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Intraoperative radiation therapy (IORT)

Technique that involves precise delivery of a large dose of
ionizing radiation to the tumor or tumor bed during the
surgery.

Beddar et al. 2006.
Med. Phys. 33
1476-89

Advantages:

» Reduction of secondary tumors.

* Better definition of the treatment area.

Wenz et al.
* Maximization of the radiobiological effect with a high and 2020. Rad.
localized dose. Oncol. 5 11

* Less secondary effects than in conventional radiotherapy.



INTRABEAM device

Low-energy X-rays Intraoperative
Radiotherapy (XIORT)

Miniature X-ray source
— 50 kV electron beam hitting a gold target

— Low-energy X-rays (Up to 50 keV)
Applicators attached to the source
-Most common: Spherical applicator

Internal Radiation Accelerator Section

Monitor Cathode Gun Electron Beam

Beam Deflector Gold Target

Intrabeam (Carl Zeiss Meditec)




Treatment Plan System (TPS) for INTRABEAM

Decission of the treatment in situ Badisnce
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* Low efficiency

Monte Carlo simulations — ° High number of particles

Long simulations
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 GPU-based implementations

Code accelerations —
* DL approaches
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GPU (Graphics Processing Unit)
Programming




GPU (Graphics Processing Units) Programming

CPU (Multiple Cores) GPU (Hundreds of Cores)

Massive parallelization ) ) .
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“A CPU consists of a few cores optimized for sequential serial
processing while a GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores
designed for handling multiple tasks simultaneously.”

2 Nvidia webpage




GPU- based dose computation algorithms

Two dose computation algorithms
*Use of meta-histories.
*Interaction forcing and condensed
interactions.
*Dose normalization.

—

GPU-MC GPU-HMC —

« Common ingredients in both calculations

*Photoelectric, Rayleigh and Compton effects for photons up to 1 MeV.
*Attenuation coefficients extracted from PENELOPE database.

*Local electron absorption: variance reduction

*Woodcock tracking algorithm: very efficient on GPU

P. Ibafez et al. 2021. Med Phys 48(12), 8089-8106.
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Initialization

- Read simulation parameters
- Load tables
- Readinput seeds

N threads, M blocks

DEVICE

| Thread N

call Hybrid Monte Carlo <<N,M>>

Start GPU thread
Thread 1

l Extract particle information from condensed PHSP. Initial weight=1
>T

Sample distance d/
ICheck voxel material and density|

Particle outside
volume?
NO

Compute interaction probabilities.
Probability(i)=1-e* ()
T

v
Compton Rayleigh
i i interaction
Sample energy loss, l Sample angular }—weighfwe\g'“my

angular deflection deflection P,

an - Sample secondary particle with
weightmp=weight’ wsighg,y— ight” il weight'

Deposited energy=Energy electron*weightcyp >

ight=weightg,

\ 2
Photoelectric

weighty,=weight"Probability(ph)
IDeposited energy=Energy*weighty,

Sample distance following
‘Woodcock algorithm

ICheck voxel material and density|

Store deposited energy

Update normalization volume

Update weight

Weigm;\,,eigmve—[u(ph)rulcmw*u(rayi]dl

Deposited energy
Normalization volume <
| Normalized dose |
' 3

- Simulation parameters

(Geometry, phase space
information, dose...)

Sample energy loss,
angular deflection

Deposited energy=Energy NO

electron*weight'
o Photoelectric

Deposited energy=Energy*weight'

Texture memory (Geometry, attenuation coefficients,

Rayleigh and Compton precalculated data)

- Device memory (Phase space information,
deposited energy, normalization volume)

- Constant memory (voxel size, voxel volume)

Local memory




GPU- based dose computation algorithms

Some examples
Comparison with penEasy. Same level of

statistical noise

"I
|
: Treatment Code Simulation Speed 7%-0.5
: type time (s) factor mm
I GPU-HMC gamma
|
: Sarcoma GPU-MC 3.8:104 99.9
2 GPU-HMC 0.2 1.7-105 99.1
I
: Breast  GPU-MC 4.3 2.1-10* 99.6
|
: GPU-HMC 0.5 1.6-10° 99.4
I
I - . 104
: penEasy Brain GPU-MC 0.04 2.0-10 99.2
: GPU-HMC 0.02 4.3-10% 99.0
I
1 GPU: NVIDIA GeForce RTX 3090
|
|

CPU: Intel Xeon W-2155

P. Ibafez et al. 2021. Med Phys 48(12), 8089-8106.




GPU- based dose computation algorithms

Comparison with penEasy. Same level of
statistical noise

In all cases:

| Treatment Code Slmulatlon Speed 7%-0.5
* >10.000 speed factor compared to penEasy gamma
°« > 99% gamma paSS|ng rate Sarcoma GPU-MC 3.8:104 99.9

_ _ . _ _ GPU-HMC 0.2 1.7-10° 99.1
* Simulation time with GPU-HMC in lessthan | . = ciue 43 21100 99e
1 S GPU-HMC 0.5 1.6-10° 99.4
* Simulation time with the GPU-MC in less Brain  GPU-MC 004 2010° 992
than 5 s GPU-HMC  0.02 4.3-10 99.0
| GPU: NVIDIA GeForce RTX 3090
w7 - 7 . 7 CPU: Intel Xeon W-2155

P. Ibafez et al. 2021. Med Phys 48(12), 8089-8106.




Deep Learning for INTRABEAM
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Deep Learning for INTRABEAM

Objectives

* Train a deep learning model to predict the dose distribution in a sub-second time
scale.

e Evaluate different neural networks to do the task.

* Examine the possibility of using data augmentation to improve the results of the
neural network.

 Databases from the HMC
* Fast
* Accurate
* No statistical noise




Deep Learning for INTRABEAM

F: ™

Test Cases

MultiResUnet with

) ] - Kyphoplasty . -
U-Met Without mask L-Met with mask o operation Site agnostic

Mormal training Limited dose training Normal dataset Augmented datset




Deep Learning for INTRABEAM

3D dataset. Kyphoplasty operation dataset and training

* The applicator used is the needle.

* The datasets used in training consisted
of 48 images as a training set, 5 images
as a validation set.

» The dataset was generated with the
HMC.

* MultiResUnet with mask

* The image size was 64X64X64 with a
voxel size of 0.5mmX0.5mmX0.5mm.

* The training took 2.5 hours.
* The number of epochs was 500.
 Batch size was 2.

A. Sethi et al.2018. Front. Oncol., 26




Deep Learning for INTRABEAM

CT Calculated Dose Predicted Dose
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Deep Learning for INTRABEAM

3D site agnostic dataset and training with data
augmentation

» The applicator is spherical

» The datasets used in training consisted of 720
Images as a training set and 80 images as a
validation set.

 The dataset was calculated with the HMC.
 MultiResUnet with mask

* The image size was 128X128X64 with a voxel size of
0.5mmX0.5mmX0.5mm.

* The training took 24 hours.
« The number of epochs was 200.
 Batch size was 2.




Deep Learning for INTRABEAM

Data augmentation

* Image augmentation techniques is proven to
improve the results of deep learning.

* but conventional image augmentation is not
feasible for our case.

* This image was split into 16 parts and each
part was taken from a different image in the
dataset.

* The dose is then calculated with the HMC
code.




Deep Learning for INTRABEAM
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Conclusions

e Accurate dose calculation for the INTRABEAM in real time is possible.

e Realistic dose distributions can be obtained with the GPU-HMC in less than 1
second for any INTRABEAM applicator.

* The ultra-fast GPU simulations allow the creation of realistic datasets free of
statistical noise in a short time.

* Deep learning approaches can be used for the INTRABEAM 2D and 3D dose
calculation.

e Other type of applicators will be tested with DL approaches as well.

Thank you for your attention
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GPU- Hybrid MC

Monte Carlo
Meta-Histories
1 meta-history =N photons.
N,=100 N=1
Read and extracted from a condensed PHSP.
Lead

After each interaction the weight of the meta-history is
updated.

Hybrid Monte Carlo

Dose calculated from the reduction of the weight of each
meta-history.

Constant number of meta-histories along the volume.

Lead




GPU- Hybrid MC

Interaction forced and condensed interactions

After every step the meta-history is forced to interact.

Effect of the interaction on the weight of the meta-history.
Secondary particles

If Prob o mpton or Rayleign > Threshold.

N secondary particles with weight w/N.

Woodcock tracking algorithm

Electrons locally absorbed




GPU- Hybrid MC

Dose Normalization

If too few meta-histories: Dose patterns due to subsampling.

Meta-histories never die A priori knowledge of the
number of meta-histories and interactions in each voxel.
Fluency: Source geometry
(Weight: Phantom materials)
Normalization: Correction by the estimated number of
interactions in each voxel.

dose(x, y,z)
norm(x, y, z)

norm _dose(x, y,z)= fluency(x, y, z)

Normalized



U-Net

e U-Net is a deep convolutional
neural network. '
* It has 31.5 million parameters --_, NN
for 2D model and more than 1024 g
60 million for 3D model. o o e g
* It requires large video Beteh o w8
memory. E K| s = Max Pool 2 x 2 128 ofll 8
é é = Up Conv2x2 § §
{1..10}64 . E::cvhgn:?m H64 dl

—— Concatenation
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MultiResUnet

 MultiResUnet is a more
advanced U-Net based

network.
* It has 7.1 million parameters
for 2D model and 10.2 for the

3D model.
* It is lighter than the U-Net

— |

MuliRes Block 2 " [ Res Path 2  MuliRes Block 8 Segmentation Mask

Input Image

S
MultiRes alocui ~ ResPalh4 ’ MultiRes Block & =P 2X 2 Max Pooling
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“» 1 X1 Convolution (Sigmoid)

=+ 3 X 3 Convolution (ReLU)
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Input

Res Path
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Operation
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Deep Learning for INTRABEAM

2D Dataset

* The applicator used is the spherical.

* The dataset was randomly cropped from a thorax CT scan.

* The dataset include 1118 as training set and 124 validation set.
* The dataset was calculated with the HMC.

* The image size is 128X128 with a pixel size of 0.5mmX0.5mm.

* The training of the 2D models took 30 minutes in average.
* The number of epochs was 200.

e Batch size was 2.

Image extracted from the AAPM webpage




Deep Learning for INTRABEAM

Input of the Neural Network

Predicted Dose
CT Leg Gane.

Neural Network

10°?
Noemalized Dose

Segmentation mask Predicted Dose

Neural Network




