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One of the relevant mechanisms for the semi-inclusive production of J/ψ at the electron-ion
collider is through gluon fragmentation. When the transverse momentum of the J/ψ is measured,
the cross-section is given in terms of, among other objects, a gluon transverse-momentum-dependent
fragmentation function (TMDFF), which is introduced for the first time here and is the main object
of this work. After reviewing the basics of factorization for this kind of processes in soft-collinear
effective theory, we present an original perturbative calculation of the gluon TMDFF into J/ψ at
next-to-leading order, using non-relativistic QCD. The work reports the progress of this study up
to the present date and its future perspectives.

I. INTRODUCTION

The motivation of this work is to contribute to the
knowledge of the most fundamental particle physics. In
particular, the internal partonic structure of nucleons
through the study of quarkonia production.

In quantum chromodynamics (QCD), the charm and
bottom are called heavy quarks, and hadrons with heavy
quarks are known as heavy hadrons. Quarkonia are
bound states composed of a heavy quark and its anti-
quark. Due to the high scale provided by the large mass
of the heavy quarks, heavy hadrons including quarkonia
can be used as tools to explore the structure of nucleons
and nuclei, the phase diagram of QCD, the spin content
of nucleons, the coupling of the Higgs boson to heavy
quarks, etc [1, 2]. In general, quarkonia are an important
asset for the study of QCD in high-energy collisions.

Over the years, the energy used in the colliders has
been increasing, making it possible to study the hadrons
more deeply and to observe new properties such as its
size, the charge distribution or the confinement of quarks.
The deep inelastic scattering experiments allowed to see
that by illuminating the proton with a virtual photon
with a small wavelength, the proton starts to behave like
a free Dirac particle. In other words, the proton is made
up of more fundamental particles, and they are called
partons. These partons are charged (quarks) and neu-
tral (gluons). In this context, the study of form factors,

which define the properties of a certain particle inter-
action, and parton distribution functions (PDFs), which
give the probability of finding partons in a hadron as a
function of the longitudinal fraction z of the hadron’s
momentum carried by the parton, appears. The systems
described by the PDFs are not sensitive to the trans-
verse momentum, pT , of the partons, so with the PDFs
we can only obtain a 1D image of the internal structure
of the nucleon. However, when the pT is small compared
to the energy of the center of mass of the process, it
is required to take into account its contribution in the
probability distributions. In this case, the system can-
not be described by PDFs and it is necessary to intro-
duce the transverse-momentum-dependent distributions
(TMDs). The TMDs are functions of both z and the
parton’s transverse momentum, and they provide a 3D
picture of the internal structure of nucleon. Since they
are more fundamental quantities than PDFs and give us
more information about non-perturbative QCD, we will
study them making use of quarkonia production.

To date, there are many processes of J/ψ production.
For example, the proton-proton collision at the a large
ion collider experiment (ALICE) [3] or the e+e− colli-
sion at the BaBar detector [4]. We focus on the future
electron-ion collider (EIC). In this experiment processes
like ` + p → ` + J/ψ + X or ` + p → ` + J/ψ + jet + X
may occur, where ` is any lepton and X stands for the
remnants of the collision, an object we do not study. The
way in which the internal structure of the proton (quarks
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and gluons) interacts with the virtual photon, such as
γ∗q → qg or γ∗g → qq̄g, can give rise to a large number
of contributions to the process [5]. The J/ψ production
is given by different mechanisms. Among these mech-
anisms, we focus on gluon fragmentation, described by
the TMD fragmentation function (TMDFF). In ref. [6]
the TMDFF of light quarks into J/ψ was calculated, a
work which is related to this. In addition, to describe
these processes it is necessary to use other TMDs such
as the TMD parton distribution functions (TMDPDFs).
Figure 1 shows two different production mechanisms for
J/ψ which contribute to the cross-section: on one side
the direct production of quarkonia in photon-gluon fu-
sion through the production of a heavy-quark pair, and
on the other the production of J/ψ through gluon frag-
mentation mechanism.

FIG. 1. Two contributions for the process ` + p → ` +
J/ψ + X. The left picture shows the photon-gluon fusion
mechanism and right picture gluon fragmentation mechanism.
The rectangle in the right picture indicates the TMDFF we
have computed in this work.

The processes we are describing are of high-energy
physics. In these experiments the hadrons come from
collimated jets with much less energetic particles and it
is common to use soft-collinear effective theory (SCET)
[7, 8]. In this effective theory there are different regions
of momentum in which the degrees of freedom of the sys-
tem can be defined. The momentum components of the
particles are usually described by a scaling parameter
λ � 1, which for our case is defined as λ = p⊥/M [9],
where p⊥ is the transverse momentum component of the
J/ψ and the jet, if any, and M is the mass of the J/ψ
or the invariant mass of the J/ψ+jet. The most impor-
tant result of this effective theory is that it allows us to
factorize the cross section of any process based on the en-
ergy scale [10]. Thus, we are able to calculate each part
independently with different models and techniques.

Nonrelativistic QCD (NRQCD) is another effective
theory that we need to describe the heavy quarkonium
in the final state [11]. NQRCD is based on the idea
that heavy quarks are non-relativistic and we can con-
sider that their velocity is v � 1. Analogous to SCET,
with NRQCD we can factorize the quantities of interest
in different energy regions where in this case the scaling
parameter is v. In particular, this argument allows us
to decompose the TMDFF in terms of calculable short-

distance coefficients, which describe the production of
heavy-quarks pair in a particular angular momentum,
and long-distance matrix elements (LDMEs), which de-
scribe the decay of the heavy-quarks pair into the final
color quarkonium state. The short-distance coefficients
is the one we are going to calculate in this work, where
all the dynamics of the process is hidden.

The LDMEs are described by the color and angular
momentum configuration in which the quark-antiquark

pair is found and which is denoted as n = 2S+1L
[col.]
J

with parity P = (−1)L+1 and charge conjugation num-
ber C = (−1)L+S in a color singlet state. Therefore the
quark-antiquark pair must be in a color single state and
in a configuration that is consistent with the quantum
numbers JPC of the meson. Those states are suppressed
by others with different configuration due to the expan-
sion in v, and the scenario is different for different fi-
nal states. For our case, J/ψ has the quantum numbers
JPC = 1−−, so we need a configuration with J = 1 and
L+ S an odd number. By using the v expansion we ob-

tain 3S
[1]
1 ∼ v3, 3S

[8]
1 ∼ v7, 1S

[8]
0 ∼ v7 and 3P

[8]
J ∼ v7 for

J/ψ production [11].
In summary, we need SCET to describe the energetic

hadrons and soft radiation of the initial state, and we
need NRQCD for the heavy quarkonium in the final
state. Each of these theories is described by a small pa-
rameter, λ for SCET and v for NRQCD. The way these
parameters are related describes different scenarios. For
example we can consider v ∼ λ, where the soft regions
of both theories overlap and have the same soft gluons,
or v � λ where it is necessary to work with both theories.

The objective of this work is to calculate the virtual
gluon contribution to the TMDFF at next-to-leading or-
der, and use it to check that the structure of divergences
agrees with TMD factorization. The work is organized
as follows: in sec. II we discuss relevant aspects of SCET
and the conventions used in the calculation. In sec. III we
show the expression of the gluon TMDFF. In sec. IV we
discuss the matching of the TMDFF with the NRQCD.
Finally, in the remaining sections we show the calculation
necessary to arrive at the result.

II. LIGHT-CONE COORDINATES

It is convenient to use light-cone coordinates to de-
scribe jets of energetic hadrons in SCET. We choose
a light-cone vector nµ = (1, 0, 0, 1) in the direction of
the one of the energetic jets and its complementary
n̄µ = (1, 0, 0,−1) such that n · n̄ = 2 and n2 = n̄2 = 0.
With this vectors we can represent any four-vector as

p+ = n · p, p− = n̄ · p, (1)

pµ = p+ n̄
µ

2
+ p−

nµ

2
+ pµ⊥, (2)

p2 = p+p− + p2
⊥ = p+p− − p2

T . (3)
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The components of the momentum, pµ = (p+, p−, p⊥),
can be parameterized with λ parameter such that we
can distinguish the different kinematical regions. The
scaling of the relevant degrees of freedom (d.o.f.) are
pµn ∼ Q(λ2, 1, λ) and pµs ∼ Q(λ2, λ2, λ2), where Q is
the typical hard scale. The power counting of collinear
d.o.f. correspond to p2 ∼ λ2Q2 that is boosted in the
n-direction. For soft d.o.f the power counting correspond
to p2 ∼ λ4Q2, describing much less energetic radiation
without a preferred direction.

III. TMD FRAGMENTATION FUNCTION

As mentioned in the introduction, SCET allows factor-
ing the cross section of the process. The most interesting
factors are the TMDs because they represent a crucial
step in the understanding of ordinary matter. The other
factors that appear as a result of the factorization can
be calculated perturbatively and are related to the hard
part of the process.

In gluon fragmentation the TMD involved is the
TMDFF. It is represented graphically inside the rectan-
gle in the right picture of Fig. 1 and is defined by the
equation (4) [12], which shows the unsubtracted hadronic
matrix elements of the TMDFF operators,

∆g→J/ψ(z,b⊥)

=
−1

2(1− ε)P+(N2
c − 1)

∑
X

∫
dξ−

2π
e−iP

+ξ−/z

×〈0|T [Bµn⊥]

(
ξ

2

)
|X, J/ψ〉 〈X, J/ψ|T̄ [Bn⊥µ]

(
−ξ
2

)
|0〉 ,

(4)

where the variable z is the momentum fraction of the par-
ton inside the hadron and b⊥ is the conjugate variable of
transverse momentum. The prefactor is a normalization
constant related with color and polarizations in d = 4−2ε
dimension, ξ = {0+, ξ−,b⊥} and Bµn⊥ is the gluon field
strength defined as

Bµn⊥ =
1

g
[W †n(y)iDµ

n⊥Wn(y)], (5)

with iDµ
n⊥ = Pµn⊥ + gAµn⊥, the label momentum opera-

tor and the composite SCET field of n-collinear gluons
respectively. In (5), Wn are the collinear Wilson lines
defined in the following way

Wn(y) = P exp

[
ig

∫ 0

−∞
dsn̄ ·Aan(y + n̄s)ta

]
, (6)

where P indicate path-ordered, Aa(x) is the gluon field
and ta are the SU(Nc) generators.

In order to renormalize the TMDFF, it should be noted
that in SCET there are divergences that are neither ul-
traviolet (UV) nor infrared (IR), they are known rapidity

divergences. This kind of divergences arise when the plus
or minus component of the loop momentum is boosted
to infinity in one light-cone direction, that is for example
k+ → ∞ such that the product k+k− is fixed. Thus, in
order to remove UV and rapidity divergences we define
the renormalized TMDFF as follows

Dg→J/ψ(z,b⊥, µ, ζ) = Zg(ζ, µ)Rg(ζ, µ)∆g→J/ψ(z,b⊥) ,

(7)

where Zg is the usual renormalization factor for UV di-
vergences and Rg is the rapidity renormalization factor,
µ is the scale of UV subtraction and ζ is the scale of
rapidity subtraction. Here, Rg is defined as follows

Rg(ζ, µ) =

√
S(b⊥)

Zb
, (8)

which includes the soft overlap contribution through the
term Zb [13], and the soft function denoted as S(b⊥).
The soft function (SF) [14] is defined as a expectation
value of Wilson lines:

S(b⊥) =
Trc

N2
c − 1

〈0|T [S†nS̃n̄](0+, 0−,b⊥)T̄ [S̃†n̄Sn](0)|0〉 ,

(9)

where Sn = P exp
[
ig
∫ 0

−∞ dsn ·As(x+ ns)
]

are the soft

Wilson lines.

In addition to calculating the gluon TMDFF, we want
to check that the factor renormalization (8) effectively
eliminates all rapidity divergences in the case of quarko-
nia production by gluon fragmentation.

IV. TMDFF REFACTORIZATION

The factorization in quarkonia production resides
in the idea of separating the relativistic physics of
the heavy-quarks production from the non-relativistic
physics of quarkonia structure, and NRQCD is an ef-
fective theory which allows us to achieve it.

We employ NRQCD factorization formalism [15] to
write the TMDFF as a product of matching coefficients
and matrix elements:

Dg→J/ψ(z,b⊥) =
∑
mn

dmn(z,b⊥) 〈OJ/ψmn 〉 , (10)

where dmn(z,b⊥) are the short-distance coefficients. All
relativistic effects are absorbed in these coefficients which
can be calculated as a perturbative series in the strong

coupling constant, αs. The matrix elements 〈OJ/ψmn 〉 are
the so-called long-distance matrix elements (LDMEs) of
NRQCD, defined as follows:

〈OJ/ψmn 〉 = 〈0|χ†Kmψa†J/ψaJ/ψψ
†K′nχ|0〉 , (11)
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where aJ/ψ and a†J/ψ are the operators of annihilation

and creation of the state describing the J/ψ, Kn and K′n
are products of a color matrix, a spin matrix and other
fields, and χ and ψ are the field operators for the heavy
quarks in NRQCD.

The short-distance coefficients in (10) can be obtained
by matching the perturbative calculation of the TMDFF
in which the J/ψ is replaced by a cc̄ pair. This state is
characterized by a total momentum P , a relative spatial
momenta q in the cc̄ rest frame, that in the threshold
q = 0, and by the spin and color specified by the spinors
of the heavy quarks. Then, the first step to find dmn
is to calculate the left-hand side of the equation (10)
around the threshold. This is equivalent to computing
the TMDFF (7) by substituting the J/ψ projector for
the cc̄ projector described above:

PJ/ψ =
∑
X

|X, J/ψ(P )〉 〈X,J/ψ(P )|

−→
∑
X

|X, c(p, ξ)c̄(p′, η)〉 〈X, c(p, ξ)c̄(p′, η)| , (12)

where ξ and η are the spinors of the heavy quarks, and
p and p′ their momentums, which satisfy p + p′ = P .
The second step is to compute the right-hand side of
equation (10) using perturbative NRQCD and expanding
in powers of q. Finally, we obtain the short-distance
coefficients by matching the expansions in q, order by
order in αs, of the two sides of (10).

V. SHORT-DISTANCE COEFFICIENTS
COMPUTATION

The type of diagrams we need to calculate are shown
in figures 2 y 3, which were obtained by expanding the
matrix elements in (4) at different orders of g. In this
work we have only computed the LO diagram and NLO
virtual diagrams contributions.

We use the SCET Feynman rules from ref. [14] for the
gluon field strength, Bµn⊥, defined in (5):

Bµα,can⊥ = δca
(
gµα⊥ −

pµ⊥n̄
α

n̄ · p

)
, (13)

Bµαβ,cabn⊥ = igf cab

[
gµβ⊥
n̄ · p

−
gµβ⊥ n̄α

n̄ · q

+

(
pµ⊥
n̄ · q

−
qµ⊥
n̄ · p

n̄αn̄β

n̄ · (q + p)

)]
, (14)

where (13) is the SCET Feyman rule at order O(g0) of
Bµn⊥ and (14) at order O(g).

To regulate rapidity divergences we use δ-regulator
[16]. This implementation is done at the level of the

operators by modifying the Wilson lines as follows

Wn(y) = P exp

[
ig

∫ 0

−∞
ds n̄ ·Aan(x+ n̄s)ta

]
−→ P exp

[
ig

∫ 0

−∞
ds n̄ ·Aan(x+ n̄s)taeδ

−s

]
, (15)

where the difference with (6) is in the exponential of the
δ-regulator. The only diagrams in which we have to use
this regularization scheme are Fig. 3(c,d,e).

For the calculation we are going to divide the con-
tribution of each Feynman diagram into a leptonic part
and a gluonic part. The gluon tensor will be constructed
by combining the SCET Feynman rules of Bµn⊥ with the
QCD Feynman rules, corresponding to the gluons linking
the heavy-quarks vertices with the eikonal lines. For the
fermionic part we will use the Feynman rules of QCD.

A. Leading Order

In this case (Fig. 2), the gluon tensor is constructed by
two gluon propagators of QCD and two Feynman rules
(13), one for each side of the cut diagram:

Gab,LOαβ = δab
i2

(P 2)2

(
gαβ −

Pαn̄β + Pβn̄α
n̄ · P

+
n̄αn̄βP 2

(n̄ · P )2

)
,

(16)

where P is the total momentum P 2 = 4E2
c with Ec =√

m2
c + q2 and q is the relative momentum in the center

of momentum frame of the heavy quarks.
The fermionic tensor is made by two quark-gluon ver-

tices of QCD, one of each side of the cut diagram:

Lab,LOαβ = [ū(p)(igγαT
a)v(p′)][v̄(p′)(igγβT

b)u(p)], (17)

where p and p′ are the momentums of the heavy quarks.
At this point, we carry out the spinorial expansion
around the threshold, q = 0, summarized in the formulas
found in the appendix A of ref. [17]. Thus,

ū(p)γµv(p′) ' 2mcL
µ
j ξ
†σjη, (18)

where ξ and η are the Pauli spinors, σ’s are the Pauli ma-
trices and L is the Lorentz boost from the heavy quarko-
nium center of mass frame to the boosted collinear frame,
which satisfies the following properties

−gαβLαi L
β
j = δij , Lαi L

β
i = −gαβ +

PαP β

P 2
,

n̄αLα,i =
n̄ · P√
P 2

ẑi. (19)

Therefore,

Lab,LOαβ = −g2(2mc)
2Lαi L

β
j [ξ†σiT aηη†σjT bξ]. (20)
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For the unpolarized case we sum over all polarizations,
so we need to normalize with the total number of polar-
izations, being D − 1 in a D-dimensional spacetime,

Lab,LOαβ = −g
2(2mc)

2

D − 2
Lαi L

β
j

∑
pol.

[ξ†σiT aηη†σjT bξ]

= −g
2(2mc)

2

D − 2
Lαi L

β
j δ
ij [ξ†σkT aηη†σkT bξ]. (21)

The result of contracting (21) with (16) forms the ma-
trix element of the left-hand side of equation (10), or
equivalently the matrix element of equation (4). Now we
have to do the matching with the right hand side. From
ref. [11] the spinorial factor of (21), in square brackets,
corresponds to the expansion at LO in αs of the NRQCD
matrix element:

〈χ†σkT aψPJ/ψψ†σkT bχ〉 |pNRQCD
≈ 4m2

c(D − 1)[ξ†σkT aηη†σkT bξ], (22)

so the tensor (21), as a function of LDMEs, is described
by

Lab,LOαβ = − g2(2mc)
2

(D − 2)(D − 1)(2mc)2
Lαi L

β
i

×〈χ†σkT aψPJ/ψψ†σkT bχ〉 . (23)

If we contract (23) with (16) and introduce the result in
(4) we obtain the short-distance coefficient at LO:

dLO(z,b⊥) =
παsµ

2ε

8m3
c(D − 1)

δ(1− z)δ(2)(b⊥), (24)

where the 1/8 comes from averaging over the color
states, N2

c − 1 = 8 for gluons. The D − 2 factor of
(23) has canceled with the D − 2 factor that comes
from contracting (16) with (23). Also, in (24) there is a
additional factor 1/4mc of the operator in NRQCD. The
Dirac deltas come from the exponential of the TMDFF
definition. The term δ(1 − z) reflects the fact that the
J/ψ takes away all the momentum of the fragmenting
gluon.

To conclude the discussion we can study in depth the
transverse and longitudinal behavior denoting ẑi as the
unitary fraction gluon energy vector. If we recalculate the
contraction of the gluon tensor and the fermionic tensor
using the relations of (19), we find a purely transverse
behavior

∼ (δij − ẑiẑj)ξ†σjT aηη†σiT aξ, (25)

and as we will see soon, the virtual contribution at NLO
has the same behaviour. Only in real gluon diagrams we
obtain a longitudinal contribution, but this is not shown
in this work.

FIG. 2. Diagram contributing to LO. The circles with crosses
inside them with an outgoing collinear gluon are the graphical
representation of (13). At LO, k = P .

B. Next-to-leading order diagram c

In this case (Fig. 3,c) we need to use (14) and a QCD
gluon propagator,

∼
(
iδabgαβ
q2

)[
igf cab

(
gµβ⊥ n̄α

n̄ · k
−
gµα⊥ n̄β

n̄ · q

+

(
pµ⊥
n̄ · q

−
qµ⊥
n̄ · p

)
n̄αn̄β

n̄ · (p+ q)

)]
, (26)

but with the properties of the reference vectors indicated
in sec. II, n̄αg⊥,αβ = 0, n̄2 = 0 , we obtain that it is zero.

C. Next-to-leading order diagram d

In this case (Fig. 3,d), we have a more difficult struc-
ture for gluon tensor and fermionic tensor because there
are two ways to connect the gluons from eikonal line with
quark-gluon vertices. The only difference between both is
the index interchange between γ’s in the quark-gluon ver-
tex and the momentum interchange in the SCET Feyn-
man rule (14). Also we have to swap the color indexes of
the group elements. Therefore, the gluon tensors for the
two subcases are

Gabc,d1
αβσ =

i3gf bac

P 2(k2 + iε)((k − P )2 + iε)

1

n̄ · (k − P )

×
[
n̄σgαβ

(
1− n̄ · P

n̄ · k

)
+ n̄αgβσ − kβn̄αn̄σ

n̄ · k
+ n̄βn̄σPα

×
(

1

n̄ · k
− 1

n̄ · P

)
+ n̄αn̄σP β

(
1

n̄ · k
− 1

n̄ · P

)
− n̄αn̄βPσ

n̄ · P

+n̄αn̄βn̄σ
(

k · P
(n̄ · k)(n̄ · P )

+
P 2

(n̄ · P )2
− P 2

(n̄ · k)(n̄ · P )

)]
,

(27)
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a)

p p’

k

k’

c)

p

q

p’

k

p

p’

k
q

p p’

k
q

d) e)

p’+k

q+k

b)

p p’

k

FIG. 3. Virtual diagrams contributing to NLO. We only show one side of the cut diagram. The circles with crosses inside them
with two outgoing collinear gluons are the graphical representation of (14). Diagram a) is the correction to gluon propagator
and diagram b) is the correction to quark-gluon vertex. The diagram c) or tadpole diagram is zero because there is a gluon
loop attached to the eikonal line. Diagram d) also represents the diagram for which we interchange the vertices to which the
gluones of diagram d) are connected. Also, we need to take the Hermitian conjugate of every diagram.

and

Gabc,d2
αβσ =

i3gf bca

P 2(k2 + iε)((k − P )2 + iε)

1

n̄ · (k − P )

×
[
−n̄σgαβ + n̄αgβσ

(
−1 +

n̄ · P
n̄ · k

)
+
kβn̄αn̄σ

n̄ · k

+
n̄βn̄σPα

n̄ · P
+ n̄αn̄σP β

(
1

n̄ · P
− 1

n̄ · k

)
−n̄αn̄βPσ

(
1

n̄ · P
− 1

n̄ · k

)
+n̄αn̄βn̄σ

(
− k · P

(n̄ · k)(n̄ · P )
− P 2

(n̄ · P )2
+

P 2

(n̄ · k)(n̄ · P )

)]
(28)

On other hand, the fermionic tensors are

Labc,d1
αβσ = [ū(p)(igγαT

a)

(
i(p′ + k +mc)

(p′ + k)2 −m2
c

)
×(igγσT

c)v(p′)][v̄(p′)(igγβT
b)u(p)], (29)

and

Labc,d2
αβσ = [ū(p)(igγσT

a)

(
i(p′ + k +mc)

(p′ + k)2 −m2
c

)
×(igγαT

c)v(p′)][v̄(p′)(igγβT
b)u(p)]. (30)

We will treat the fermionic tensor as in the LO calcu-
lation. We are only going to indicate which are the steps
for one of them, for example for d1, because for the other
one it is the same with the color indices exchanged. We
use the following formulas, from appendix A of ref. [17],

ū(p)v(p′) ' 0, (31)

ū(p)(γµγν − γνγµ)v(p′) ' 2(PµLνj − P νL
µ
j )ξ†σjη, (32)

ū(p)(γµγνγλ − γλγνγµ)v(p′) '
−mcL

µ
i L

ν
jL

λ
kξ
†{[σi, σj ], σk}η. (33)

When we insert these formulas into the fermionic ten-
sor and sum over all polarizations the terms equivalent

to (33) cancel out because {[σi, σj ], σk} = i4εijk is anti-
symmetric. Thus, the fermionic tensor for d1 after sum
over all polarizations is

L
abc,(d1)
αβσ =

i4g3

(D − 2)((p′ + k)2 −m2
c)

[
(p′ + k)µ(2mc)

2

× (gσαL
µ
i − gσµL

α
i − gµαLσi )Lβj + 2m2

c(P
αLσi

−PσLαi )Lβj

]
δij [ξ†T aσiT cηη†σiT bξ]. (34)

In this case it is not obvious that we recover the same
LDME as in (23) because we have three matrices T ’s in
the spinorial bracket. If we analyze the total color we
factor find

(f bcaT aT c)T b = −iCA
2
T bT b, (35)

with CA = 3 for SU(3), so this configuration results in
the same LDME as LO, described in (23). Note the color
factor of d2 introduces a global minus with respect to d1.

Finally we obtain the following result

dd(z,b⊥) = dd1(z,b⊥)− dd2(z,b⊥)

= −dLO(z,b⊥)παs32CAm
2
c

×Im

∫
dDk

(2π)D
n̄ · k

k2n̄ · (k − P )(k − P )2((P/2 + k)2 −m2
c)
,

(36)

where we have used that p′ = P/2 for the limit q ' 0,
Im stands for the imaginary part and we have omitted
the +iε factor in the denominators for simplicity of the
notation. If we manipulate this integral, we recover the
integrals of sec. VIII. That is,

I =

∫
dDk

n̄ · k
k2(k − P )2[(k − P/2)2 −m2

c ]n̄ · (k − P )
,

(37)
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we can do the shift k → k+P in the loop momentum k,

I =

∫
dDk

n̄ · (k + P )

(k + P )2k2[(k + P/2)2 −m2
c ]n̄ · k

=

∫
dDk

1

(k + P )2k2[(k + P/2)2 −m2
c ]

(38)

+

∫
dDk

n̄ · P
(k + P )2k2[(k + P/2)2 −m2

c ]n̄ · k
.

The first integral of r.h.s correspond with IABD doing
P → −P and the second is equal to n̄ · PIABCD after
doing k → k − P . Theredore,

dd(z,b⊥) = −dLO(z,b⊥)παs32CAm
2
c

×(n̄ · PIABCD − IABD), (39)

where IABCD y IABD are the integrals computed in sec-
tion VIII.

D. Next-to-leading order diagram e

In this case (Fig. 3,e), we need the SCET Feynman
rules (13) and (14), a triple gluon vertex of QCD and
for gluon propagators of QCD. The result of contracting
these feynman rules is as follows

Gab,eαβ =
i4g2f bt1t2f t1t2a

(k2 + iε)((k − P )2 + iε)(P 2)2

2

(n̄ · (k − P ) + iε)

×
[
−gαβ

(
n̄ · (k − P ) +

(n̄ · P )2

n̄ · k

)
+ n̄αP β

(
−1 +

n̄ · P
n̄ · k

+
n̄ · k
n̄ · P

)
+ n̄βPα

(
−1 +

n̄ · P
n̄ · k

+
n̄ · k
n̄ · P

)
+P 2n̄αn̄β

(
1

n̄ · P
− n̄ · k

(n̄ · P )2
− 1

n̄ · k

)]
. (40)

The fermionic tensor is the same as at LO,

Lab,eαβ = − g2

(D − 2)(D − 1)
Lαi L

β
i 〈χ

†σkT aψPJ/ψψ†σkT bχ〉

(41)

We contract (40) with (41) and conclude that the short-
distance coefficient is

de(z,b⊥) = −dLO(z,b⊥)παs8CA Im

∫
dDk

(2π)D
1

k2(k − P )2

×
[
1 + n̄ · P

(
1

n̄ · k − n̄ · P
− 1

n̄ · k

)]
. (42)

We recover the IAB integral for the first term within the
bracket. We can reexpress the third term doing the sift
k → k + P such that

I3 = n̄ · P
∫

dDk

(2π)D
1

(k + P )2k2[n̄ · (k + P )]
. (43)

This integral is equal to the integral corresponding to the
second addend of the bracketed term in equation (42)
doing P → −P , but it is odd under this interchange, so
the two integrals are added together and the result is

de(z,b⊥) = −dLO(z,b⊥)8παsCA(2n̄ · PIABC − IAB),
(44)

where IABC y IAB are the integrals in sec. VIII.

VI. FINAL RESULT

After substituting the value of the integrals performed
in sec. VIII in the results found in sec. V we conclude that
the virtual contribution for the short-distance coefficients
at NLO, with the MS-scheme (µ2 → µ2eγE/(4π)), are

dd(z,b⊥) = −dLO(z,b⊥)
αsCA
π

×
[
−3

2
ln2 δ+

P+
+ 2 ln2 2− 2 ln 2 +

19π2

24

]
, (45)

and

de(z,b⊥) = −dLO(z,b⊥)
αsCA
π

[
− 1

2ε

(
1 + ln

δ+2

P+2

)
+

1

2
ln2 δ+

P+
− ln

δ+

P+
ln

µ2

4m2
c

− 1

2
ln
µ2

m2
c

+ ln 2− 1− 7π2

24

]
. (46)

The contributions of diagrams Fig. 3(a,b) were calculated
in ref. [18] at NLO (do not depend on the rapidity regula-
tor introduced in this work). Thus, the sum of all virtual
contributions to the gluon TMDFF at NLO is

da,b,c,d,e(z,b⊥)

= dLO(z,b⊥)
αsCA

2π

[
1

εUV

(
β0

2CA
+ ln

δ+2

P+2

)
− 1

εIR

+2 ln2 δ+

P+
+ 2 ln

δ+

P+
ln

µ2

4m2
c

+ ln
µ2

m2
c

−4 ln2 2 +
10

3
ln 2 + 2− π2 +

123− 10nf
27

]
, (47)

where β0 = 11CA/3 − 2nf/3 and nf is the number of
light quark flavors.

In the δ-regularization scheme, the subtractions related
with Zb are equal to the soft function [19]. Therefore, the
rapidity renormalization factor, defined in (8), becomes

Rg(ζ, µ) =
1√

S(b⊥; ζ)
. (48)

The virtual contribution of the soft function (9), at one-
loop, was computed in ref. [20] and the result is

Sv =
αsCA

2π

[
−2

ε2UV
+

2

εUV
ln

δ+2ζ

(P+)2µ2

− ln2 (δ+)2

µ2
− π2

2

]
. (49)
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Therefore, to obtain the pure collinear matrix element,
we expand the renormalized TMDFF with the factor
Rg = 1/

√
Sv at first order in αs, and we obtain

dn = d(0)
n + d(1)

n −
1

2
d(0)
n Sv = d(0)

n

(
1 +

d
(1)
n

d
(0)
n

− Sv
2

)
,

(50)

where d
(m)
n is the TMDFF of order m with m = 0 mean-

ing LO and m = 1 meaning NLO.
The last step is to combine the result (47) with (49) as

indicated in (50):

Rgd
a,b,c,d,e(z,b⊥)

dLO(z,b⊥)
=
αsCA

2π

×
[

1

ε2UV
+

1

εUV

(
β0

2CA
+ ln

µ2

ζ

)
− 1

εIR

+
1

2
ln2 δ

+2

µ2
+ 2 ln2 δ+

P+
+ 2 ln

δ+

P+
ln

µ2

4m2
c

+ ln
µ2

m2
c

−3π2

4
− 4 ln2 2 +

10

3
ln 2 + 2 +

123− 10nf
27

]
. (51)

Notice that the terms with mixed divergences, ln δ+

εUV
, dis-

appeared from the final result because we have renormal-
ized the TMDFF with the factor (48). Moreover, the fac-
tor of the single UV pole turns out to be the expected one,
which gives the QCD evolution of the gluon TMD oper-
ator, and thus appears in all (un)polarized gluon TMD-
PDFs and TMDFFs (see e.g. ref. [19] for the unpolarized
gluon TMDPDF). Therefore, this represents a non-trivial
check of the correctness of the calculation, in which we
have correctly canceled the rapidity divergences.

VII. CONCLUSION

In this work we have introduced for the first time and
studied the gluon transverse-momentum-dependent frag-
mentation function (TMDFF) into J/ψ, which is the
main object of one of the relevant productions mecha-
nisms of the J/ψ at small transverse momentum. We
have used non-relativistic QCD (NRQCD) factorization
to write the TMDFF as a sum of products of short-
distance matching coefficients and long-distance matrix
elements (LDMEs).

We have performed an original perturbative calcula-
tion of the gluon TMDFF into J/ψ at leading-order and
partially at next-to-leading order (only virtual-gluon con-
tributions). After matching the results onto NRQCD we
have obtained that the color and angular momentum con-
figuration in which the heavy-quark pair is found at this

order is n = S
3 [8]

1 . We have also explicitly checked at
NLO, by using the δ-regularization scheme, that the ra-
pidity divergences cancel, as expected.

Finally, for the future work we plan to compute the
real-gluon contributions at NLO, thus completing the cal-
culation of the TMDFF at that order. This will allow us

to perform accurate phenomenological studies to quan-
titatively asses the relevance of the gluon fragmentation
channel to the production of J/ψ at small transverse-
momentum.

VIII. INTEGRALS

In this section we illustrate the technique for perform-
ing integrals using the δ-regulator. We only show the
imaginary part of the result, according to (36) and (42).

The first is as follows

IABC =

∫
dDk

(2π)D
1

[k2 + iε][(k − P )2 + iε][(P − k) · n+ iε]
,

(52)

we can do a shift such as k → k + P ,

I → I = −
∫

dDk

(2π)D
1

[(k + P )2 + iε][k2 + iε][k+ − iδ+]
.

(53)

The fact that the δ-regulator appears in the denominator
instead of +iε is a consequence of (15). The poles in k−

are

k−1 = −k
2
⊥ + iε

k+
, k−2 = −k

2
⊥ + 4m2

c + k+P− + iε

k+ + P+
.

(54)

When k+ > 0, P+ > 0, both poles lie in the lower com-
plex half-plane and we can close the contour through
the upper half-plane, giving 0 for the integral. When
k+ < −P+, P+ > 0, we are in the same case but in
the upper complex half-plane so the result is zero too.
However, when −P+ < k+ < 0, P+ > 0 we find one
pole in the lower complex half-plane and one pole in the
upper complex half-plane, we choose to close the contour
trough the upper half-plane picking the pole k−1 .

It is convenient to change the integration measure to

integrate over k+, k− and k⊥, i.e. dDk = dk+dk−

2 dD−2k⊥.

IABC = −1

2

∫
dk+dD−2k⊥

(2π)D[k+ − iδ+]

×
∫ ∞
−∞

dk−

[(k + P )2 + iε][k2 + iε]
. (55)

Now we integrate in k− using residues theorem∫ ∞
−∞

dk−

[(k + P )2 + iε][k2 + iε]
(56)

=
2πi

k2
⊥P

+ − k+(k+P− + 4m2
c)
. (57)

Setting k+ = zP+, to simplify the calculation,

IABC = − iπ
4π

∫ 0

−1

dz

zP+ − iδ+

×
∫

dD−2k⊥
(2π)D−2

1

k2
⊥ − 4m2

c(z
2 + z)

. (58)
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In this way, we can integrate over k⊥ using the following
relation, where d = 4− 2ε, δ(> 0) ∼ 0,∫

dD−2k⊥
(2π)D−2

1

[k2
⊥ + ∆]1+δ

=
1

(4π)1−ε
Γ(ε+ δ)

Γ(1 + δ)
∆−ε−δ.

(59)

Given this, we get the following expression for the inte-
gral

IABC =
−i

16π2P+

(
π2eiπ

m2
c

)ε
Γ(ε)

∫ 0

−1

dz

(z − id)(z2 + z)ε
,

(60)

with d = δ+/P+. The next step is to expand around
ε = 0 and then, compute the integral in z. Finally, we
need to perform the limit δ+ → 0 to restore the gauge
transformation properties.

IABC =
−i

16π2P+

(
πeiπ

m2
c

)ε [
1

ε
ln
δ+

P+
− γE ln

δ+

P+
+

7π2

24
− 1

2
ln2 δ+

P+

]
. (61)

Another integral we need to calculate is

IACD =

∫
dDk

(2π)D
1

[k2 + iε][(P − k) · n+ iε]

× 1

[(k − P/2)2 −m2
c + iε]

. (62)

We do the shift k → k + P :

IACD = −
∫

dDk

(2π)D
1

[(k + P )2 + iε][k+ − iδ+]

× 1

[(k + P/2)2 −m2
c + iε]

. (63)

In this case, the k− poles are

k−1 = −k
2
⊥ + 4m2

c + k+P+ + iε

k+ + P+
, (64)

k−2 = −k
2
⊥ + k+P−/2 + iε

k+ + P+/2
. (65)

Then, the integral is not zero only when −P+ < k+ <
−P+/2, P+ > 0. We have the same expression as in
(55) but now the result of doing the k− integral using
the residue theorem is∫ ∞

−∞

dk−

[(k + P )2 + iε][(k + P/2)2 −m2
c + iε]

= (66)

− 2

P+

2πi

[k2
⊥ − (k+)2P−/P+ − 4m2

c(2k
+/P+ + 1)]

, (67)

setting k+ = zP+,

IACD =
i

2π

∫ −1/2

−1

dz

zP+ − iδ+
× (68)∫

dD−2k⊥
(2π)D−2

1

[k2
⊥ − 4m2

c(z
2 + 2z + 1)]

, (69)

and computing the integral in k⊥ with (59)

I =
i

8πP+

(
− π

m2
c

)ε
Γ(ε)

∫ −1/2

−1

dz

z − id
1

(z2 + 2z + 1)ε
,

(70)

where d = δ+/P+. In the last step we make the expan-
sion in ε, then we integrate in z and finally we make the
expansion in δ+:

IACD =
i

16π2P+

(
πeiπ

m2
c

)ε [
−2

ε
ln 2 + γE2 ln 2 (71)

−1

3
(π2 + 6 ln2 2)] . (72)

The last independent integral we need to perform is

IBCD =

∫
dDk

(2π)D
1

[(k − P )2 + iε][(P − k) · n+ iε]

× 1

[(k − P/2)2 + iε]
. (73)

We perform the shift k → k + P

IBCD = −
∫

dDk

(2π)D
1

[k2 + iε][k+ − iδ+]

× 1

[(k + P/2)2 −m2
c + iε]

, (74)

and the poles in k− are

k−1 = −k
2
⊥ + iε

k+
, k−2 = −k

2
⊥ + k+P−/2 + iε

k+ + P+/2
. (75)

Then, we are only interested in region −P+/2 < k+ < 0.
We change the integration measure:

IBCD = −1

2

∫
dk+dD−2k⊥

(k+ − iδ+)(2π)D
× (76)∫ ∞

−∞

dk−

[k2 + iε][(k + P/2)2 −m2
c + iε]

. (77)

Performing the integral in k− by residues method and
setting k+ = zP+

IBCD =
i

2π

∫ 0

−1/2

dz

zP+ − iδ+

∫
dD−2k⊥
(2π)D−2

1

[k2
⊥ − 4m2

cz
2]
.

(78)

We perform the integral in k⊥ using (59)

IBCD =
i

8π2P+

(
πeiπ

m2
c

)ε
Γ(ε)

∫ 0

−1/2

dz

(z − id)z2ε
, (79)

where d = δ+/P+. At the end we expand in ε, perform
the integral in z and then expand around δ+ = 0:

IBCD =
−i

16π2P+

(
πeiπ

m2
c

)ε [
−2

ε
ln

2δ+

P+
+ γE2 ln

2δ+

P+
+

11

6
π2 + 2 ln2 2− 2 ln2 δ+

P+

]
. (80)
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These three integrals that we have performed so far are
the only independent integrals involved in the calcula-
tion of the short-distance coefficients. However, there
are other integrals involved that we can put in function
of these three integrals:

4m2
cIABCD = IACD + IBCD − 2IABC (81)

4m2
cIABD = 2(IAD − IAB) (82)

Their expressions are

IABCD =
i

4m2
cP

+

(
− 3

16π2
ln2 δ+

P+
+

1

4π2
ln2 2 +

19

192

)
,

(83)

IABD = i
ln 2

16π2m2
c

. (84)

For the most elementary integrals it is not necessary to

use the δ-regulator because they do not have rapidity
divergences. They are tabulated and at order O(ε0) are
the following

IAB =
i

16π2

[
1

ε
+ ln

µ2

m2
c

− γE + 2 + lnπ

]
(85)

IAD =
i

16π2

[
1

ε
+ ln

µ2

m2
c

− γE + 2 + ln 4π

]
(86)
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