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Máster en F́ısica Teórica
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We consider a scalar field which couples to gravity via arbitrary functions of the metric determi-
nant, so that the matter action is no longer invariant under Diffeomorphisms (Diffs) but only under
Transverse Diffeomorphisms (TDiffs). We perform an effective description of the scalar field by
treating it as a perfect fluid, consider some limiting cases, and study its energy conditions. Whereas
Diff invariance guarantees the conservation of the energy-momentum tensor in General Relativity,
for TDiff invariant matter the conservation is satisfied only on solutions to the Einstein equations,
and imposes one additional constraint on the metric tensor. Finally, we also consider some particular
examples.

I. INTRODUCTION

The theory of General Relativity (GR) was first proposed
in 1915, and remains our current best description of grav-
ity. In more recent years, we have entered the era of
precision cosmology, and observations indicate that our
Universe presents an accelerated expansion [1, 2]. Possi-
ble explanations for this behavior within the framework
of GR include a cosmological constant, or an additional
dynamical field referred to as “dark energy” [3, 4] (usu-
ally modeled by a scalar field such as quintessence or
k-essence [5]). However, it is also possible that the cur-
rent accelerated expansion indicates a breakdown of GR
at cosmological scales and, therefore it may be necessary
to modify the theory [3, 4].

Focusing on the latter option, interest has grown in
theories which present a broken Diffeomorphism (Diff)
invariance [6]. The most popular alternative is the so-
called Unimodular Gravity (UG, see for instance [7] for
a review), first proposed by Einstein in 1919. In UG,
the metric determinant g is taken to be a constant, non-
dynamical field, and in this manner the invariance of GR
under the full group of diffeomorphisms is broken down
to only invariance under the more restrictive Transverse
Diffeomorphisms (TDiffs) and, in addition, Weyl rescal-
ings. The focus in this work is placed on TDiffs, which are
coordinate transformations with unit Jacobian (without
assuming Weyl invariance). Infinitesimally, if we consider
a coordinate transformation xµ → x̂µ = xµ+ ξµ(x), then
what we do is require that ∂µξ

µ = 0 (hence the name
“transverse”). An immediate and important consequence
of TDiff invariance is that we can no longer distinguish
between tensors and tensor densities, since the Jacobian
must equal 1. In particular, the metric determinant is
a true scalar and thus symmetry does not fix the func-
tion accompanying terms in Lagrangian functions L to
be
√

|g| [8]. An accessible introduction to TDiffs may be
found in the Appendix of reference [6].

In this work we do not consider the breaking of Diff
invariance in the gravitational action. Rather, the sym-

metry breaking from Diff to TDiff shall be taken to occur
explicitly in the matter action (consequently, however, af-
fecting the full theory) via different couplings of a scalar
field ψ to gravity. Although it is possible to consider TD-
iff invariant visible matter as it is done in [6, 8] (where it
is seen that the phenomenological viability of the models
implies a particular relation between the couplings), the
idea of the present work is to explore the implications of
this more reduced symmetry group in a general way.
The full Diff invariance of GR implies that the energy-

momentum tensor is automatically conserved on the so-
lutions to the equations of motion of the theory (this is
shown in any GR textbook, see [9] for a review). How-
ever, when Diff symmetry is broken down to TDiff, this
conservation is no longer an automatic consequence of the
field equation, but it is only implied by the Bianchi iden-
tities. This imposes additional constraints on the metric
that shall be considered in detail.
The main aim of the present work is to perform a gen-

eral study which allows us to gain some intuition on the
new phenomenology that can be described within this
framework. By “general study” we refer to the fact that
no assumptions are made as to which is the geometry
of spacetime. We do make an assumption regarding the
existence of a preferred time direction, in particular that
given by the derivative ∂µψ of the field, and we shall see
that this is equivalent to considering a perfect fluid.
The work is organized as follows: in Section II we re-

view some definitions and techniques, and present the
TDiff scalar field model under consideration (together
with two limiting cases that shall be studied through-
out). In Section III we describe the scalar field as a
perfect fluid, and its energy conditions are considered in
Section IV. Section V presents a detailed analysis of the
energy-momentum tensor conservation in the potential
and kinetic regimes, and its consequences on the cou-
pling functions. Some particular cases of couplings are
considered in Section VI and, finally, Section VII is de-
voted to the main conclusions of the work. In Appendix
A we include some additional calculations, which may be
skipped without losing the thread of the discussion.
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II. PRELIMINARY CONCEPTS

We present in this section a short review of the defini-
tions and techniques employed throughout the work, and
introduce the model we shall study. Our conventions
include units in which ℏ = c = 1 and the usage of metric
signature (+,−,−,−).

A. Presenting the model

The total action we shall consider in this work is

S = SEH + Sm , (1)

the gravitational action being the Einstein-Hilbert action

SEH = − 1

16πG

∫
d4x

√
|g|R , (2)

and the matter action taken to be of the form

Sm =

∫
d4x L̃m . (3)

In the above expression we find the so-called Lagrangian
density L̃m = L̃m(Ψ, ∂µΨ, gµν), which depends on the
matter fields Ψ, their first derivatives ∂µΨ, and the met-

ric gµν . We remark that L̃m is a TDiff scalar, since the
theory is assumed to be.

Applying to (1) the stationary action principle with
respect to variations in the spacetime metric yields the
Einstein field equations

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (4)

We find in these equations the Energy-Momentum Tensor
(EMT), whose definition is the usual one in GR,

Tµν =
−2√
|g|

δSm
δgµν

, Tµν =
2√
|g|

δSm
δgµν

, (5)

One may worry about whether these definitions extend
to a situation in which we are explicitly changing the
matter action with respect to that in GR, as we shall see
in this work, but in fact it makes sense since we will not
be altering the gravitational sector (indeed, we use SEH).
In other words, we are not altering “the left hand side of
Einstein’s equations”, so we want whatever comes out on
the other side to be associated to the EMT in the usual
manner. As a final note regarding energy-momentum
tensors, since it will be useful throughout the work, we
also recall here that for a perfect fluid

Tµν = (ρ+ p)uµuν − pgµν , (6)

with ρ the energy density of the fluid, p its pressure, and
uµ represents a timelike unit vector field (u2 ≡ uµu

µ = 1)
which we interpret as the velocity field of the fluid.

Consider a matter field Ψ described by a tensor of n
indices, whose components are ψA (A = 1, . . . , 4n). The
equations of motion (EoM) for this field are obtained by
considering (independent) variations δψA in their func-
tional form (ψA → ψA + δψA) such that they vanish
at the boundaries of the spacetime, and then imposing
the stationary action principle. This leads to the Euler-
Lagrange EoM, which hold for each of the components:

∂L̃m
∂ψA

− ∂µ

(
∂L̃m

∂(∂µψA)

)
= 0 . (7)

Before presenting the model, let us recall the following
relation for vector fields:

∇µv
µ =

1√
|g|
∂µ

(√
|g|vµ

)
, (8)

which shall be of use later on. We also remark here that
throughout the work the action of the covariant deriva-
tive on (TDiff) tensors maintains the usual definitions.
The model we shall study in this work is that of a

scalar field ψ(x) in which the kinetic and potential terms
are coupled not only differently than in GR, but also dif-
ferently from each other. The matter action reads [8]

Sm =

∫
d4x

{
fk(g)

2
gµν∂µψ∂νψ − fv(g)V (ψ)

}
. (9)

Here, fk(g) and fv(g) are arbitrary functions of the met-
ric determinant g = det(gµν), and the subscripts make
reference to the kinetic and potential terms, respectively
(the GR limit would correspond to fk, fv ∝

√
|g|). It is

argued in references [6, 8] that in order to avoid violations
of the Weak Equivalence Principle both functions should
coincide, i.e. fk = fv ≡ f . Although this condition
makes the model phenomenologically viable for matter
in the visible sector, it may not be necessarily true in the
dark sector. With this possible application in mind, we
shall in this work allow both functions to differ from each
other. It is also interesting to note that even though the
couplings are not the usual they are still minimal, mean-
ing that there is no coupling of the field to the curvature
(second derivatives of the metric). We finally remark
that the matter action (9) is in general not invariant un-
der the full group of diffeomorphisms (Diff invariance is
only restored in the GR limit we mentioned above, as
it is easy to verify). Nevertheless, a moment’s reflection
reveals that our model will be invariant under the re-
duced group of TDiff symmetries, since in that case the
Jacobian is unity and the metric determinant is a scalar,
together with functions of it.
Having clarified these interesting aspects of the matter

action, we proceed now to obtaining from equations (7)
and (9) the EoM for the scalar field:

∂µ
(
fk(g)∂

µψ
)
+ fv(g)V

′(ψ) = 0 , (10)

where ∂µψ = gµν∂νψ and V ′(ψ) = dV/dψ (in general, a
prime will denote differentiation with respect to its argu-
ment). Using definition (5), the associated EMT turns
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out to be

Tµν =
2√
|g|

{
1

2
fk(g)∂µψ∂νψ +

+ g

[
f ′v(g)V (ψ)− 1

2
f ′k(g)∂αψ∂

αψ

]
gµν

}
,

(11)

which is equivalent to the one presented in reference [6].
We shall now present a couple of simple limiting

regimes of our model which will be studied throughout
the work: potential domination and kinetic domination.
These are interesting not only because they greatly sim-
plify the treatment, but also because they help us in gain-
ing intuition about the underlying physics which we may
then use. On the one hand, possible applications of a
dominant kinetic term include Galileon models for dark
energy [10] (which are actually purely kinetic), as well as
cases in which the field is rapidly changing and the ki-
netic term dominates over the potential (e.g. in fast-roll
scenarios at the end of inflation). On the other hand,
the dominant potential behavior may be found in cases
where the field is slowly varying (e.g. slow-roll inflation)
or, with a dark sector application in mind, it also allows
us to study dark energy models.

1. Potential domination

In the potential domination limit we effectively neglect
the kinetic term, so that

Sm ≃
∫
d4x [−fv(g)V (ψ)] (12)

and the EoM simplify to

fvV
′ = 0 =⇒ V ′ = 0 , (13)

where we assume that fv ̸= 0 because otherwise we do not
have potential domination. The fact that V ′ = 0 implies
in turn that the field takes on the constant value ψ = ψ0

which is the extremum of the potential, i.e. V ′(ψ0) = 0,
and as a result

V (ψ) = V (ψ0) ≡ V0 = const. (14)

Finally, we see that within this dominant potential ap-
proximation the EMT is written as

Tµν =
2g√
|g|

f ′vV gµν . (15)

2. Kinetic domination

In the dominant kinetic limit, we effectively neglect the
potential term. Thus,

Sm ≃
∫
d4x

fk(g)

2
gµν∂µψ∂νψ (16)

and the EoM become

∂µ (fk∂
µψ) = 0 . (17)

Within this approximation, the EMT is

Tµν =
1√
|g|
[
fk∂µψ∂νψ − gf ′k(∂ψ)

2gµν
]
. (18)

B. Review of Energy Conditions

The so-called Energy Conditions (ECs) are a set of re-
quirements that one imposes on the EMT upon argu-
ing that they are “physically reasonable” [11, 12]. The
most widely used are the Null, the Weak, the Strong, and
the Dominant Energy Conditions (NEC, WEC, SEC, and
DEC, respectively), and are defined as follows [3, 11–13].
Given any timelike and null vectors vµ and kµ, respec-
tively,

(i) NEC: Tµνk
µkν ≥ 0 ,

(ii) WEC: Tµνv
µvν ≥ 0 ,

(iii) SEC:
(
Tµν − 1

2T
α
α gµν

)
vµvν ≥ 0 ,

(iv) DEC: WEC & Fµ ≡ −Tµνvν causal.

(19)

For the case of a perfect fluid, they are translated into
conditions on ρ and p as:

(i) NEC: ρ+ p ≥ 0 ,
(ii) WEC: ρ+ p ≥ 0 , ρ ≥ 0 ,
(iii) SEC: ρ+ p ≥ 0 , ρ+ 3p ≥ 0 ,
(iv) DEC: ρ ≥ |p| ≥ 0 .

(20)

C. Review of EMT conservation

The EMT conservation equations are written as

∇αT
αν = 0 . (21)

When working with a perfect fluid, it is common prac-
tice to project them onto the directions longitudinal and
transverse to the fluid’s velocity. For the former, one
must simply contract with the velocity uν , while for
the latter one must act with the orthogonal projector
hµν = δµν − uµuν . As a result, we respectively have [12]

ρ̇+ (ρ+ p)∇µu
µ = 0 , (22a)

(ρ+ p)u̇µ − (gµν − uµuν)∇νp = 0 , (22b)

where we use the notation ˙ ≡ uµ∇µ. For a scalar func-

tion ϕ, it is also the case that ϕ̇ = uµ∂µϕ = dϕ/dτ , with
τ the parameter of the curve.
Since later on it will be of interest to study purely

transverse equations, we shall here introduce a triplet
of linearly independent transverse vectors (wµ1 , w

µ
2 , w

µ
3 ),

which we collectively denote as w⃗µ. They satisfy

uµw⃗
µ = 0 , (23)
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and we understand that it holds for all three of them.
We shall also denote the projection of the derivatives on
the transverse directions as

∇⃗ ≡ w⃗µ∇µ ≡ (wµ1∇µ , w
µ
2∇µ , w

µ
3∇µ) . (24)

III. THE PERFECT FLUID APPROACH

We shall in this section show that, under the assumption
of the field having a timelike derivative ∂µψ, our model
is equivalent to considering a perfect fluid. If we wish
to write the EMT (11) in the perfect fluid form (6), we
must find appropriate correspondences between quanti-
ties, and a natural one to begin with seems to be

uα ≡ ∂αψ√
(∂ψ)2

(25)

for the velocity, where (∂ψ)2 = ∂µψ∂
µψ. Note that this

correspondence only makes sense if the derivative of the
field is a timelike vector, and this shall be our assump-
tion throughout the work. Of course, it is a rather strong
assumption that does not hold in many interesting situ-
ations (such as a static field). Nevertheless, it is a rea-
sonable assumption in cosmological scenarios.

In order to find the energy density, it is useful to recall
that Tµνu

µuν = ρ for a perfect fluid, and so from our
EMT (11) and definition (25) we obtain

ρ =
2√
|g|

{
1

2
fk(∂ψ)

2 + g

[
f ′vV − 1

2
f ′k(∂ψ)

2

]}
. (26)

Using all of the above in order to find our last unknown,
it follows that

p =
−2g√
|g|

[
f ′vV − 1

2
f ′k(∂ψ)

2

]
. (27)

With these correspondences, we may translate our EMT
(11) into that of a perfect fluid as we intended, and study
its behavior. Let us note here that ρ and p are both
TDiff scalars. We shall now study our two limiting cases
of potential and kinetic domination in the context of the
perfect fluid approach.

A. Potential domination in the perfect fluid

In the potential domination regime of our perfect fluid,
we find that ρ and p are related by a characteristic equa-
tion of state (EoS):

p = −ρ =
−2g√
|g|

f ′vV , (28)

that is, we have a barotropic fluid p = p(ρ) with the
simple EoS p = wρ, where w = −1 for any function fv.

B. Kinetic domination in the perfect fluid

The kinetic domination regime of our perfect fluid leads
to ρ and p taking the simplified form

ρ =
(∂ψ)2√

|g|
(fk − gf ′k) , p =

(∂ψ)2√
|g|

gf ′k . (29)

It thus follows that we again have a barotropic fluid,
whose EoS parameter may now be expressed as

w =
p

ρ
=

gf ′k
fk − gf ′k

. (30)

Finally, we introduce for future reference the variable

F ≡ gf ′k
fk

, (31)

in terms of which the EoS parameter in the kinetic regime
is written

w =
F

1− F
. (32)

Note that the GR limit (i.e. Diff invariance) implies that

fk ∝
√
|g| ⇔ F = 1/2 ⇔ w = 1. In other words, in the

GR limit we have stiff matter (p = ρ).

IV. ENERGY CONDITIONS

In this section we focus on the ECs of our model from
the perfect fluid description. Before doing so, however,
we remark that with the EMT written in the completely
general form (11), the NEC is translated into

fk ≥ 0 . (33)

We thus find that the NEC is satisfied whenever the ki-
netic term is non-negative or, in other words, whenever
it is not a ghost field [14]. On another note, the network
of implications (DEC ⇒ WEC ⇒ NEC ⇐ SEC) means
that if the NEC is violated then so are all the others, and
so the minimum requirement if we wish to satisfy some
of the ECs is simply that fk ≥ 0.
Let us now see what the perfect fluid ECs (20) trans-

late into. The WEC may be written as

fk ≥ 0 &
(∂ψ)2

2
(fk − gf ′k) + gf ′vV ≥ 0 , (34)

while the SEC becomes

fk ≥ 0 &
(∂ψ)2

2
(fk + 2gf ′k)− 2gf ′vV ≥ 0 . (35)

Regarding the DEC, the absolute value of the pressure
we find in (20) implies that this condition splits into two
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possible cases as follows:

p ≤ 0 : f ′vV − (∂ψ)2

2
f ′k ≤ 0 & fk ≥ 0 ,

p > 0 :


f ′vV − (∂ψ)2

2
f ′k > 0 ,

(∂ψ)2

2
(fk − 2gf ′k) + 2gf ′vV ≥ 0 .

(36)

With the ECs written as above, we have full generality.
Nevertheless, in order to simplify their treatment and
gain some further insight on their physical implications,
we shall now study our two limiting cases of potential
and kinetic domination.

A. ECs in potential domination

We previously found that in the potential domination
regime of our perfect fluid the EoS was simply w = −1.
It is easy to see that for such an EoS the NEC is triv-
ially satisfied (the inequality saturates), while the others
translate to:

WEC: f ′vV ≤ 0 , SEC: f ′vV ≥ 0 ,

DEC:

{
p ≤ 0 : f ′vV ≤ 0 ,

p > 0 : f ′vV > 0 & f ′vV ≤ 0 (contrad.)
(37)

We note first of all that if the pressure is negative or
zero then the DEC is equivalent to the WEC (since the
second inequality trivially saturates), whereas if it is pos-
itive then the DEC can never be satisfied. We also find
that the only case where the ECs could be simultane-
ously satisfied is when f ′vV = 0. This either means that
V = V0 = 0 (which cannot happen if we want poten-
tial domination) or fv(g) = const. It is interesting to
note that in the latter case the vanishing of the EMT
(15) means that a scalar field with only a potential term
that couples through a constant function does not grav-
itate (in the sense that it does not affect the geometry
of spacetime). Thus, even though it satisfies all ECs,
such a matter field would be impossible to be detected
through gravitational observations. On the other hand,
if we want the energy density measured by a comoving
observer to be positive (i.e. the WEC to be fulfilled, and
hence the DEC as well), then this immediately prevents
the SEC from being satisfied. This is not surprising since
it is what happens with a vacuum energy, whose EMT
takes the form Tµν ∝ gµν as in the present case.

B. ECs in kinetic domination

As we have demonstrated for the general case, the NEC
implies fk ≥ 0. Nevertheless, fk ̸= 0 in kinetic domina-
tion, and hence we must consider fk > 0. The rest of the

ECs translate as:

WEC: fk ≥ 0 , fk − gf ′k ≥ 0 ,

SEC: fk ≥ 0 , fk + 2gf ′k ≥ 0 ,

DEC:

{
p ≤ 0 : f ′k ≥ 0 & fk ≥ 0 ,

p > 0 : f ′k < 0 & fk − 2gf ′k ≥ 0 .

(38)

V. CONSERVATION OF THE EMT

In GR the conservation of the EMT on the solutions to
the EoM is an immediate consequence of the full Diff in-
variance of the theory (and hence provides no additional
information). In a TDiff theory where the symmetry is
broken (but the gravitational action is still the Einstein-
Hilbert one) the conservation is not trivially satisfied but
it is a consequence of the Bianchi identities (which imply
that Gµν is divergenceless). Thus, the solutions to the
EoM have to fulfill this additional relation. Note that
in a Diff invariant theory we have a 4 gauge degrees of
freedom, which allow us to fix 4 components of the met-
ric. On the other hand, in a TDiff theory, the constraint
∂µξ

µ = 0 of the allowed transformations implies that we
only have 3 gauge degrees of freedom, and hence only 3
components of the metric may be fixed (see references
[6, 15] for a discussion in a cosmological context). The
additional metric component is actually physical, so we
need an extra equation to find it: this is the constraint we
obtain from the fact that the EMT conservation equation
is not trivially satisfied. We shall consider in this section
our limiting cases of potential and kinetic domination
and obtain the corresponding constraints on the metric.

A. EMT conservation in potential domination

The conservation of the EMT in potential domination
is quite straightforward as a consequence of the simple
EoS w = −1. Indeed, in this case the longitudinal pro-
jection (22a) is simply ρ̇ = 0, which in turn also means
that ṗ = −ρ̇ = 0. Taking this into account, the trans-
verse projection (22b) simplifies down to ∂µp = 0. Now
substituting equation (28) in ∂µp = 0, and recalling that
V = V0 = const. on the solutions to the EoM, we obtain(

1

2
f ′v + gf ′′v

)
∂µg = 0 . (39)

In this way, if the coupling function fv is left arbitrary,
it follows that we must have a constant determinant:

∂µg = 0 =⇒ g = const. , (40)

and we recover UG as solutions in this regime of more
general TDiff theories. Another possibility is to allow the
metric determinant to change, but then we must require

fv(g) = A
√
|g|+B , (41)
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with A and B constants of integration. Thus, only par-
ticular theories (with this fv) do not restrict the form of
g due to the conservation of the EMT. Expression (41)
is the most general solution, and different limiting cases
may be explored. On the one hand, if we set B = 0,
we recover GR as a particular solution (fv ∝

√
|g|) as it

should be expected. On the other hand, setting A = 0
means that the coupling is done via a constant function
which, as we previously discussed, leads to a vanishing
EMT and therefore the field does not gravitate. As a
final comment, we note that no further information may
be gained from the longitudinal projection of the EMT
conservation, since substituting (28) in ρ̇ = 0 yields(

1

2
f ′v + gf ′′v

)
dg

dτ
= 0 , (42)

which is trivially satisfied using equation (39).

B. EMT conservation in kinetic domination

The study of the EMT conservation in the kinetic domi-
nation regime turns out to be rather more involved, and
for this reason we have divided the analysis into smaller,
more accessible parts. Firstly, we will rewrite the kinetic
EoM in terms of perfect fluid quantities, and also find
what their solutions must satisfy. We will also consider
the longitudinal and transverse projections of the EMT
conservation equation for our particular case, and sepa-
rately study them in order to see what constraints the
EMT conservation imposes on the theory. In passing,
we will obtain a very simple expression for the energy
density in a general TDiff theory.

1. EoM and conservation equations

We shall begin by expanding the kinetic EoM (17) as

0 = ∂µψ∂µfk + fk∂µ∂
µψ . (43)

If we denote the normalization constant of the velocity by
N =

√
(∂ψ)2, so that ∂αψ = Nuα, and divide the above

equation by fk (which we assume to be different from
zero in this section of kinetic domination), we obtain

0 = Nuµ∂µ (ln fk) + ∂µ (Nu
µ) . (44)

Using equation (8), we can write the second term as

∂µ

(
N
√
|g|uµ√
|g|

)
= N

{
uµ∂µ

(
ln

N√
|g|

)
+∇µu

µ

}
.

(45)
In this expression we recognize the expansion scalar of the
congruence, θ = ∇µu

µ. This quantity may be directly re-
lated to the fractional rate of change of the congruence’s
cross-sectional volume δV as [13]

θ =
1

δV

d

dτ
(δV ) = uµ∂µ(ln δV ) . (46)

Taking everything into account, we rewrite equation (44)
(after simplifying a common factor of N) as

d

dτ

(
ln

fk√
|g|
NδV

)
= 0 , (47)

where we have used uµ∂µ = d
dτ . Recalling N =

√
(∂ψ)2,

it finally follows that the solutions to the EoM satisfy

(∂ψ)2 =
Cψ(x)

(δV fk/
√

|g|)
2 , (48)

with Cψ(x) a function subject to the constraint

Ċψ(x) = uµ∂µCψ(x) = 0 . (49)

It will also be useful to rewrite the EoM in terms of
perfect fluid quantities. Taking into account equations
(29), we may express N in terms of ρ and p as

N2 =
(ρ+ p)

√
|g|

fk
, (50)

and so the EoM (47) takes the form

d

dτ

(
ln

√
fk√
|g|

(ρ+ p)δV 2

)
= 0 . (51)

From this expression we find that

ρ̇+ ṗ = −(ρ+ p)
d

dτ

(
ln
δV 2fk√

|g|

)
. (52)

But we also know, from equation (22a), that

ρ̇ = −(ρ+ p)
d

dτ
(ln δV ) , (53)

and so from equations (52) and (53), it follows:

ṗ = −(ρ+ p)
d

dτ

(
ln
δV fk√

|g|

)
. (54)

These are longitudinal results, in the sense that they hold
along the integral curves of the tangent vector field uµ.
Consider now equation (22b), the projection of the

EMT conservation equation onto directions transverse
to the fluid’s velocity. In that expression, we recognize
terms with u̇µ, uµ, and ∂µp, but it turns out that these
three quantities are related. It follows from the definition
of the pressure in equation (29) that

p = N2 gf
′
k√
|g|

=
N2Ffk√

|g|
, (55)

where F was defined in equation (31). Since we wish to
take its derivative, let us begin by computing the follow-
ing:

∂µ(N2) = ∇µ(N2) = ∇µ(∇αψ∇αψ) = 2∇αψ∇µ∇αψ =

= 2Nuα∇α(Nuµ) = 2N(Ṅuµ +Nu̇µ) =

= 2N2

(
uµ

d

dτ
(lnN) + u̇µ

)
,

(56)
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where we have recalled that for a torsionless connection
∇µ∇αψ = ∇α∇µψ when acting on scalar functions. Us-
ing this result when differentiating equation (55), we find

∂µp = 2p

{
uµ

d

dτ
(lnN) + u̇µ +

1

2
∂µ

(
ln
Ffk√
|g|

)}
.

(57)
From this expression we may solve for u̇µ,

u̇µ =
1

2
∂µ

(
ln
p
√
|g|

Ffk

)
− uµ

1

2

d

dτ
(lnN2) . (58)

Now, using equations (50) and (55) we can write

N2 =
p
√
|g|

Ffk
=

(ρ+ p)
√
|g|

fk
, (59)

and inserting the resulting u̇µ in (22b), we obtain the
transverse equation

0 = uµṗ− ∂µp+
ρ+ p

2

{
∂µ

(
ln

(ρ+ p)
√
|g|

fk

)

−uµ d
dτ

(
ln

(ρ+ p)
√

|g|
fk

)}
.

(60)

It is immediate to see that the equation is trivially sat-
isfied if we contract with uµ, as we should expect from
transversality.

2. Longitudinal results

It is possible to relate the coupling function fk(g) with
the congruence’s cross-sectional volume δV by consider-
ing our longitudinal equations (53) and (54), together
with the EoS in the kinetic limit (32). Since our starting
point are the scalars ρ and p, throughout this study a
dot on any given quantity will denote d

dτ .
Before proceeding, however, we remark that at differ-

ent points we shall be interested in dividing by ρ and by
(1+w), which of course can only be done when they are
different from zero. On the one hand, the case ρ = 0 cor-
responds to fk ∝ g, as follows from equation (29), and
this is the only possibility (indeed, fk and (∂ψ)2 never
vanish in kinetic domination). We shall in what follows
assume that ρ ̸= 0. On the other hand, we see from (30)
that w = −1 can occur either when fk = 0 (impossible
in the kinetic limit) or when gf ′k = ∞. Assuming well
behaved coupling functions with no divergences, we have
w ̸= −1 always.
After this discussion, we can now proceed. Using the

EoS and equation (53), the derivative of the pressure is

ṗ = ẇρ+ wρ̇ = ẇρ− wρ(1 + w)
d

dτ
(ln δV ) . (61)

Equating this expression with equation (54), dividing
through by ρ, and reorganizing terms we find

ẇ = (1 + w)

{
(w − 1)

d

dτ
(ln δV )− d

dτ

(
ln

fk√
|g|

)}
.

(62)
Recalling what quantities are simply functions of the de-
terminant, it is possible to write

ẇ = w′ ġ = (1 + w)
F ′

1− F
ġ , (63)

d

dτ

(
fk√
|g|

)
=

fk√
|g|

(
F − 1

2

)
ġ

g
, (64)

where we have used equation (32). Substitution gives

(1 + w)
F ′

1− F
ġ =

= (1 + w)

{
(w − 1)

d

dτ
(ln δV )−

(
F − 1

2

)
ġ

g

}
.

(65)

Dividing through by (1 + w) and rearranging, we obtain{
F ′

1− F
+
F − 1/2

g

}
ġ = (w − 1)

d

dτ
(ln δV ) . (66)

After dividing this equation by (w − 1) (w = 1 would
correspond to considering the GR limit) and taking into
account that from equation (32) we have that

w − 1 =
2F − 1

1− F
, (67)

it turns out that everything simplifies neatly on the LHS:

1

w − 1

{
F ′

1− F
+
F − 1/2

g

}
=

=
1

2

{
2F ′

2F − 1
+

1

g
− f ′k
fk

}
=

1

2

d

dg
ln

∣∣∣∣(2F − 1)
g

fk

∣∣∣∣ .
(68)

In this way, we have from (66) that

1

2

(
d

dg
ln

∣∣∣∣(2F − 1)
g

fk

∣∣∣∣) ġ =
d

dτ
(ln δV ) . (69)

Recognizing a total derivative in the LHS and multiplying
the whole equation by 2 it follows that

d

dτ
ln

∣∣∣∣(2F − 1)
g

fk

∣∣∣∣ = d

dτ

(
ln δV 2

)
. (70)

Finally, then, we obtain the following longitudinal con-
straint:

(2F − 1)
g

fk
= Cg(x)δV

2 , (71)

with Cg(x) a function which must satisfy

Ċg(x) = uµ∂µCg(x) = 0 . (72)

Note that the longitudinal constraint (71) generalizes for
an arbitrary metric the result obtained in reference [6]
for Robertson-Walker, where δV = a3 and Cg = const.
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3. Transverse results

We now focus on the transverse part of the EMT conser-
vation, and in order to do so we contract the transverse
equation (60) with the previously introduced triplet of
transverse vectors w⃗µ, obtaining

0 =
ρ+ p

2
∇⃗

(
ln

(ρ+ p)
√
|g|

fk

)
− ∇⃗p (73)

(we remark that throughout this section ∇⃗ = w⃗µ∂µ).
Simple algebraic manipulations now lead to

∇⃗(ρ− p) = (ρ+ p)∇⃗ ln

(
fk√
|g|

)
, (74)

which using the EoS may as well be written as

(1− w)∇⃗ρ− ρ∇⃗w = ρ(1 + w)∇⃗ ln

(
fk√
|g|

)
. (75)

Recalling once again that w and (fk/
√

|g|) are actually
only functions of the determinant, we have

∇⃗w = w′∇⃗g = (1 + w)
F ′

1− F
∇⃗g , (76)

∇⃗

(
fk√
|g|

)
=

fk√
|g|

(
F − 1

2

)
∇⃗g
g
, (77)

where we have again used equation (32). Substituting
back in equation (75) and rearranging, it follows that

(1− w)∇⃗ρ = ρ(1 + w)

{
F ′

1− F
+
F − 1/2

g

}
∇⃗g . (78)

We may now safely divide both sides of the equation by
ρ(1− w), finally arriving at

∇⃗ ln ρ = −1 + w

2
∇⃗ ln

∣∣∣∣(2F − 1)
g

fk

∣∣∣∣ . (79)

where we have used equation (68). Now, we have al-
ready obtained a (longitudinal) constraint in equation
(71), and we wonder if the transverse projection of the
EMT conservation equations might provide us with any
additional information. To this end, we shall substitute
the longitudinal constraint (71) in the RHS of equation
(79). Recalling also that 1 + w = 1

1−F and that on the

solutions (48) to the EoM

ρ =
(∂ψ)2√

|g|
fk(1− F ) =

Cψ
√
|g|(1− F )

fkδV 2
, (80)

it follows that

∇⃗ ln

∣∣∣∣∣Cψ
√
|g|(1− F )

fkδV 2

∣∣∣∣∣ = −1

2(1− F )
∇⃗ ln

∣∣CgδV 2
∣∣ . (81)

A straightforward calculation (see Appendix A) finally
yields the transverse constraint

∇⃗ (CgCψ) = w⃗µ∂µ (CgCψ) = 0 . (82)

This is an additional condition which relates the func-
tion Cg from the longitudinal constraint to the solutions
of the EoM, which depend on Cψ, and it does so in a very
particular way. Indeed, we find in (82) that the derivative
of the product CgCψ vanishes when projected onto the
transverse directions. However, we know that the deriva-
tive also vanishes when projected along the longitudinal
direction, since Ċψ = Ċg = 0 and hence d

dτ (CgCψ) = 0.
Consequently, we find that

CgCψ = const. ≡ cρ , (83)

i.e. the product is actually a constant (which we have de-
noted as cρ for later convenience), and the two functions
are inversely proportional to each other.

4. Expression for the energy density

We will now derive a simple expression for the energy
density ρ. In order to do so, we begin with its definition in
equation (29), substitute the solutions to the EoM (48),
recall (67), and use the longitudinal constraint (71):

ρ =
(∂ψ)2√

|g|
fk(1− F ) =

Cψ(1− F )√
|g|

|g|
fδV 2

=

=
Cψ√
|g|

2F − 1

w − 1

(−g)
fδV 2

=
CgCψ

(1− w)
√
|g|

.

(84)

Thus, recalling the consequence (83) of the transverse
constraint, we finally obtain the following simple relation:

ρ =
cρ

(1− w)
√
|g|

. (85)

We remark that this expression is well-defined as long as
ρ ̸= 0 and we are not in the GR limit, but other than
that it is completely general and valid for all geometries.
In particular, it is useful in the study of cosmological per-
turbations in TDiff scenarios, and it simplifies the treat-
ment that was made in reference [6]. Moreover, since
w = w(g), it also shows that the only dependence of
both the energy density and the pressure is in the metric
determinant, and this means that the possible perturba-
tions of this fluid shall be adiabatic.

VI. SOME PARTICULAR CASES

In this section we shall consider some particular cases of
interest. In the potential domination regime we found
that the conservation of the EMT on the solutions to the
EoM implied either a constant determinant or the par-
ticular form (41) for the coupling function fv. However,
in the kinetic domination regime we did not find such
a strong constraint, and different models for fk shall be
studied, in particular a power-law and an exponential.
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A. Power-law coupling

We begin then with case where the coupling function has
the form of a power-law, i.e.

fk(g) = C|g|α , (86)

with C and α some constant parameters. Note that, in
such a case, F = gf ′k/fk = α and so it follows that the
EoS parameter is also constant:

w =
α

1− α
. (87)

The particular case α = 0 means that fk = C is constant,
and also that the EoS is w = 0 (i.e. non-relativistic
matter). Away from the GR limit, we find from equation
(85) that the energy density in these couplings satisfies

ρ ∝ 1√
|g|

, (88)

while the longitudinal constraint (71) gives

|g| ∝ (CgδV
2)

1
1−α = (CgδV

2)(1+w) . (89)

We note that if Cg(x) = const. the evolution simplifies:

|g| ∝ δV 2(1+w) =⇒ ρ ∝ δV −(1+w) , (90)

and this may be of use in cosmological settings. Next we
focus on the ECs in the dominant kinetic regime (38). In
this regime we ask that C ̸= 0, and the ECs translate to

NEC: C > 0 ,

WEC: C > 0 , α ≤ 1 ,

SEC: C > 0 , α ≥ −1/2 ,

DEC: C > 0 , α ≤ 1/2

(91)

They are graphically represented in Figure 1. For C > 0
and α ∈ [−1/2, 1/2] all of the ECs are satisfied, and in
this range we could find dark matter in α = 0 (which
gives w = 0 as discussed). If we wish to have accelerated
expansion, then the SEC must be violated and this may
give rise to different dark energy models. In general, it
opens up a wide range of interesting phenomenology for
the dark sector to be studied. Finally, we note that this
analysis for the power-law model could also apply to a
more general coupling function which may be expressed
as a power series.

B. Exponential coupling

We now consider that the coupling is an exponential,

fk(g) = Ceβg , (92)

with C and β some constant parameters. In this case,
the variable F = βg is not a constant, and so neither is
the EoS parameter w, which from equation (32) reads

w =
βg

1− βg
. (93)

FIG. 1. Regions of validity of the ECs for the two couplings
(the axes extend infinitely). The same diagram is valid for
both, understanding the horizontal axis as α when considering
the power-law and as βg when considering the exponential.

The study of the evolution of the energy density and
the metric determinant is thus not particularly simple or
illuminating (except perhaps for the case β = 0, which
gives a constant fk and non-relativistic matter, as was
discussed above), so we focus on the ECs in the dominant
kinetic regime (38). These take the form:

NEC: C > 0 ,

WEC: C > 0 , βg ≤ 1 ,

SEC: C > 0 , βg ≥ −1/2 ,

DEC: C > 0 , βg ≤ 1/2 ,

(94)

where we have again assumed that C ̸= 0. We may
graphically represent them in the same way as we did
the power-law, see Figure 1. Nevertheless, the fact that
the metric determinant explicitly appears in these ECs
means that there will be an evolution, as opposed to the
previous case. Since the metric determinant is allowed
to vary, it may happen that at some points in spacetime
a given EC is satisfied but at others it is not. As a par-
ticular example, suppose we choose β > 0, so that the
product βg is always negative. In these cases, the WEC is
always satisfied (which guarantees a positive energy den-
sity measured by the comoving observer), and so is the
DEC (which ensures a causal flow of energy). However,
there may be a regime in which the SEC holds which
evolves to one where it does not, which in a cosmological
context may give us an evolution from a non-accelerated
expansion to an accelerated one [6].

VII. CONCLUSIONS

In this work, we have explored the consequences of break-
ing the Diff invariance of the matter sector down to TDiff
in general contexts (i.e. the analysis has been purely geo-
metrical, without assuming a spacetime metric). We have
considered a scalar field model which couples to gravity
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via arbitrary functions of the metric determinant, and
studied its limiting cases of potential and kinetic domi-
nation. We have performed a description of the model in
terms of a perfect fluid, and in doing so we have assumed
that the derivative of the field is a timelike vector. The
ECs have also been analyzed in each of the two regimes,
and we have obtained expressions involving derivatives
of the coupling functions and their relations to quanti-
ties such as the metric determinant (in the case of fk)
or the potential (in the case of fv). Let us remark again
the fact that the couplings to gravity which we have con-
sidered are minimal. In particular, the kinetic term is
a canonical one (meaning quadratic), and in situations
in which it dominates we have a rather flexible EoS due
to the variety of coupling functions fk. In GR the only
possibility is w = 1, which means that one must include
non-standard (i.e. non-quadratic) kinetic terms in order
to allow for new situations (this is for instance the case
of k-inflation [16] and k-essence [5]).
An important focus of the work has been the study

of the EMT conservation on the solutions to the EoM,
which is not automatically satisfied in a TDiff theory,
and we have found that it imposes further constraints on
the metric. For the potential domination regime we can
recover either a UG limit as a possibility (i.e. the met-
ric determinant has to be constant), or obtain that the
coupling function has a particular form (which contains
GR as a particular limit) to allow the metric determinant
to vary. The study of the kinetic domination regime and
the constraints it implied resulted in a particularly simple

expression for the energy density (only valid in a TDiff
theory) in terms of the metric determinant, which could
be very useful in perturbative analysis.
We have also studied some particular cases of cou-

pling functions in the kinetic regime. For a power-law
model, the evolution of the energy density simplifies fur-
ther, and the study of the ECs for general values of the
exponent provide us with regions where we could for in-
stance find dark matter models. For exponential models,
on the other hand, the study of the ECs reveals that the
evolution of the metric determinant gives rise to partic-
ular models that can cross from regions where some EC
is satisfied to other where can be violated. In particular,
we conclude that exponential models with a negative ex-
ponent satisfy all energy conditions except for the SEC,
which will be violated or satisfied in different regions de-
pending on the value of the metric determinant. This is
particularly interesting in cosmological contexts, where
we could find the transition from a non-accelerated ex-
pansion to an accelerated one.
Finally, the present work considers a scalar field as a

particular case study with which we may gain some in-
tuition on the physical implications of TDiff invariant
gravity. Future work on other interesting situations not
considered here includes the study of a spherically sym-
metric scalar field, as well as the possibility of considering
different types of fields (not necessarily scalar). The case
in which more than one field is present in a TDiff the-
ory may also be of interest, for instance, in considering
possible interactions within the dark sector.
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Unimodular Gravity vs General Relativity: A status re-
port, Classical and Quantum Gravity 39, 243001 (2022),
arXiv:2207.08499 [gr-qc, physics:hep-th].

[8] E. Álvarez, A. F. Faedo, and J. J. López-Villarejo,
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Appendix A: Calculation of the transverse constraint

Our starting point is equation (81), which we rewrite here for convenience:

∇⃗ ln

∣∣∣∣Cψ 1− F

(fk/
√

|g|) δV 2

∣∣∣∣ = −1

2(1− F )
∇⃗ ln

∣∣CgδV 2
∣∣ . (A1)

In what follows, we shall abbreviate notation and assume that all logarithms have an absolute value sign included,
i.e. lnx ≡ ln |x| for the following calculations. Expanding the above expression and rearranging some multiplicative
factors, we obtain

−2(1− F )
[
∇⃗ lnCψ + ∇⃗ ln(1− F )− ∇⃗ ln (fk/

√
|g|)− ∇⃗ ln δV 2

]
= ∇⃗ lnCg + ∇⃗ ln δV 2 , (A2)

and grouping like terms in the RHS it follows that

−2(1− F )
[
∇⃗ lnCψ + ∇⃗ ln(1− F )− ∇⃗ ln (fk/

√
|g|)
]
= ∇⃗ lnCg + (2F − 1)∇⃗ ln δV 2 . (A3)

Let us now focus on the LHS of the above equation, which we may write as

−2(1−F )∇⃗ lnCψ−2∇⃗(1−F )+(1−F )(2F−1)
∇⃗g
g

= −2(1−F )∇⃗ lnCψ+(2F−1)

[
∇⃗ ln(2F − 1) + (1− F )

∇⃗g
g

]
, (A4)

where we have made use of the fact that differentiating a constant yields zero, so that we could very well write

−2∇⃗(1− F ) = 2∇⃗F = ∇⃗(2F ) = ∇⃗(2F − 1) = (2F − 1)
∇⃗(2F − 1)

(2F − 1)
= (2F − 1)∇⃗ ln(2F − 1) . (A5)

Having rewritten the LHS, we may straightforwardly rearrange the result so that we obtain

−2(1− F )∇⃗ lnCψ = ∇⃗ lnCg + (2F − 1)

[
∇⃗ ln δV 2 − ∇⃗ ln(2F − 1)− (1− F )

∇⃗g
g

]
. (A6)

Next we focus on the square bracket on the RHS of the above expression, which using our longitudinal constraint will
actually simplify greatly:

∇⃗ ln δV 2 − ∇⃗ ln(2F − 1)− ∇⃗g
g

+ F
∇⃗g
g

= ∇⃗ ln

(
δV 2

g(2F − 1)

)
+ g

f ′k
fk

∇⃗g
g

= ∇⃗ ln

(
1

Cgfk

)
+ ∇⃗ ln fk = −∇⃗ lnCg (A7)

Substituting, we obtain

−2(1− F )∇⃗ lnCψ = 2(1− F )∇⃗ lnCg , (A8)

which after simplification finally yields the transverse constraint

∇⃗ (CgCψ) = 0 . (A9)
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