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Máster en F́ısica Teórica
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Standard cosmology and inflationary theory explain most of the evolution of the Universe and
the Cosmic Microwave Background primordial fluctuations, but they do not take into account pre-
inflationary dynamics. In this work, we study the scalar modes that, being observable today, were
trans-Planckian before inflation, within the context of Loop Quantum Cosmology (LQC). We ana-
lyze the dynamics of these highly ultraviolet modes by introducing modified dispersion relations to
their equation of motion. More precisely, we consider Ashtekar’s LQC model with 141 e-folds, which
is compatible with observations for the standard linear dispersion relation. When trans-Planckian
effects are considered in this model, the power spectrum of primordial fluctuations is different from
the standard result. In other words, this model of LQC suffers from a trans-Planckian problem.

I. INTRODUCTION

The classical cosmological description of the evolution
of the Universe in terms of the old Big Bang model starts
to fail as one goes back in time. This is reflected in
the existence of different problems that arise in such a
framework, namely, the flatness, horizon, and monopole
problems [1]. The solution to them comes from the in-
troduction of an early stage of the Universe with ac-
celerated expansion, known as inflation [2, 3]. In fact,
inflationary theories are not only good models because
they can solve these problems. The main success of in-
flation is that it describes and explains the origin of the
cosmological perturbations, measured in the Cosmic Mi-
crowave Background (CMB), through quantum fluctua-
tions of the scalar and gravitational fields. The amplitude
of these perturbations is determined by the power spec-
trum of primordial fluctuations, which turns out to be
nearly scale invariant [4].

Although the inflationary theory succeeds in explain-
ing the issues mentioned above, it also presents different
problems. One of them, which will be the focus of this
work, is the so-called trans-Planckian problem of infla-
tionary cosmology [5]. In most current models, inflation
involves a huge expansion of the Universe in order to
solve the classical problems, which means that physical
wavelengths that correspond to large-scale structures we
observe today in the CMB were much smaller than the
Planck length at the onset of inflation. This questions
the validity of the standard results concerning the power
spectrum and force to consider trans-Planckian effects.

This problem is analogous to the trans-Planckian prob-
lem of black hole physics [6]. In this context, it was shown
that the thermal Hawking spectrum of black holes is ro-
bust against modifications of physics in the high energy
sector, which were represented by modified dispersion re-
lations that deviate from the standard one above some
ultraviolet scale [7, 8].

In inflationary cosmology, the problem has been ana-
lyzed following the same approach [5, 9–15]. The equa-

tions of motion of perturbations were changed by intro-
ducing modified dispersion relations. The robustness of
the predictions of classical cosmology was then analyzed
by means of the so-called adiabaticity coefficient [10, 14],
which accounts for the adiabatic evolution of perturba-
tions modes while they are trans-Planckian. The result
is that as long as there is scale separation between the ul-
traviolet scale and the rate of expansion of the Universe,
the imprint in the power spectrum will be negligible, pro-
vided that the modified dispersion relation is monotonic.
However, all these analyses ignore the preinflationary

evolution of the Universe. Naturally, if trans-Planckian
physics is important in inflationary theories, so it will
in a preinflationary stage, since the Universe is smaller
and hence physical wavelengths too. There are different
theories that attempt to introduce a preinflationary de-
scription of the Universe. Among them, Loop Quantum
Cosmology (LQC) [16] has become in the recent years
an important tool to do that, given its predictive power
and the capacity to compute power spectra within this
framework [17]. The main characteristic of LQC is that
it removes the initial singularity of classical cosmology by
means of a quantum bounce, due to quantum geometry
effects. This leads to modified Einstein equations for the
background and provides a well-defined evolution.
In this work, we study the trans-Planckian problem

considering a preinflationary scenario described by LQC,
following the same steps that have been taken in the con-
text of inflation. In particular, we have considered the
background evolution introduced in [18], for which there
are 141 e-folds from the LQC bounce until today, and
that is compatible with current observations for the stan-
dard linear dispersion relation [19]. This will allow us
to determine whether the predictions of the primordial
power spectrum are robust when this scenario is taken
into consideration. With this analysis we also pretend
to enhance our knowledge of the very early Universe and
the physics beyond the Planck scale.
Explicitly, our objective is to confirm that trans-

Planckian physics must be considered during the evolu-
tion of the Universe and, specifically, to show that these
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effects are important in a pre-inflationary scenario as the
one we have considered. Moreover, we make a prelimi-
nary analysis which reveals that, in these concrete LQC
model in which we have focused, the observable power
spectrum is sensitive to modifications above an ultra-
violet scale and, therefore, the trans-Planckian problem
exists. This opens the question of whether this problem
appears for every conceivable model within the context of
LQC that is compatible with observations when possible
trans-Planckian effects are ignored. It also motivates the
study of the trans-Planckian problem from deep, fully-
geometrical arguments, rather than by introducing mod-
ifications to the theory by hand, in order to delve into
this subject from a theoretical point of view.

The remainder of this work is structured as follows.
In Sec. II we briefly review the inflationary theory and
the origin of primordial fluctuations that can be mea-
sured in the CMB, whose amplitude is fixed by the
power spectrum. In Sec. III we give an overview of the
trans-Planckian problem of inflationary cosmology and
the methodology used to study it. In Sec. IV we in-
troduce the main ideas of LQC both for the background
and the perturbations, and proceed as in the previous
section to analyze the trans-Planckian problem within
LQC. Sec. V is devoted entirely to the numerical results
and their discussion for the particular LQC model un-
der consideration. Finally, in Sec. VI we summarize the
main results of this work, its limitations and future re-
search paths in this area. The convention used in this
work is ℏ = c = 1 and m2

Pl = 1/G. We also use Planck-

ian units: ℓPl = tPl = m−1
Pl .

II. INFLATION AND GENERATION OF
FLUCTUATIONS

A. Inflation and slow-roll regime

The main idea of inflation [2, 3] is that the scale factor
evolves nearly exponentially, and the Universe is suffering
an accelerated expansion. This can be achieved in many
ways, but the usual and simpler approach is based on
the existence of a scalar field, known as inflaton [20]. An
inflaton ϕ(t) can be described as a perfect fluid, so that
its energy density and pressure are:

ρ = ϕ̇2/2 + V (ϕ), p = ϕ̇2/2− V (ϕ), (1)

where V (ϕ) is the potential of the inflaton and the dot
means derivative with respect to cosmological time t.
Hence, if one assumes that the Universe content is that
of an inflaton during inflation, the Einstein equations for
a Friedmann-Lemâıtre-Robertson-Walker (FLRW) Uni-
verse can be written as:

H2 =
8πG

3
ρ =

8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
, (2a)

Ḣ = −4πG (ρ+ p) = −4πGϕ̇2, (2b)

where H(t) = ȧ(t)/a(t) is the Hubble parameter and a(t)
is the scale factor. From here it follows the equation of
motion:

ϕ̈+ 3H(t)ϕ̇+ V ′(ϕ) = 0. (3)

Thus, in order to have a nearly constant Hubble pa-
rameter during inflation which leads to a nearly expo-
nential expansion, one must impose p ≈ −ρ. In virtue
of (1), this results in the condition ϕ̇2 ≪ V (ϕ) for the
inflaton during a sufficiently long period of time. This
can be achieved if the friction term dominates in (3), so

that ϕ̈ may be neglected. This is known as the slow-roll
regime, which is characterized by the slow-roll conditions

ϵH = −Ḣ/H2 ≪ 1 , ηH = −ϕ̈/(ϕ̇H) + ϵH ≪ 1. (4)

The scale factor increases exponentially, as long as V (ϕ)
is positive and decreases over time, when the slow-roll
conditions are met. The so-called number of e-folds
N = log[a(tf )/a(ti)] quantifies this exponential increase,
where ti and tf are the times when inflation starts and
ends. It is necessary that N ≳ 65 for inflation to solve
the problems of classical cosmology. This allows to in-
terpret inflation as a period of the evolution where the
Universe is filled with the inflaton, which is slowly rolling
on the potential V (ϕ), thus producing a nearly constant
Hubble parameter. When the conditions (4) cease to be
valid inflation ends, the inflaton begins to oscillate, and
the Universe starts decelerating.

B. Primordial fluctuations

Now let us briefly review the theory of cosmological
fluctuations (see [4] for an exhaustive review) which ex-
plain the origin of primordial perturbations measured in
the CMB by means of the power spectrum. We con-
sider linear cosmological perturbations around an homo-
geneous background.

There exist different sorts of metric perturbations,
namely scalar, vector, and tensor perturbations, that can
be treated independently at a linear level due to the sym-
metry properties of the background. In this work, we will
focus on scalar perturbations, as they leave an observable
imprint in the CMB. Tensor perturbations admit a sim-
ilar analysis but are related to primordial gravitational
waves, which have not been observed yet, while vector
perturbations are diluted in cosmological evolution [21].

Scalar perturbations are described by five scalar func-
tions, four related to the metric and the fifth denoting
the perturbation of the scalar field, δϕ. However, due
to the gauge freedom and the connection between met-
ric and matter perturbations through the Einstein equa-
tions, there is only a degree of freedom, that we will take
as the comoving curvature perturbation, defined as [1]:

R = Ψ+Hδϕ/ϕ, (5)
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where Ψ is the invariant Bardeen potential which ac-
counts for the metric perturbations and ϕ is the back-
ground solution of the scalar field. This quantity is gauge
invariant. Its dynamics can be conveniently expressed in
terms of the so-called Mukhanov-Sasaki variable v = zR,
where z = aϕ̇/H. Up to linear order in perturbations and
decomposing v in Fourier modes one gets the Mukhanov-
Sasaki equation [4]:

v′′k + ω2
k(η)vk = 0, ω2

k(η) = k2 − z′′/z, (6)

where k = |⃗k| is the comoving wavenumber of the mode
vk and the prime denotes derivative with respect to con-
formal time η defined via dη = a dt. In other words,
scalar perturbations can be fully studied through a scalar
field v whose modes vk satisfy the equation of a har-
monic oscillator with a time dependent frequency ωk

which is determined by the background geometry1. We
see that z′′/z introduces a scale in the dynamics: in the
sub-Hubble limit k2 ≫ z′′/z the modes oscillate with
constant amplitude k (they do not feel the curvature of
spacetime), while in the super-Hubble limit k2 ≪ z′′/z
the modes behave as vk ∼ z (they do feel the curvature),
implying that R is constant for those modes. Thus, R
is the appropriate variable to analyze through evolution,
since it freezes outside the horizon, hence yielding ini-
tial conditions for perturbations when they re-enter the
horizon.

Notice that, since the modes vk have a time dependent
frequency, the associated Hamiltonian depends explicitly
on time and hence the choice of the vacuum of the theory
cannot be done in a time-independent way. Thus, one has
to pick an initial time η0 and define there the vacuum as
the lowest energy state. In the limit where η0 → −∞
this state is called the Bunch-Davies vacuum [22] and
corresponds to the recovery of plane wave solutions in the
asymptotic past for sub-Hubble modes (with k ≫ aH).

Equation (6) can be solved analytically in the slow-
roll regime. Up to first order in the slow-roll parameters
(where ϵH and ηH are constant), the resulting solution,
in the super-Hubble limit k2 ≪ z′′/z and considering the
Bunch-Davies vacuum, is:

|vk(η)| ∼
1√
2k

( k

aH

) 1
2−ν

, (7)

where ν = 3/2 + 3ϵH − ηH .
The power spectrum is just the Fourier transform of

the spacetime two-point correlation function of the cur-
vature perturbation:

PR =
k3

2π2

∣∣∣vk
z

∣∣∣2 . (8)

It is a measurement of the contribution to the variance
of R of modes with comoving wavenumber k, that is, of

1 For tensor perturbations one has the same structure, but replac-
ing z by the scale factor a.

quantum zero-point fluctuations. This power spectrum
may be evaluated at super-horizon scales, due to con-
stancy of R for those modes. Substituting z = aϕ̇/H
and (7) in (8), the power spectrum can be written as:

PR(k) = AS

(
k/k∗

)nS−1
, (9)

where nS is the scalar spectral index (or tilt), which in
terms of the slow-roll parameters is given by

nS = 1− 6ϵH + 2ηH , (10)

and AS is the scalar amplitude specified by

AS =
1

πϵH

( H

mPl

)2∣∣∣
k∗=aH

, (11)

where k∗ is commonly known as the pivot scale from
which the power spectrum is measured. The most recent
measurements [23] provide the following values for the
pivot scale k∗ = 0.05 Mpc−1:

AS = (2.092± 0.034) ·10−9, nS = 0.9626±0.0057. (12)

This means that the power spectrum of fluctuations is
nearly scale invariant (nS ≈ 1) and so the slow-roll pa-
rameters are very small.

III. TRANS-PLANCKIAN PROBLEM IN
INFLATION

Despite the great success of the inflationary theory,
which we have summarized in Sec. II, this theory also
faces several problems. One of them, which is the one
that concerns this work, is commonly referred to as the
trans-Planckian problem of inflationary cosmology [5].
In most inflationary models based on an inflaton, the

inflationary stage lasts a very large number of e-folds. As
a consequence, due to the fact that physical wavenum-
bers κ = k/a at different times are related through
κ(t1)a(t1) = κ(t2)a(t2), one gets that κ(ti) = eNκ(tf ).
Hence, physical wavenumbers and energies correspond-
ing nowadays to large-scale structures that can be mea-
sured in CMB were larger (indeed, much larger) than the
Planck mass at the beginning of the inflationary stage.
This is clearly a severe issue, since it implies that the

power spectrum of cosmological fluctuations (which is
calculated on pure classical gravity, low energy grounds)
depends as well on high energy physics. Moreover, the
power spectrum we observe today may be altered by any
slight modification of physics above the Planck scale.
Therefore, to compute it, it is necessary to be aware
of trans-Planckian effects through the evolution of per-
turbations. However, these effects of trans-Planckian
physics are yet unknown, and thus the only way to pro-
ceed is by introducing reasonable modifications to the
theory that try to simulate those effects.
The usual approach to do so is by introducing modified

dispersion relations in the equation of motion (6), as was
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first done in [5] following the steps of the analog problem
in black holes physics [6]. In this case, due to the space-
time expansion, the analysis is not just an extension of
what was done with black holes.

In the standard cosmology frame, as previously stated,
fluctuations can be studied via a scalar field v with time-
dependent frequency whose modes obey the Mukhanov-
Sasaki equation (6). When considering possible trans-
Planckian effects, a way of implementing them is by mod-
ifying the standard frequency to:

ω2
F (η) =

[
a(η)F (κ)

]2 − z′′/z, (13)

where F (κ) = F (k/a) is some nonlinear function that
deviates from the standard linear dispersion relation for
physical wavenumbers κ ≫ κc and recovers the linear
behaviour for κ ≪ κc, where κc is some ultraviolet scale
(expected to be of the order of the Planck mass). When
doing so, a non-Lorentz invariant dispersion relation re-
sults, so one must stipulate the reference frame where the
dispersion relation is defined.

Since now the dispersion relation is nonlinear, the vac-
uum cannot be defined as the Bunch-Davies state. Here,
we will take the adiabatic approach [24], where the adi-
abatic vacuum emanates from minimizing the energy of
the field (equivalent to say that modes with κ ≫ H are
in their ground state [25]), as was shown in [5]. This
vacuum is the positive frequency WKB solution of the
Mukhanov-Sasaki equation with modified dispersion re-
lation, appropriately normalized.

Different modified dispersion relations have been con-
sidered until now, some of them shown in Figure 1. This
includes the so-called Unruh dispersion relation FU [7] or
the generalized Corley-Jacobson dispersion relation FCJ

(introduced in [5] based on the one used in [8]):

FU(κ) = κc tanh (κ/κc) , (14)

FCJ(κ) = κ
√
1 + bm(κ/κc)2m, (15)

where bm reflects the subluminal (bm < 0) or superlu-
minal (bm > 0) character of FCJ. In this last family of
modified dispersion relations, the nonlinear term must be
understood as the first term of a power expansion of a
generic dispersion relation; otherwise, one would get (for
the subluminal case) pathological behaviour for physical
wavenumbers κ > κc|bm|2m, where FCJ(κ) becomes com-
plex. Furthermore, in this case the energy may not be
bounded from below and the definition of vacuum would
not be clear. For these reasons, we will not consider this
modified dispersion relation and we will focus only on
monotonic dispersion relations. Other modified disper-
sion relations have been studied in different works [26].

In most works, the robustness of the predictions of
inflationary cosmology against trans-Planckian physics is
studied in terms of the adiabaticity coefficient, defined as
[14] (for an alternative, but equivalent definition see [5]):

ε(η, k) =
∣∣ω′/ω2

∣∣. (16)

Figure 1: Sketch of the different dispersion relations con-
sidered in this work. For the Corley-Jacobson dispersion
relation we have considered m = 1 and bm = ±1.

This expression is only valid when the modes are inside
the horizon, that is, when ω2 > 0. In the case ω2 < 0,
the modes fail to be adiabatic as they cross the horizon
and instead of oscillating they suffer an exponential am-
plification. Nevertheless, observable modes are already
sub-Planckian when they cross the horizon during slow-
roll and thus ω2 becomes negative when the dispersion
relation is the standard one. In particular, we are in-
terested in the value of ε(η, k) during inflation, when a
concrete mode is trans-Planckian. Hence, in its eval-
uation, the second term in (13) can be safely neglected,
since observable modes are inside the horizon while being
trans-Planckian and their dispersion relation rules over
spacetime expansion. Under this approximation, the adi-
abaticity coefficient can be readily computed:

ε(η, k) ≈
∣∣∣H
F

− Hκ

F 2

dF

dκ

∣∣∣ = H

κc

∣∣∣ d
dκ

(κκc

F

)∣∣∣. (17)

It is easy to see that ε is bounded by H/κc for every
monotonic dispersion relation. Therefore, one can con-
clude that as long as the scale separation condition

H/κc ≪ 1 (18)

is met, the adiabaticity coefficient is ε(η, k) ≪ 1 for all
monotonic modified dispersion relation [14], and modi-
fying the standard dispersion relation above the scale κc

will not have an imprint on the power spectrum [12]. This
is in good agreement with the analytical results obtained
in [5, 10]. Physically, this can be seen as if the modes
with κ > κc (which are affected by modified dispersion
relations) have enough time to adapt themselves to the
standard vacuum solution provided that their evolution
is adiabatic, since F ≥ H for those κ values that satisfy
the adiabaticity condition. Moreover, according to (11)
and (12), scale separation (18) is satisfied during slow-
roll, as long as κc ∼ mPl, and we have H/κc ≲ 10−5.



5

IV. LOOP QUANTUM COSMOLOGY AND THE
TRANS-PLANCKIAN PROBLEM

A. Loop Quantum Cosmology: Background

Let us first summarize the evolution of the homoge-
neous background obtained in LQC (for a complete re-
view of this theory and its derivation, consult [16]).

The quantum geometry effects that this theory intro-
duces allow to remove the classical Big Bang singular-
ity of FLRW models, replacing it by a quantum bounce,
hence giving rise to a well-defined background evolu-
tion of the Universe. In fact, LQC leads to a family
of semi-classical states that follow well defined trajecto-
ries. These trajectories correspond to an effective dynam-
ics encoded in the following modified Einstein equations
with quantum corrections [16]:

H2
LQC =

8πG

3
ρ
(
1− ρ/ρ∗

)
, (19a)

ḢLQC = −4πG (ρ+ p)
(
1− 2ρ/ρ∗

)
, (19b)

where ρ∗ is a critical density of the order of the Planck
density (usually taken to be ρ∗ ≈ 0.41ρPl due to geomet-
rical arguments). These equations lead to:

ρ̇+ 3HLQC (ρ+ p) = 0. (20)

A few remarks about these equations are in order. As
stated before, equation (19a) leads to a bounce, where
the Hubble parameter vanishes, when ρ = ρ∗. This is a
feature of LQC that is not present in GR and guarantees
that physical quantities (such as the energy density or
the Ricci scalar) that diverge in GR are bounded in LQC.
Moreover, the term ρ/ρ∗ is negligible a few Planck times
after the bounce, so one can use GR soon after it. One
may notice as well that (20) has the same structure as in
GR, despite the fact that Einstein equations are modified.

The scalar field in LQC can also be described as a
perfect fluid obeying (1) and thus reducing (20) to (3),
but now with the Hubble parameter given by (19a). This
set of equations is analytically intractable except for the
free scalar field case (and a few others). In this case where
V (ϕ) = 0 the analytical solution in terms of cosmological
time t is (from now on, the subscript LQC will be omitted
unless necessary for comparison with GR):

a(t) =
[
(t/t∗)

2 + 1
]1/6

, ρ(t) = ρ∗a
−6(t), (21)

ϕ(t) = ϕ(0) +
1√

12πG
arcsinh

(
t/t∗

)
, H(t) =

t

3t2∗a
6(t)

,

where we have chosen as normalization the scale factor at
the bounce a(0) = 1, and t∗ = (24πGρ∗)

−1/2
is the time

when the Hubble parameter achieves its maximum value
H(t∗) =

√
2πGρ∗/3. For ρ∗ = 0.41ρPl this maximum is

H(t∗) ≈ 0.93mPl. The Hubble parameter is depicted in
Figure 2, along with the classical GR Hubble parameter.
Similar plots can be portrayed for the other background

Figure 2: Hubble parameter for a free scalar field in GR
and LQC (with ρ∗ = 0.41ρPl). HLQC is always bounded
and the GR behaviour is restored soon after the bounce.
For larger (smaller) values of ρ∗, GR is recovered sooner
(later) and the maximum of HLQC is different.

variables, leading to the conclusion that LQC cures the
problems that standard cosmology have for a free scalar
field and enables to define a preinflationary dynamics.
In addition to solving the singularity problem, LQC

also provides natural initial conditions that ensure the
inflationary paradigm with the required e-folds for suit-
able potentials [27, 28], after a very short phase of super-
inflation takes place. To make the inflationary stage hap-
pen we need a non-vanishing potential, which requires
numerical treatment. As a toy model, we will take the
quadratic potential

V (ϕ) = m2ϕ2/2. (22)

In Sec. V we will see that, as long as mϕ(0) ≪ ϕ̇(0),
the background evolution is that of the free field case
from the bounce to a short time after the maximum of
H (which corresponds to kinetic dominance) and, after
some time, the Hubble parameter goes to a non-vanishing
constant, thus causing inflation (which implies a poten-
tial dominance). Moreover, numerical simulations show
that under this assumption the background evolution for
non-vanishing potentials does not depend strongly on the
choice of initial conditions or on the concrete shape of the
potential, and can be well-described by the zero potential
solution at early times; thus, the maximum of H and the
time when it is reached depend only on the value of ρ∗.

B. Loop Quantum Cosmology: Perturbations

We next consider cosmological perturbation theory us-
ing LQC, in order to account for Planck scale physics.
This would enhance our knowledge of the Universe evo-
lution and enable to connect Planck era with observable
quantities. In this case, in addition to possible effects
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of trans-Planckian physics in ultraviolet modes, modifi-
cations on infrared modes could arise as well due to a
different evolution of the background: since these modes
feel the curvature at the bounce (their wavelength is big-
ger than the curvature radius of the Universe at that
time) they can evolve to an excited state. Indeed, ob-
servable modes could in principle exit and re-enter the
curvature radius before inflation takes place, thus reach-
ing the onset of inflation in a non Bunch-Davies vacuum.

Different strategies have been followed to accomplish
this task (see [17] for a review), namely, the so-called
dressed metric approach [29–32], the deformed algebra
approach [33], the hybrid quantization [34, 35], or the
separate universe loop quantization [36]). For our pur-
poses we will consider hybrid LQC. This is because the
separate universe approach is only valid for infrared
modes, whereas the deformed algebra approach is dis-
carded as it is incompatible with observations [37]. On
the other hand, hybrid and dressed metric approaches
are based mainly on the same grounds, but their equa-
tions of motion for perturbations are not the same, due to
the different ways of quantizing. We choose hybrid LQC
because, unlike the dressed metric approach, it leads to
hyperbolic equations of motion at the bounce, where we
will set initial conditions for perturbations [38].

In hybrid LQC, when neglecting the back-reaction of
the perturbation modes, the equation for scalar pertur-
bation modes has the same structure as (6) but with a
time-dependent frequency [38]

ω2
k(η) = k2 + s(η), s = −4πG

3
a2 (ρ− 3p) + a2u, (23)

where u is an effective potential given by

u = V ′′(ϕ)+48πGV (ϕ)

(
1− V (ϕ)

ρ

)
+6

a′ϕ′

a3ρ
V ′(ϕ). (24)

In the classical limit where the effective dynamics reduces
to GR, that is, when ρ∗ → ∞, we recover the classical
Mukhanov-Sasaki equation (6).

C. Trans-Planckian problem in Loop Quantum
Cosmology

We may now wonder how and why LQC and Planck
scale physics may affect the power spectrum, in analogy
with Sec. III that focused solely on inflation. An extra
drawback appears in the context of LQC, as was men-
tioned before, namely, the relevance of the background
in modes which are sensitive to the curvature. Moreover,
LQC introduces a scale as it already happened in infla-
tion. In this case, this scale results from the competition
between the physical wavenumber of the modes and the
Ricci scalar in the Mukhanov-Sasaki equation (equiva-
lently, between the physical wavelength and the curva-
ture radius). The discrimination between which modes
feel the curvature and which do not is precisely the value

of the Ricci scalar at the bounce, where it is maximum,
and constitutes the characteristic energy scale of LQC:

κLQC =
√

R(0)/6 = (
√
3t∗)

−1 ≈ 3.21 mPl. (25)

Modes with κ ≲ κLQC will be the ones which feel the
curvature since they have a wavelength longer than the
LQC wavelength. Consequently, they exit and enter the
curvature radius in the bouncing stage, before they exit
again in inflation, and can have an imprint on the power
spectrum due to background effects.
Another central issue is the choice of initial conditions

for the perturbations. There are different alternatives,
namely, setting them far away before the bounce (in the
contracting branch) or at the bounce itself. The former
allows to set initial conditions at some point where effects
of modified dispersion relations disappear, but requires
fixing them at the concrete points where s(η) = 0 [39].
The latter, although facing the problem that the bounce
is the most affected by LQC, at least guarantees that the
equation of motion for perturbations is hyperbolic there
and thus initial conditions can be set up in an intuitive
way. However, it is only the infrared and intermediate
parts of the spectrum which are sensitive to the choice
of initial conditions. For a review of this topic and the
computation of the power spectrum for several monomial
potentials with the standard dispersion relation, see [39].
Despite that, the methodology is the same as before.

One includes in (23) modified dispersion relations (re-
placing k2 by a2F 2) and analyzes how fair the assumption
of WKB solution is by means of the pertinent adiabatic-
ity coefficient when modes are trans-Planckian.
To our knowledge, not much work has been done

in the trans-Planckian problem in LQC. In particular,
only in [40] modified dispersion relations were considered
within the framework of LQC. In that work, the emphasis
was placed in computing the power spectrum in different
approaches and comparing with the standard scenario,
rather than understanding the possible modification and
its origin qualitatively. The main result was that the
power spectrum is modified when considering modified
dispersion relations and that this change depends on the
concrete value of the ultraviolet scale κc, possibly lead-
ing to a power spectrum with oscillations or enhancement
in its ultraviolet sector, thus making relevant the trans-
Planckian effects. This opens the question of whether
such effects affect or not the observable window.
The calculation of the adiabaticity coefficient can be

carried out easily for the kinetic dominated regime close
to the bounce, as it is well approximated by the free
scalar field case, where the explicit background solution
is known and u = 0, yielding s0(η) = 8πGρa2/3. In this
case, we have:

ε0(η, k) =
HF 3

κcW3
0

∣∣∣ d
dκ

(κκc

F

)
− 16πG

3

ρκc

F 3

∣∣∣, (26)

where

W0 =
ω

a
=

√
F 2 +

8πG

3
ρ. (27)
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Let us qualitatively analyze this adiabaticity coefficient.
First, notice that it is proportional to H, so that the

adiabaticity condition ε0 ≪ 1 for trans-Planckian modes
again follows from the condition H/κc ≪ 1. Moreover,
according to (19a), we have that ε0(η, k) ∝ (1−ρ/ρ∗)

1/2.
Hence, as long as F is not too steep, all the modes sat-
isfy the adiabaticity condition very close to the bounce
(where ρ ≈ ρ∗). Moreover, ε0(η, k) is exactly zero at
the bounce. Therefore, all the modes can be set up at
the bounce in their adiabatic vacuum, regardless of the
specific modified dispersion relation and the physical
wavenumber of the modes.

Second, when the evolution of perturbations is fully
determined by its dispersion relation (that is to say, when
W0 ≈ F ), we recover the inflationary result (17).

A similar result to (26) can be derived when the poten-
tial cannot be ignored, with an extra term that depends
only on the specific potential and on the background,
but not on the modified dispersion relation. In this case,
we do not have an analytical solution for the background
evolution, so we will need to compute ε(η, k) numerically.

V. NUMERICAL RESULTS

A. Background dynamics

We have considered the quadratic potential (22) with
m = 1.2·10−6 mPl and the initial condition at the bounce
ϕ(0) = 1.033mPl, following [18]; the remaining initial

condition ϕ̇(0) is fixed by ρ(0) = ρ∗ = 0.41ρPl. In this
way, we are considering a model in LQC that, while being
compatible with observations for the standard dispersion
relation, it also introduces some LQC imprints in the
CMB, as we will see later.

The simulation has been done in cosmological time t,
and run up to 2 · 107 tPl in order to reach inflation. The
background evolution is depicted in Figure 3. As can
be seen in Figure 3a, the Hubble parameter evolves near
the bounce as if the scalar field was free and, around
t = 104 tPl, quadratic and zero-potential lines begin to
differentiate. From t ∼ 105 tPl to t ∼ 107 tPl, H(t) is
roughly constant, which means that the scale factor there
grows exponentially and inflation is taking place. To get
further insight, we have also plotted in Figure 3b the
parameter of state, defined as

w(ϕ) =
p

ρ
=

ϕ̇2/2− V (ϕ)

ϕ̇2/2 + V (ϕ)
. (28)

Near the bounce there is kinetic dominance and hence
w ≈ 1, whilst during slow-roll inflation w ≈ −1, thus
confirming potential dominance. After inflation, since
the scalar field begins to oscillate, so does w.
We have also calculated the number of e-folds, result-

ing in 4.57 e-folds from the bounce to the onset of in-
flation, and 67.78 e-folds during the inflationary period
(that is, around 72 e-folds for the whole simulation).

Figure 3: Background evolution. (a) Hubble parame-
ter under the quadratic potential, compared to the zero-
potential case. (b) Parameter of state of the inflaton.

B. Perturbations

Now we compute the adiabaticity coefficient of the dif-
ferent modes while being trans-Planckian. At this point,
we have to choose a specific value for the ultraviolet scale
κc. We have chosen κc = κLQC, since it seems natural
that the ultraviolet modifications arise when the energy
scale of LQC is dominant, although other choices are also
possible. We also need the observable window measured
in the CMB. For our model we have 141 e-folds from the
bounce until today [18], which means that the observable
window today, κtoday ∈ [10−4 Mpc−1, 0.5Mpc−1], is at
the bounce κ(0) ∈ [0.9mPl, 4504mPl]. We have evolved
this window from the bounce to the end of the simula-
tion along with the curvature radius. The result is shown
in Figure 4 in terms of physical wavelengths, where the
ultraviolet scale λc = 1/κc ≈ 0.31ℓPl is also depicted.

We see that the observable window presents the two
kinds of modes that we have been discussing. On the
one hand, it contains modes whose physical wavelength
is below λc, not only at the bounce, but also at the onset
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Figure 4: Evolution of the observable window (shaded
region) from the bounce to inflation. The curvature ra-
dius (red line) is plotted to see when do the modes of
wavelength λ feel the curvature. The dashed vertical line
represent the ultraviolet scale λc.

of inflation, which means they are trans-Planckian. On
the other hand, some modes are outside the curvature
radius at the bouncing epoch and thus feeling the cur-
vature of spacetime (carrying the effects of LQC). These
most infrared modes of the observable window will then
have an imprint on the power spectrum due to LQC ef-
fects, reflected in the loss of the nearly scale invariance in
that sector [17]. Notice as well that all these modes cross
the horizon during inflation and when doing so they are
no longer trans-Planckian, that is to say, their physical
wavelength is well above the ultraviolet scale λc.

It is now time to compute the adiabaticity coefficient
for the different modified dispersion relations that af-
fect the ultraviolet sector while the modes are trans-
Planckian. This will allow us to determine if the ultravio-
let part of the observed power spectrum is robust against
trans-Planckian effects in this model within LQC.

We have calculated the adiabaticity coefficient ε(η, k)
both for the Unruh and superluminal Corley-Jacobson
modified dispersion relations, as well as for the linear
one. The results are depicted in Figure 5. The curves in
orange and blue correspond to the endpoints of the ob-
servable window and the ultraviolet scale λc is the dashed
black line. Since these three functions are monotonic, the
calculation of this parameter for the limits of the window
is enough to enclose all the observable modes.

We now summarize the main results that follow from
the analysis of these graphics. The first thing to notice
is that the observable mode with the longest physical
wavelength is not affected by the concrete dispersion re-
lation we are using. This is natural, since modifications
to the dispersion only affect those modes whose wave-
length is below or comparable to the ultraviolet scale λc,
and this concrete mode is sufficiently above it. Another
thing to remark is that the adiabaticity coefficient in-
creases dramatically around 106 tPl, due to the fact that
modes are crossing the horizon, but there they are al-

Figure 5: Adiabaticity coefficient for the different dis-
persion relations considered in this work. Upper: linear.
Middle: Unruh. Lower: superluminal Corley-Jacobson.
The line in red is to visualize the value of one. All the
lines depicted tend to zero at the bounce (t = 0).

ready sub-Planckian, as seen before.

Focusing first in the linear dispersion relation (up-
per graph), we see that both observable modes depicted
present the same behaviour for the adiabaticity coeffi-
cient. In particular, for the shortest physical wavelength
mode we observe today, it remains far below one at every
instant while being trans-Planckian. On the other hand,
for the longest physical wavelength mode, it reaches val-
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ues of order one during the bouncing phase, at the times
when H(t) is maximum. This is understandable, since
this mode has a physical wavelength bigger than the cur-
vature radius at this early stage, thus being affected by
the curvature of spacetime. However, after this bounc-
ing stage, its adiabaticity coefficient is small (of order
10−2), but the effects of LQC have already been cap-
tured and they will be reflected in the power spectrum.
We have also plotted the corresponding adiabaticity co-
efficient for the ultraviolet scale λc, just for comparison
with the other cases, although in this case there is no
such a ultraviolet scale at all.

We continue the analysis with the Unruh dispersion
relation (middle graph). We see big differences with re-
spect to the linear one. The main one is that both lines
are much closer during the bouncing phase. Moreover,
the most ultraviolet mode has an adiabaticity coefficient
that is almost equal to that of the ultraviolet scale λc

during the whole evolution until it exits the horizon. We
can view this as if the Unruh dispersion relation makes
this mode less adiabatic; this is related with the par-
ticular form of (14), which makes modes with κ ≫ κc

saturate to the value of κc. Due to this, the whole ob-
servable window is non-adiabatic right after the bounce,
being most of the modes trans-Planckian. We therefore
conclude that the Unruh dispersion relation will leave
an imprint in the power spectrum, possibly breaking the
nearly scale-invariance obtained with the standard dis-
persion relation, specially in the most ultraviolet part of
the observable power spectrum.

Finally, we focus on the superluminal Corley-Jacobson
dispersion relation (lower graph). We see that, despite
the fact that the ultraviolet modes become less adiabatic
than in the linear case, they are always far below one dur-
ing the bouncing phase and while being trans-Planckian.
In particular, the adiabaticity coefficient of the ultravio-
let scale λc is always less than one, but not by much, and
this means that we can expect slight modifications to the
power spectrum, less important than in the Unruh case.

This analysis shows that in this model (which is com-
patible with observations for the linear dispersion rela-
tion [19]) the trans-Planckian problem is present and
thus these effects must be considered in the computa-
tion of the power spectrum. Moreover, it would be de-
sirable to know the precise way in which these effects
arise in the quantum theory to confirm that the same re-
sults we have obtained in this work apply there. At this
point, it is important to mention that we have made this
analysis considering the value λc = 0.31ℓPl for the ultra-
violet scale. In principle, one could imagine any other
reasonable value and the results could be very different.
We have to recall as well that the presence of a trans-
Planckian problem depends strongly on the number of
e-folds from the bounce until today and, therefore, these
results should not be considered as general, but only as
an example of the existence of the trans-Planckian prob-
lem within the context of LQC.

VI. CONCLUSIONS

In this work, we have dealt with the trans-Planckian
problem from inflationary and LQC perspectives. In or-
der to describe trans-Planckian effects, we have consid-
ered two different modified dispersion relations above
some ultraviolet scale κc, namely, the ones introduced
by Unruh and by Corley and Jacobson. We have argued
that the imprints that these modifications may leave in
the power spectrum can be studied in terms of the adi-
abaticity coefficient of the modes while they were trans-
Planckian. In particular, we have found that this param-
eter is of order H/κc, so that when this quantity is very
small we do not expect any change. More precisely, these
dispersion relations present this characteristic during in-
flation, but the same does not apply to the preinflation-
ary scenario introduced in [18] that we have considered.
In this last case we have seen that modified dispersion re-
lations may have an imprint on the power spectrum, thus
confirming the existence of a trans-Planckian problem in
this model within the context of LQC.
This work complements the one carried out in [40],

where the power spectra with modified dispersion rela-
tions were computed in different LQC approaches to per-
turbations, but no insight was placed in understanding
the origin of the modifications to those power spectra.
This solves our initial question of whether the trans-

Planckian problem is present or not in a preinflationary
Universe described by LQC. These results are of par-
ticular interest, since the prediction of modifications to
the power spectrum and their possible observational mea-
surement could tell us about the history of the Universe
before inflation took place and if the observable modes
behaved always following a linear dispersion relation.
Nevertheless, this analysis presents some limitations

that are important to mention. These are mainly three.
The first one is that we have restricted ourselves to
two modified dispersion relations to account for trans-
Planckian effects, but we do not know if these are the
ones that best fit the possible deviations of the linear
regime for the modes beyond Planck scale. It would then
be interesting, if possible, to find the exact form that the
dispersion relation of the modes has following geometrical
arguments of LQC. In addition to this, we have chosen
a specific ultraviolet scale, namely, the one that provides
LQC related to the curvature radius at the bounce. This
choice above others seems to be justified, but there is no
argument that confirms that we have to take κc = κLQC.
Lastly, in this work we have only carried out a qualitative
analysis of the trans-Planckian problem, for a particular
model with a specific number of e-folds and for a concrete
potential, focusing on the evolution of the adiabaticity
coefficient for trans-Planckian modes, rather than com-
puting the power spectrum for completeness. We leave
these calculations, as well as the consideration of other
suitable potentials and models with different number of
e-folds, for future research. However, the study carried
out here anticipates what the results will be.
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To conclude, we affirm that the trans-Planckian prob-
lem exists in the model we have considered within LQC,
and that this effect must be taken into account in the
evaluation and computation of observable quantities,
such as the power spectrum of primordial fluctuations
measured in the CMB.
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