lorentz boost in

an arbitrary direction (given by v⃗)

t′ = γ(v)

(
t− v⃗ · r⃗

c2

)
, r⃗′ = r⃗+α(v)(v⃗·r⃗)v⃗−γ(v)v⃗t, (66)

with γ(v) = (1−v2/c2)−1/2 and α(v) = (γ(v)−1)/v2. At
a given time, the muon has a velocity v⃗, and right after
it changes to v⃗+δv⃗. Let O′ and O′′ be the corresponding
instantaneous rest frames. Making use of (66), it can be
shown [18] that their coordinates are related by

t′′ = t′ − δu⃗′ · r′, r⃗′′ = r⃗′ + δθ⃗′ × r′ − δu⃗′t′, (67)

at linear order in δv⃗, where

δu⃗′ = γ

(
1 +

γ − 1

v2
v⃗v⃗·
)
δv⃗, δθ⃗′ =

γ − 1

v2
(δv⃗ × v⃗). (68)

If we compare (66) at first order in v⃗ and (67), we reach
the conclusion that O′ and O′′ are related by an infinites-
imal Lorentz boost of velocity δu⃗′ and an infinitesimal

rotation given by δθ⃗′. So in general, the transforma-
tion between two consecutive rest systems is not just a
Lorentz boost (except if δv⃗ ∥ v⃗).
Our objective is to obtain the dynamical equation for

P⃗ in the laboratory frame. As muons do not have electric
dipole moment, when O′ is the instantaneous rest frame
the electric field only (linearly) accelerates the particle,
and therefore (65) holds, so we have that, until O′′ would

be the momentary rest frame, the changes in P⃗ ′ and in
the velocity of the particle u⃗′ in O′ verify

δP⃗ ′ = gµ
e

2mµ
P⃗ × B⃗′δt′, δu⃗′ =

e

mµ
E⃗′δt′. (69)
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The crucial point here is that, because of our definition

of P⃗ in the laboratory frame, P⃗ = P⃗ ′ when O′ is the
rest frame, but a instant later when the rest frame is

O′′, P⃗ + δP⃗ ̸= P⃗ ′ + δP⃗ ′, because in that moment P⃗ is

given by O′′, and we must transform δP⃗ ′ accordingly to

(67) (rotate P⃗ with δθ⃗′ since by (69) the boost is already
taken into account). Hence

δP⃗ = δP⃗ ′ + δθ⃗′ × P⃗ =
egµ
2mµ

P⃗ × B⃗′δt′ +
γ − 1

v2
(δv⃗ × v⃗)× P⃗ . (70)

Finally, in order to obtain a dynamical equation in O,

we need to transform δt′ and B⃗′ into quantities of the

laboratory frame. Making use of (66) and that B⃗′ =

γ(B⃗ − v⃗ × E⃗/c2) + (1− γ)(v⃗ · B⃗)v⃗/v2, one obtains

dP⃗

dt
= ω⃗s × P⃗ , (71)

ω⃗s =
γ−1
v2

dv⃗
dt × v⃗ − egµ

2mµ

(
B⃗ − v⃗×E⃗

c2 + 1−γ
γ

v⃗·B⃗
v2 v⃗

)
, (72)

where the first term in (72) is the so-called “Thomas pre-
cession” (see [17] for more details), which we would like to
manipulate to obtain a more useful expression. Deriving
the left term in the Lorentz force formula d(mµγv⃗)/dt =

e(E⃗ + v⃗ × B⃗), it is straightforward to obtain8

dv⃗

dt
=

e

mµγ
(E⃗ + v⃗ × B⃗)− γ2

c2

(
v⃗
dv⃗

dt

)
v⃗ =

e

mµγ
(E⃗ + v⃗ × B⃗)− e

c2γmµ

(
E⃗ · v⃗

)
v⃗,

(73)

which, if introduced in (72), leads to

ω⃗s =− e

mµγ

(
(1 + γaµ)B⃗ + aµ

1− γ

v2
(B⃗ · v⃗)v⃗

−γ
(
aµ +

1

1 + γ

)
v⃗ × E⃗

c2

)
.

(74)

Then, since v⃗ · E⃗ = 0 holds first order, equation (73) can
be rewritten as

dv⃗

dt
= ω⃗c × v⃗, ω⃗c = − e

mµγ

(
B⃗ +

E⃗ × v⃗

v2

)
, (75)

which together with (74), and remembering that ω⃗a =
ω⃗s − ω⃗c, leads, as promised, to equation (47)

ω⃗a = − e

mµ

[
aµB⃗ −

(
aµ − 1

γ2 − 1

)
v⃗ × E⃗

c2
− aµ

γ

γ + 1

(B⃗ · v⃗)v⃗
c2

]
. (76)

As I commented in Section IIIA, with the “magic γ”

and the approximation v⃗ ⊥ B⃗, equation (76) gets simpli-

fied to ω⃗a = −eaµB⃗/mµ, which could be used to obtain

8 v⃗ dv⃗
dt

= eE⃗ · v⃗/(mµγ3) is obtained from the first equality in (73),
after multiplying by v⃗.

aµ. Nevertheless, as we obtained in the previous section,
that condition is not verified since v⃗ has a non-vanishing

component parallel to B⃗. This introduces the so-called
Vertical Pitch Correction, denoted by CP . Similarly, the
radial electric field employed in the focusing of the beam

leads to a vertical component of v⃗ × E⃗, and as a conse-
quence the second term in the right side of (76) intro-
duces another correction, CE , known as Radial Electric
Field Correction. This corrections are, for the Fermilab
experiment

CP ≈ 0.27 ppm, CE ≈ 0.47 ppm. (77)

Although they are very small, they become really relevant
due to the high precision of the experiment. More details
can be found in references [12] and [16].

D. Experimental results. Comparison with theory

After the analysis of the experiment and the dynamics
of the muons in it, we are now in position to quote the
experimental result and compare it to the theoretical one.
The following values have been extracted from [1]. On
April the 7th, 2021, the result of the Fermilab experiment
was published

aµ = 116592040(54)10−11. (78)

If (78) is combined with the results of the previous ex-
periment, carried out in the Brookhaven National Labo-
ratory (BNL), it gives the following average

aexpµ = 116592061(41)10−11 . (79)

Although there used to be different theoretical results
from model calculations of the hadronic contributions,
nowadays the “consensus” theoretical value provided by
the “Muon g − 2 Theory Initiative” is [8]

athµ = 116591810(43)10−11 . (80)

If we compare both values, we obtain

∆aµ(exp-th) = (251± 59)10−11 , (81)

a 4.2σ discrepancy, which may hint to possible new
physics effects.

IV. INFLUENCE OF RADIATION

During this master thesis, I have wondered whether
contributions from the synchrotron radiation had been
taken into account in the g−2 experiments. As I have not
found any account of such a calculation in the literature,
I have performed a simple estimate that I will detail next.
Considering the simple case of an ultrarrelativistic par-

ticle (good approximation in the experiment since v ≈ c
and Emag ≈ 3.1 GeV ≫ mµc

2 ≈ 105.6 MeV) with charge
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e describing a circular motion under the conditions of the
experiment, its instantaneous power radiated is [17]

P =
dE

dt
=
e2v4γ4(v)

6πϵ0c3R2
≈ e2cγ4(v)

6πϵ0R2
. (82)

Then, we can estimate the total energy loss in a cycle,
with a period ∼ (ωc/2π)

−1, assuming a constant radius
and speed, which is a good approximation in the exper-
imental setup. In our case, γ ≈ 29.3, R = 7.112 m and
ωc/2π ≈ 6.71 MHz [19], and therefore

∆E =
dE

dt

2π

ωc
≈ 1.001 · 10−22J = 6.25 · 10−4 eV,

⇒ ∆E

E
≈ 2.02 · 10−13.

(83)

The cyclotron frequency ωc, defined in (56), can be re-
lated with the energy E in the following way

ωc =
eBc2

E
, (84)

and hence, the radiated power induces a change in ωc

∆ωc

ωc
=

∆E

E
≈ 2.02 · 10−13. (85)

Finally, as aµ is determined as

aµ =
R

λ−R
=

ωs−ωc

ωp

λ− ωs−ωc

ωp

, (86)

the change in ωc introduces a correction

∆aµ =

∣∣∣∣∂aµ∂ωc

∣∣∣∣∆ωc =
aµ(1 + aµ)

ωs − ωc
∆ωc ≈ 6.9 · 10−15 , (87)

where I have used (ωs−ωc)/2π ≈ 229.08 kHz [19]. Com-
paring with (80), it is clear that this estimate is beyond
the experimental precision since it is 5 orders of magni-
tude lower that the experimental uncertainty.

CONCLUSIONS

In this work, I have been able to understand the the-
oretical and experimental calculations of the anomalous
magnetic moment of the muon. On the one hand, I have
performed the calculations of aµ at tree and one-loop
level in QED, as well as understood the general picture
of the remaining SM contributions. On the other hand,
I have presented a clarifying exposition of the dynamical
analysis of particle and spin motions, whose presenta-
tion is very confusing in the literature, that leads to the
“master formula” (48) and the corrections (76) and (77).

In addition, I have estimated the effect of the syn-
chrotron radiation in the determination of aµ for the Fer-
milab experiment, obtaining that its effect is negligible
for the current experimental precision. A more rigorous
analysis would be required to determine the importance
of this contribution for future high-precision experiments.

In conclusion, I have performed a detailed study of the
tension between theoretical and experimental determina-
tions of aµ which, at the current level of accuracy, im-
plies a discrepancy of 4.2 standard deviations and hence,
is one of the most promising observables to identify signs
of physics beyond the Standard Model.
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