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The Electroweak Effective Theory is a model capable of testing the Standard Model. Beyond the
Standard Model physics could be hidden inside the couplings of the theory, which can be put to
test at colliders like the LHC. The large number of operators that appear in the theory makes it too
troublesome to work with by hand. Thus, implementing the theory model into a computer is essential
to get the needed results to compare with the data. In this paper, we review the existing tools
capable of performing such computations, which are included in Mathematica-based packages. In
particular, we will be working with the packages FeynRules, FeynArts and FeynCalc. With
the help of this packages we will be implementing the Electroweak Chiral Lagrangian in the software,
getting the vertices of our theory and calculating some example amplitudes for different Feynman
diagrams, thus showing the capabilities of these tools.

I. INTRODUCTION

After the successful runs at the LHC confirming the
validity of the Standard Model (SM), different new the-
ories have been developed trying to find physics beyond
the Standard Model (BSM).

The approach these theories take is the construction of
some effective field theory (EFT) [1] where the informa-
tion about the ultraviolet (UV) and the infrared (IR) is
separated.

To build an EFT, one must select an energy scale at
which the new physics should take place. Then, one pro-
ceeds to write the most general Lagrangian preserving the
underlying gauge symmetries of the SM in terms of the
light fields present at that energy scale. The dynamics of
the UV will then be accounted for within the couplings
of the effective Lagrangian.

In this paper, we will study one particular EFT known
as the Electroweak Effective Theory (EWET), Higgs Ef-
fective Field Theory (HEFT) or Electroweak Chiral La-
grangian (EWChL) [2, 3]. This theory is a non-linear gen-
eralization of the SM Effective Field Theory (SMEFT).

The motivation for such theory is the lack of new par-
ticle states observed at the LHC implying the existence
of a mass gap between the electroweak and new physics
scales. Therefore, one could expect the new low-energy
signals to be suppressed by higher powers of the energy
scale parameterized with higher order operators.

The formal development of the theory to next to lead-
ing order is well-known [2–8], but due to the complexity
and large number of the operators that can appear for a
given process not many vertices have been obtained. It
is not common in the literature to find the vertices used
for a study and even those that can be found [9, 10] may
not have considered a given term of the Lagrangian (be-
cause their contribution was not taken into account for
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a variety of reasons). Because of this, a program capa-
ble of automatize the calculation of the vertices is a very
needed and useful tool.

Our goal is to create a code that automatizes this calcu-
lations and can be easily modified to get new terms of the
Lagrangian expansion. The language on which we will be
working is Mathematica. This program has some very
useful packages built for working with a Lagrangian. In
particular, we will be using the packages FeynRules[11],
FeynArts[12] and FeynCalc[13]. The FeynRules
web database [14] offers some version of this Lagrangian
[2, 3] but they are not meant to be extended. Thus, it
is not possible to obtain extra terms when needed using
the existing codes. This is what we try to prevent with
our code.

In this work we will automatize the calculations of the
boson sector of the theory for any reader to extend. Fur-
thermore, we will provide a file with every possible ver-
tex up to 6 particles within the Lagrangian up to next
to leading order and another, smaller, with the up to 4
particles ones (the reader could use the code to ask for
vertices with any given number of particles).

II. ELECTROWEAK CHIRAL LAGRANGIAN

The Effective Chiral Lagrangian is based on the elec-
troweak chiral symmetry breaking (EWSB) of the scalar
sector of the SM, G ≡ SU(2)L ⊗ SU(2)R → H ≡
SU(2)L+R.

The particle content of the model will be taken from
the bosonic fields SM: the Higgs boson (h), the three EW
Goldstone bosons (πa) and the four EW gauge bosons
(W±,Z,A). We’ll not be including the fermionic fields
nor the color sector (these are included in Ref. [2]). The
Higgs will be considered a scalar singlet with mh = 125
GeV (not part of a doublet together with the three Gold-
stones).

We will be implementing the model following Pich
et al. [3], where the reader can find a further study of
the theory construction.

mailto:javmar21@ucm.es
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The Lagrangian will be organized as a low-energy ex-
pansion in powers of generalized momenta (derivatives):

LEWET =
∑
d̂≥2

L(d̂) , L(d̂) = O(pd̂) , (1)

where the chiral dimension d̂ reflects the infrared be-
haviour at low momenta (notice that the operators are
not ordered according to their canonical dimension). The
scale characterizing the EWSB will be defined as the vac-
uum expectation value (v = (

√
2GF )

−1/2 = 246 GeV at
leading order (p2)).

This counting classifies the terms of the Lagrangian
depending how they contribute to the dimension of the
amplitude M of a process. The order O(pd̂) of a diagram
is given by

p
2(L+1)+

∑̂
d

Nd̂(d̂−2)

, (2)

where L is the number of loops and Nd̂ the number of
vertices of dimension d̂. We consider leading order (LO)
the diagrams of order O(p2). The diagrams that can
contribute to LO must contain only dimension 2 vertices
(from the LO term of the Lagrangian L(2)) and no loops.
We consider next to leading order (NLO) the diagrams of
order O(p4). The diagrams that can contribute to NLO
must have one loop with only vertices of dimension 2 or
no loop with exactly one vertex of dimension 4 (from
the NLO term of the Lagrangian L(4)) and any vertex of
dimension 2.

The chiral dimension of the objects used to build our
theory (as reviewed in [3]) is as follows:

v,
h

v
,
πa

v
,
W a,µ

v
,
Bµ

v
∼ O(p0) ,

∂µ, mh, mW , mZ , gW , g1 ∼ O(p) ,
(3)

where the gauge coupling constants gW and g1 are usually
known in the literature as g and g′ respectively. With
the dimension of these objects, the reader can obtain the
dimension of any other operator built with them.

We will split the terms of the expansion into two parts,
one denoted as L(d̂)

Scalar including only the operators uµ, h

and T (later defined in Sec. IIA) and one L(d̂)
FS including

the field strength operators along with the previous ones.
This choice is made so the code is easier to read. We have
then,

L(d̂) = L(d̂)
Scalar + L(d̂)

FS (+ fermionic / color terms) . (4)

At this point, we could take into account the conse-
quences of the quantization of the theory. This will would
make appear two extra contributions to our Lagrangian,
namely the gauge-fixing Lagrangian and the Faddeev-
Popov ghost Lagrangian. There is a family of renormaliz-
ability gauges [15], known as the Rξ, parameterized with
the real gauge parameter ξ (this parameter is related to

the mass of the Goldstones of the theory and the form
of the propagator). In the following study, we will be
using the Landau gauge ξ = 0 (taking into account that
the physical properties of the theory are gauge indepen-
dent) in which the masses of the Goldstones become zero
and the ghost fields decouple from the Goldstones (not so
with the gauge bosons) [16]. Thus, because not writing
these extra terms has no impact in the Goldstones dia-
grams, they will be omitted for simplicity (remembering
that the gauge bosons may have further corrections with
ghosts).

A. The fields

Firstly, we have the scalar Higgs field h (dependence
on the local coordinates x being omitted for the fields),
which is s singlet under the G group transformations.

Then, we introduce the Goldstones fields

π0 = π3, π± =
π1 ∓ iπ2

√
2

, (5)

collected in the 2× 2 matrix

M(π) = σaπa =

(
π0

√
2π+

√
2π− −π0

)
, (6)

where the Einstein summation notation is used for re-
peated indices and σa are the Pauli matrices (a = 1, 2, 3).

Using the exponential representation we define the 2×2
matrix U(π) which transforms under g ≡ (gL, gR) ∈ G as

U(π) = exp{iM(π)/v} −→ gLU(π)g†R . (7)

Furthermore, given the coset G/H with coordinates
(uL(π), uR(π)), we can adopt the canonical choice of
coset representative u(π) ≡ uL(π) = u†

R(π) related to
the matrix U(π) as

u(π) = [U(π)]1/2 −→ gLu(π)g
†
h = ghu(π)g

†
R , (8)

where gh ≡ gh(π, g) is a compensating transformation to
preserve the chosen coset representative, which depends
on the Goldstones and the group element.

Next, we introduce the SU(2)L and SU(2)R matrix
fields, Ŵµ and B̂µ respectively, transforming under G as

Ŵµ −→ gLŴ
µg†L + igL∂

µg†L ,

B̂µ −→ gRB̂
µg†B + igR∂

µg†R ,
(9)

which we can identify as

Ŵµ = −gW
σa

2
W a,µ, B̂µ = −g1

σ3

2
Bµ , (10)

where W a,µ and Bµ are the gauge fields of SM and will
end up related to the physical gauge bosons.
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We also introduce the covariant derivative

DµU = ∂µU − iŴµU + iUB̂µ −→ gLDµUg†R , (11)

and the corresponding field-strength tensors

Ŵµν = ∂µŴν − ∂νŴµ − i[Ŵµ, Ŵν ] −→ gLŴµνg
†
L ,

B̂µν = ∂µB̂ν − ∂νB̂µ − i[B̂µ, B̂ν ] −→ gRB̂µνg
†
R .

(12)

Lastly, we introduce some useful quantities that appear
when building the Lagrangian

uµ = iu(DµU)†u = −iu†DµUu† = u†
µ ,

fµν
± = u†Ŵµνu± uB̂µνu† ,

X̂µν = ∂µX̂ν − ∂νX̂µ, X̂µ = −g1Bµ ,

T = uTRu†, TR = −g1
σ3

2
.

(13)

These ingredients are all we need to proceed writing
the EWChL.

B. Leading order Lagrangian. L(2).

The FS leading order (LO) Lagrangian corresponds
to the Yang-Mills (YM) Lagrangian for the EW gauge
bosons:

L(2)
FS = − 1

2g2W

〈
ŴµνŴ

µν
〉
− 1

2g21

〈
B̂µν , B̂

µν
〉
, (14)

where ⟨·⟩ denotes the trace over the SU(2) space.
The scalar leading order Lagrangian can be written in

terms of the invariant operator ⟨uµu
µ⟩. We can multiply

our operator with an arbitrary polynomial of h (compen-
sated with the corresponding power of the sale v so that
the chiral dimension do not increase), since it is a singlet
under G. We write then the bosonic Lagrangian:

L(2)
Scalar =

1

2
∂µh∂

µh− 1

2
m2

hh
2 − V (h/v)+

+
v2

4
Fu (h/v) ⟨uµu

µ⟩ ,
(15)

with

V (h/v) =
1

2
m2

hv
2

∑
n≥3

bn

(
h

v

)n
 ,

Fu (h/v) = 1 +
∑
n=1

c(u)n

(
h

v

)n

.

(16)

where we will rename c
(u)
1 ≡ 2a and c

(u)
2 ≡ b.

The SM Lagrangian is recovered for b3 = 1, b4 = 1/4,
bn>4 = 0, a = b = 1 and c

(u)
n>2 = 0.

Also, inside the last term of the scalar Lagrangian, we
can identify the usual SM gauge bosons

W±,µ =
W 1,µ ∓ iW 2,µ

√
2

,

Zµ = cWW 3,µ − sWBµ ,

Aµ = sWW 3,µ + cWBµ ,

(17)

where cW = cos (θW ) and sW = sin (θW ) with θW the
Weinberg angle. We have tan (θW ) = g1/gW , gW sW = e
(with e the electron charge) m2

Z = (g2W +g21)v
2/4, m2

W =
g2W v2/4 and m2

A = 0 at LO.

C. Next to leading order Lagrangian. L(4).

At next to leading order (NLO), the O(p4) operators
must be considered alongside the one-loop corrections of
the LO Lagrangian (they are of the same order).

Following Ref. [3], the NLO FS Lagrangian can be writ-
ten as

L(4)
FS =

3∑
i=1

[
Fi (h/v)Oi + F̃i (h/v) Õi

]
+

+ F9 (h/v)O9 + F11 (h/v)O11 ,

(18)

and the NLO scalar Lagrangian as

L(4)
Scalar =

8∑
i=4

Fi (h/v)Oi + F10 (h/v)O10 , (19)

where the coefficients Fi (h/v) and F̃i (h/v) are polyno-
mials of h/v of the form

Fi (h/v) =
∑
n=0

Fi,n

(
h

v

)n

,

F̃i (h/v) =
∑
n=0

F̃i,n

(
h

v

)n

.

(20)

The operator Oi used to build these terms are collected
in Table I.

III. THE SOFTWARE TOOLS

For implementing the software we have made use of the
computation program Mathematica which offers mul-
tiple packages for implementing our theory and getting
some results.

The packages we have used are FeynRules[11], Fey-
nArts[12] and FeynCalc[13].
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i Oi Õi

1 1
4
⟨fµν

+ f+µν − fµν
− f−µν⟩ i

2
⟨fµν

− [uµ, uν ]⟩
2 1

2
⟨fµν

+ f+µν + fµν
− f−µν⟩ ⟨fµν

+ f−µν⟩
3 i

2
⟨fµν

+ [uµ, uν ]⟩ (∂µh)

v
⟨fµν

+ uν⟩
4 ⟨uµuν⟩⟨uµuν⟩ −
5 ⟨uµu

µ⟩2 −
6

(∂µh)(∂µh)

v2 ⟨uνu
ν⟩ −

7
(∂µh)(∂νh)

v2 ⟨uµuν⟩ −
8

(∂µh)(∂µh)(∂νh)(∂νh)

v4 −
9

(∂µh)

v
⟨fµν

− uν⟩ −
10 ⟨T uµ⟩2 −
11 X̂µνX̂

µν −

TABLE I. CP -invariant operators of the O(p4) EWET La-
grangian. P -even (P -odd) operators are shown in the left
(right) column. Ref. [3]

A. The packages

1. FeynRules

FeynRules[11] is a Mathematica-based package ca-
pable of computing the Feynman rules in the momentum
space of a given theory.

FeynRules needs to load a model-file (.fr) in which
one must write the content of the theory: the gauge
groups, the fields, the parameters... This model file may
contain the Lagrangian but we will leave it outside. This
way, the model file doesn’t have to be edited if changes
to the Lagrangian are needed and we get a better visu-
alization of its individual terms.

With the model loaded, FeynRules works with the
Lagrangian to get all the possible vertices (we can also,
for example, check the hermiticity) and exports them to
a language readable by multiple other programs. For
our purposes, we need to generate a group of files with
extensions .mod, .gen and .pars which contain the main
information of the theory (including the vertices) and can
be read by FeynArts and FeynCalc.

2. FeynArts

FeynArts[12] is a Mathematica package for the
generation and visualization of Feynman diagrams and
amplitudes. We use this package as an add-on of Feyn-
Calc[13].

With FeynArts one can create the topology for a
given process with multiple options settings: number
of external particles, number of loops, one-particle irre-
ducible topologies...

FeynArts works with the files generated by Feyn-
Rules to insert the model particles and vertices in the
previously generated topologies, resulting in the gener-
ation of all the Feynman diagrams for the selected pro-
cesses (with the given options).

FIG. 1. Overview of the model implementation

Ultimately, FeynArts calculates the amplitudes of
the diagrams it wrote, which is then translated to a
FeynCalc compatible language.

3. FeynCalc

FeynCalc[13] is a Mathematica package for sym-
bolic evaluation of Feynman diagrams.

With FeynCalc we can perform the needed calcu-
lations to simplify the amplitudes obtained with Fey-
nArts: substitute the Mandelstam variables, change the
values of the parameters, perform the needed Feynman
integral for loops...

Later on, this amplitude could be used to calculate
cross-sections, compare our processes with the experi-
mental data and further study the theory.

B. Implementing the EWET Lagrangian

The files we talk about in this paper are available in
GitHub [17]. The flowchart in Fig. 1 provides an overview
of the process of implementing the theory.

First, we have built the model file of the theory in
"EWET.fr"[17]. This file contains the fields used to build
the different operators: the physical gauge fields Aµ, Zµ
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and W±,µ ; the unphysical gauge fields Bµ and W a,µ ;
and the scalar fields h, π0 and π±. The SU(2)L interac-
tion of the weak bosons and the U(1)Y of the photon are
also declared.

All the parameters needed for the construction have
been established. The declared names are intuitively re-
lated to the quantity they represent, for example the cou-
pling c

(u)
3 is declared as c3u and the coupling Fi,n with

i = 1 and n = 2 as F1n2 (the F̃i,n are represented by
double F at the beginning of its name, for example FF1n2
stands for F̃1,2). A definition of any particular parameter
can be found within the model file.

Due to the complexity of the Lagrangian, we have
opted to write a Mathematica notebook "EWET
FeynRules.nb"[17] where we describe the operators and
the Lagrangian and get the Feynman rules of the theory.
We have prepared the program to get every operator up
to 6 fields, so that we get every vertex needed for study-
ing LO (with tree level L(2)) and NLO (with 1 loop L(2)

and tree level L(4)) diagrams with up to 4 external legs.
To avoid computing terms with a higher number of fields,
we have declared a variable epsf which is attached to ev-
ery field so that every term we compute is expanded up
to epsf6. Once we get the full Lagrangian up to 6 fields,
we eliminate epsf replacing it by 1. Here the reader
could extend the theory and get the operators up to any
number of fields needed.

To implement the matrices in (7) and (8) we have ex-
panded them in a power series up to order 5, taking into
account that they always appear multiplied by at least
one other field. The reader could expand the power se-
ries further to get vertices with more particles. With this
construction, the rest of operators are easily declared and
we build the Lagrangian.

The computation of the vertices takes several min-
utes and then, returns 384 different vertices up to
6 particles for the Lagrangian. This information is
stored in the .mod, .gen and .pars files under the name
"SixPartVertsLagr"[17]. The hermiticity of the La-
grangian has also been checked.

In addition, we compute other .mod, .gen and .pars
files under the name "FourPartVertsLagr"[17] with ev-
ery vertex up to 4 particles, which are simpler than the
previous, in case the reader does not want to study loop
diagrams. This files can be used for tree-level computa-
tions of four particle legs diagrams (including the NLO
ones from L(4)). These vertices account for 84 of the
vertices.

Also, we have extracted the .mod, .gen and .pars files
with only the L(2) rules under the name "LOLagr". This
is useful when calculating diagrams with one loop if we
want to avoid loops with L(4) vertices (which contribute
at least as O(p6)) to keep the amplitude terms contribut-
ing until O(p4). There are 169 vertices of L(2).

The last part of the notebook contains every vertex
up to 6 particles, obtained from the L(2) and L(4) La-
grangians studied, computed and printed on screen for
the reader. This results are ordered by the number of

particles of the vertex. There are 23 three-particles ver-
tices, 61 four-particles vertices, 110 five-particles vertices
and 190 six-particles vertices.

Once we have the files .mod, .gen and .pars generated
thanks to the "EWET FeynRules.nb"[17] notebook, we
do not need to execute that notebook again unless we
need to change something from the theory (add fermions,
O(p6) operators...). The reader needs to take into ac-
count that executing that notebooks takes some compu-
tation time and using the provided .mod, .gen and .pars
the fastest way to study the theory like presented in this
paper.

Given that Mathematica needs to kill the kernel be-
fore executing a new package and that we do not want
to keep using the prior notebook, we have created a new
notebook "EWET FeynCalc.nb"[17] which runs Feyn-
Calc (with a FeynArts add-on). With this notebook
we can draw the diagrams for a given process, get the
amplitudes and simplify them just by specifying the lo-
cation of the model .mod and the generic model .gen.

The option to set up the Mandelstam variables in
FeynCalc needs to be carefully selected for every di-
agram. When calculating the different amplitudes, we
have considered the different definition of the Mandel-
stam sum considering the particles mass (remember that
in our selected gauge the Goldstones are massless).

The "EWET FeynCalc.nb"[17] notebook only contains
some examples of vertices and amplitudes calculations
(which are easy to edit to change the process to a partic-
ular one the reader may be looking for), precisely those
mentioned later in the paper. Nonetheless, we remind
the reader that all the computed vertices can be found
as outputs in the notebook "EWET FeynRules.nb"[17].

IV. CHECKING THE MODEL
IMPLEMENTATION

Now that we have finished building the model to the
computer and we can start getting the Feynman ampli-
tudes for a process, we need to check that the theory
works as expected. This can be achieved by comparing
some of the existing results the literature with those we
get as an output of FeynCalc. We will check both local
vertices and amplitudes.

Given that FeynCalc computes the amplitude of a
given process, to check the vertices we have extracted
them by hand from the amplitudes. Some of the changes
made are adding the global imaginary unit i factor which
FeynCalc takes out of the amplitudes and extracting
the polarization vectors that appear already contracted
in the amplitude. This could be avoided just by searching
for the vertex in the "EWET FeynCalc.nb"[17] notebook,
but those lists are not really user-friendly to read consid-
ering they contain 383 different vertices in its own chosen
particles order.

The convention used is that pi (ki) stands for the mo-
mentum of an incoming (outgoing) particle (the time of
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the diagrams is taken from left to right). The number i
corresponds to the position of an incoming/outgoing par-
ticle among the other incoming/outgoing particles count-
ing from the top of the diagram. The Greek indices will
stand for the polarization of the gauge bosons.

Each diagram has underneath it the corresponding pro-
cess to easily identify momentum and polarization of a
particle.

We will make a distinction between the terms found in
Refs. [9, 10] (black colored), with which we have checked
our results, and the new ones (blue colored), which there-
fore cannot be checked but show nonetheless the poten-
tial of having an automatized code capable of performing
the calculation with all the operators. Please notice that
Ref. [9] contains some of the blue results in the limit
mh = 0.

For the checks one needs to relate our coupling con-
stants to some different ones, relations which can be
found in [9, 18] and are:

ai = Fi,0 for i = 1, 4, 5 ,

a2 =
F3,0 − F̃1,0

2
,

a3 = −F3,0 + F̃1,0

2
,

λ3 = b3
m2

h

2v
,

λ4 = b4
m2

h

2v2
.

(21)

With these considerations, some of the extracted local
vertices we get from our model are:

H

π

π

= −i
2a

v
(k1k2)

FIG. 2. H −→ π+(k1) π
−(k2) vertex.

γ

π

π

= ie(k2 − k1)µ+

+i
4eF3,0

v2
[(p1k2)k1µ − (p1k1)k2µ]

FIG. 3. Aµ(p1) −→ π+(k1) π
−(k2) vertex.

Z

W

W

= −igW cW [gµν(p1 + k1)ρ+

−gρν(p1 + k2)µ − gµρ(k1 − k2)ν ] +

+i
g3W
cW

{−F3,0 + F̃1,0

2
[gµρ(k2 − k1)ν+

+gµν(c
2
W p1 + k1)ρ + gνρ(−k2 − c2W p1)µ

]
+

+s2W

[
F1,0 −

F3,0 − F̃1,0

2

]
(gνρp1µ − gµνp1ρ)+

+2c2W (F2,0 − F̃2,0) [gµρ(k2 − k1)ν

+gµν(p1 + k1)ρ − gνρ(p1 + k2)µ]}

FIG. 4. Zν(p1) −→ W+
µ (k1) W

−
ρ (k2) vertex.

π

π

π0

π0

=
i

3v2
{2[(k1k2) + (p1p2)] + (p1 + p2)

2}+

+i
16

v2
{F4,0[(k1p2)(k2p1) + (k1p1)(k2p2)]+

+2F5,0(k1k2)(p1p2)}+

+i
4e2F10,0

3v4
[4(k1k2) + (p1 + p2)

2]

FIG. 5. π+(p1) π
−(p2) −→ π0(k1) π

0(k2) vertex.

W

W

H

H

= i
bg2W
2

gµν+

−i
2g2WF6,0

v2
(k1k2)gµν+

−i
g2WF7,0

v2
(k1νk2µ + k1µk2ν)+

+i
g2W (F9,1 + F̃3,1)

2v2
[p1ν(k1 + k2)µ+

+p2µ(k1 + k2)ν − (p1 + p2)
2gµν ]+

+i
4g2W (F2,2 + F̃2,2)

v2
[p1νp2µ − (p1p2)gµν ]

FIG. 6. W+
µ (p1) W

−
ν (p2) −→ H(k1) H(k2) vertex.
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π

π

γ

H

H

= i
2be

v2
(p2 − p1)µ+

+i
8eF6,0

v4
(k2k3)(p1 − p2)µ+

+i
4eF7,0

v4
[k3(p1 − p2)k2µ+

+k2(p1 − p2)k3µ]+

+i
2eF9,1

v4
[k1(p1 − p2)(k2 + k3)µ+

−k1(k2 + k3)(p1 − p2)µ]+

+i
8eF3,2

v4
[(k1p2)p1µ − (k1p1)p2µ]

FIG. 7. π+(p1) π
−(p2) −→ Aµ(k1) H(k2) H(k3) vertex.

The vertices in Figs. 2 and 5 have been checked with
Ref. [9] and are exactly the same. Taking into account
that Ref. [9] defines the photon coupling at LO with a
global sign difference in relation to ours, the results of our
vertices in Figs. 3 and 7 are also checked. The last two
vertices in Figs. 4 and 6 are checked with Ref. [10], where
the diagrams are considered with all particles incoming,
and they also check right.

The same way we have done with the vertices, we have
computed the following amplitudes:

M(π+π− → π0π0) =
s

v2

(
1 +

a2s

m2
h − s

)
+

+
g2W
4

(
s− u

m2
W − t

+
s− t

m2
W − u

)
+

4F4,0

v4
(t2 + u2)+

+
8F5,0

v4
s2 +

g2W (F3,0 + F̃1,0)

2v2

(
s2 − u2

m2
W − t

+
s2 − t2

m2
W − u

)
+

+
g2W (F3,0 + F̃1,0)

2

v4

[
t(u2 − s2)

m2
W − t

+
u(t2 − s2)

m2
W − u

]
+

+
e2F10,0

c2W v2

[
g2W

(
s− u

m2
W − t

+
s− t

m2
W − u

)
+

4s

v2

]
+

+
aF10,1 e

2s2

c2W v4(m2
h − s)

,

(22)

M(π+π− → HH) = − 1

v2

[
bs+ a2

(m2
h − t)2

t
+

+a2
(m2

h − u)2

u
− 3 a b3 sm

2
h

m2
h − s

]
+

+
a2g2W s

2

(
1

m2
W − t

+
1

m2
W − u

)
+

+
2sF6,0

v2
(s− 2m2

h) +
F7,0

v2
[
2m2

h(s−m2
h) + t2 + u2

]
+

+
a g2W (F9,0 + F̃3,0)

4v2

[
m2

h

(
u− t− 2s

m2
W − t

+
t− u− 2s

m2
W − u

)
+

+
s2 + t u− u2

m2
W − t

+
s2 + t u− t2

m2
W − u

]
+

+
g2W (F9,0 + F̃3,0)

2

8v4
{ 1

m2
W − t

[t(u2 − s2)+

+(u2 − s2 + 2st− 2tu)m2
h + (2s− 2u+ t)m4

h +m6
h]+

+
1

m2
W − u

[u(t2 − s2) + (t2 − s2 + 2su− 2tu)m2
h

+(2s− 2t+ u)m4
h +m6

h]} ,
(23)

M(HH → HH) = −12b4 m
2
hv

2

v4
+

+
9 b23 m

4
h

v2

(
1

m2
h − t

+
1

m2
h − u

+
1

m2
h − s

)
+

+
2F8,0

v4
[
(2m2

h − s)2 + (2m2
h − t)2 + (2m2

h − u)2
]
.

(24)

The amplitudes in (22), (23) and (24) are obtained
from the diagrams in Fig. 8, Fig. 9 and Fig. 11 respec-
tively. Again, the terms in the literature (black colored)
have been checked, in particular with Ref. [9].

The reader can check any extra amplitude with ex-
isting ones, for example Ref. [9] shows some amplitudes
including photons and Ref. [19] some with gauge bosons.

V. THE CODE CAPABILITY: AN EXAMPLE

To this point, we hope to have proved the reader of the
power the code carries. After the checks, we assume the
code is working smoothly and we can ask for some new
physics results.

We remind the reader that the code is capable of to
perform amplitudes up to NLO as stated previously. To
show the capability of the code, we will get all the pos-
sible contributions to one loop diagrams including those
with L(4) vertices. Even though those terms contribute
to a higher order in the amplitude and we will be miss-
ing other same higher order corrections (O(p6) could also
have contributions from two loops diagrams with L(2)

vertices and tree level with one L(6) vertex).
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π

π

π0

π0

1

π

π

π0

π0
H

2

π

π

π0

π0
π

3

π

π

π0

π0
W

4

π

π

π0

π0π

5

π

π

π0

π0W

6

π π → π0 π0

FIG. 8. π+ π− −→ π0 π0 amplitude.

We have asked our code for the process H(p1) →
Aµ(k1) π0(k2). The tree level contribution is given by
the diagram in Fig. 11 which returns the amplitude:

M0 =
eF̃3,0

v2
[
(s−m2

h)(p1ε
∗
k1
) + (t−m2

h)(k2ε
∗
k1
)
] (25)

To go one step further, we have also asked for the one-
loop contributions to the process. The code returns then
179 different diagrams and the amplitude. This result is
absurdly huge and there will be no point in presenting
it in this paper, but the reader has it available in the
"EWET FeynCalc.nb"[17] notebook. If actually looking
for the amplitude up to O(p4), with only the one loop
diagrams with L(2) vertices, there would only be 22 pos-
sible diagrams.

As an example we have included the 50 diagrams
(Fig. 12) contributing to the amplitude excluding those
with tadpoles or wavefunction corrections. Of those dia-
grams we have selected some of their amplitudes to write
here: one three-point (1), two two-points (30,47) and one
one-point (50). The amplitudes are numerated with the
number of the diagram they correspond to. The internal
momenta of the loop is denoted by q. The polarization
of the outgoing photon is denoted by ε∗k1

.

π

π

H

H

1

π

π

H

H
H

2

π

π

H

H
π

3

π

π

H

H
W

4

π

π

H

Hπ

5

π

π

H

HW

6

π π → H H

FIG. 9. π+ π− −→ H H amplitude.

H

H

H

H

1

H

H

H

H
H

2

H

H

H

H
H

3

H

H

H

HH

4

H H → H H

FIG. 10. H H −→ H H amplitude.

M1 =

∫
ddq

(2π)d
3eF̃3,0

(
acW

2v2 + e2F10,1

) (
b3v

2m2
H − 2F10,3

)
4π4cW 2v8 (q2 −m2

H)
·

·

[
−
(
k1ε

∗
k1

)
(k1q)

−2 (k1q) + q2

]
·

·
[

(k1k2)− (k2q)

2(k1k2)− 2 (k1q)− 2 (k2q) + q2 −m2
H

]
,

(26)
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H

γ

π0

0

FIG. 11. H H −→ H H amplitude.

M30 =

∫
ddq

(2π)d
a e

(
k1q + k2q − q2

)
2π4cW 2v4q2 [2(k1k2)− 2 (k1q)− 2 (k2q) + q2]

·

·
[
e2F10,0

(
k2ε

∗
k1

)
+ cW

2F̃1,0

(
k1ε

∗
k1

)
(k1k2)

]
,

(27)

M47 =−
∫

ddq

(2π)d
e g4W (F2,1 + F̃2,1)(F3,0 + F̃1,0)

8π4v2 (q2 −m2
W ) [2 (k2q) + q2 −m2

W ]
·

·
{
2q2

(
k2ε

∗
k1

)
+ (k2q)

[
7
(
k2ε

∗
k1

)
+ 10

(
qε∗k1

)]}
,

(28)

M50 =−
∫

ddq

(2π)d
3 e g2W (F3,1 + F̃1,1)

(
k2ε

∗
k1

)
8π4v2 (q2 −m2

W )
(29)

Even though we have showed some isolated amplitudes,
the code actually computes the full amplitude with every
diagram. These results can be used for further calcula-
tions, like getting the cross section of an event to compare
with the experimental data.

VI. CONCLUSION

With this work we have been able to create an au-
tomatized code [17] capable of calculating any term of
the Lagrangians L(2) and L(4). This allows us to calcu-
late amplitudes with all the contributions up to O(p4).
We have build the part of the theory containing only the
Higgs, the Goldstones and the electroweak bosons. The
next step would be including the fermions, the ghosts
and the gluons. This should be easier now that we have
the other terms to guide us.

This is a helpful tool as we have seen that the literature
only accounted for some of the possible vertices which are
even scattered in different articles. Nevertheless, some of
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FIG. 12. H(p1) −→ Aµ(k1) π
0(k2) amplitude.
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those articles [9, 10] have been essential to check that the
code has been built correctly.

It is important to remark that thanks to the code,
hours of handmade calculations can be avoided. With
the .mod, .gen and .pars files one can start working di-
rectly with the vertices, saving the time of extracting
them from the Lagrangian. This files can be read by
FeynCalc to get amplitudes, integrate loops and much
more.

Thanks to this code, extra contributions to the vertices
in the literature have been found (the blue ones). Fur-
thermore, we have found many more vertices that can be
used by the scientific community to improve our knowl-
edge of the theory.

We have showed that the software [11–13] is an incred-
ible tool developed by scientists. Thanks to them, we
have been able to produce all diagrams at one loop for a
process and get their amplitudes. With our implementa-
tion, this can be done for any diagram with four external
legs (or even more if one gets terms with more fields from
the Lagrangian, which is done automated).

We hope this code can help scientists everywhere when
further studying the theory. We are also looking forward
to giving a more complete version with the extra sectors
of the Lagrangian: fermions, gluons and ghosts.
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