TARSIS "Tetra-ARmed Super-Ifu Spectrograph" the new IPAR<S-led instrument for the Calar Alto 3.5m telescope

A. Gil de Paz (UCM, co-PI), J. Iglesias (IAA-CSIC, co-PI)

P. Sánchez-Blázquez (UCM), M. Relaño (UGR), J. Oñorbe (US), C. Kehrig (IAA-CSIC), A. Montaña (INAOE)

TARSIS CONSORTIUM & INSTRUMENT TEAM **CATARSIS** SURVEY TEAM

4

CATARSIS: THE SCIENCE

"<alar-Alto Tetra-Armed Super-Ifu Survey"

- **CATARSIS** will observe a sample **16 clusters** covering up to their virial radii, as well as targeted filaments for some of the clusters. This sample is selected from RedMapper, SPIDERS, LOCUSS, Hetspec and CLASH cluster surveys.
- The sample covers a wide range in masses, richnesses and dynamical states.
- Good quality **corollary data** are available for most clusters: GALEX (UV) data, HST imaging, X-ray data, etc..., thus allowing a more complete analysis combining them with the CATARSIS data.
- The **redshift range (0.15<z<0.23)** has been chosen so that the spectral features of interest fall within the TARSIS Blue and Red spectral ranges (**MgII2800Å** @ z=0.15, **Hα** @ z=0.23).

13

CATARSIS: THE SURVEY

Observing goals

- The scientific goals of CATARSIS require reaching galaxies with continuum magnitudes m_{AB,r}~21, and limiting line fluxes (1-2)x10⁻¹⁷ erg s⁻¹ cm⁻².
- The required exposure time per pointing is **28800s** (8h) for the Blue range, and **9600s** (2h40m) for the Red.

- To achieve these requirements, **observations will be carried out during clear dark (or with low Moon illumination) nights** (although not necessarily photometric).
- We require **AIRMASS to be lower than 1.22**, to limit the extinction at the blue end of the wavelength range and to fulfill our detection limits (**see CAHA UV extinction curve above**).

DESIGNED FOR LONG TRIPS WITH UNKNOWN DESTINIES...

15

TARSIS: THE INSTRUMENT

Tetra-ARmed Suder-Ifu Sdeetrogradh

Optical design: Image slicer

- It splits the light into 4 Qs, each 1.5'x1.5' (15x15 mm²) in size with a gap of 0.75 mm (4.5"). □
- An optical relay converts the beam from F/10 to F/20.
- F/20 to F/9 slicer (from Winlight) with 42 slices per quadrant.
- Reimaging from F/9 to F/3 with flat and telecentric pseudo-slits (8 total) 112mm in length.

12	TARS/S
	Concernation of the

TETRA-ARMED SUDER-IFU SDEETROGRADH

Blue

Optical	design:
L	U

Resolving power

Wavelength (nm)	Resolving Power, R (for 3.6 pix)		
	Slit 1	Slit 2	
320	747	764	
420	1042	1039	
520	1309	1312	

Red+RLR

Red+RHR

	λ (nm)	Resolving Power, R (3.6 pix)		
		RLR		
ARE TARSI		Slit 1	Slit 2	
00	510	784	793	
	660	1057	1063	
	810	1320	1329	

λ (nm)	Resolving Power, R (3.6 pix)		
	RHR		
	Slit 1	Slit 2	
590	1977	1999	
660	2254	2267	
730	2507	2514	

Tetra-ARMed Suder-IFU Sdeetrogradh

Detector: CCD

- 4x CCD231-84 (3 standard silicon, 1 DD) with Astro Multi-15 coating
- ESO-MUSE CCD head (as in CARMENES) using flex-prints
- Read through two diagonally-opposed amplifiers: RoN<3.5e⁻ & RoT<1 min
- CryoTel MT cryocooler & Sunpower AVC
- 2 (M&S) STA Archon controllers
- Lakeshore thermal control
- CCD window flushed with compressed air

DESIGNED FOR LONG TRIPS WITH UNKNOWN DESTINIES...

Astro Multi-15 and Multi-2 on Deep Depletion Silicon

20

Tetra-ARmed Suder-Ifu Sdeetrogradh

BUDGETS

Technical budgets:

- Mass & momentum
- Envelope
- Data Storage

Performance:

• Image quality

• Transmission

Fore-optics (slicer) + VPHs + spectrograph + CCD

Components	Units	Unit mass (kg)	Mass (kg)	CoG z (mm)	Moment (Nm)
Image slicers	4	10	40	665	261
Collimators	4	80	320	665	2085
Cameras	4	90	360	665	2346
Fold mirrors	4	4	16	665	104
VPHs	4	6	24	665	156
CCD heads	4	7	28	665	182
Cryostats	4	2	8	665	52
CCD controllers	2	7	14	660	91
Support structure and cover	1	585	585	450	2580
Pending (shutters, baffles, AG, CU)	1	50	50	665	326
Total			1445		8184
CARMENES	1	250	250	170	417
Total with CARMENES			1695		8600
Contingency	1	234	234	665	1525
Total CARMENES and contingency			1929		10125
Requirement					10125

DESIGNED FOR LONG TRIPS WITH UNKNOWN DESTINIES...

Wavelength (nm)

BUDGETS

Technical budgets:

- Mass & momentum
- Envelope
- Data Storage

Performance:

• Image quality

Gil de Paz, Armando

WP Manager

Code Work WP-TAR-00 FEASIBILITY STUDY COLLAR packages:

WP-TAR-01		SCIENCE	Sanchez Blazquez, Patricia	
WP-TAR-02		MANAGEMENT	García Vargas, Marisa	
WP-TAR-03		SYSTEM ENGINEERING	Perez Calpena, Ana	
WP-TAR-04		OPTICS AND MECHANICS	García Vargas, Marisa	
WP-TAR-05		OPTICS MANUFACTURING	Carrasco, Esperanza	
WP-TAR-06		DETECTOR SYSTEM	Tulloch, Simon	
WP-TAR-07		INSTRUMENT CONTROL SYSTEM	Iglesias Paramo, Jorge	
WP-TAR-08		SCIENTIFIC SOFTWARE	Cardiel López, Nicolás	
	WP-TAR-08.01	Simulator	Labiano, Alvaro	
	WP-TAR-08.02	DRP Data Processing	Pascual Ramírez, Sergio	
	WP-TAR-08.03	Post-processing	Castillo Morales, Africa	
	WP-TAR-08.04	Quality Control	Kehrig, Carolina	
	WP-TAR-08.05	High Performance Computing	González Ruiz, Vicente	
	WP-TAR-08.06	Data Storage	Piqueras, Javier	
	WP-TAR-08.07	CATARSIS software tools	Relaño Pastor, Monica	
WP-TAR-09		SITE: UV CHARACTERIZATION	Oñorbe, Jose	
WP-TAR-10		A&G AND CALIBRATION UNIT	Iglesias Paramo, Jorge	
WP-TAR-11		OUTREACH AND MEDIA	Iglesias Paramo, Jorge	

Title

Project Calendar: phases and key milestones

Date	Name	AIV a	nd con	nmissioning @ CAHA	2026 December
2022-06-16	Conceptual Design. Start				
2022-09-01	Conceptual Design. End			PSP SPAR	2026 August
2022-09-15	Conceptual Design Review				2020 August
2022-09-16	Preliminary Design. Start				2025 November
2022-11-30	Optics Preliminary Design Review. OPDR			AIV @ LICA	2020 110/0111001
2022-12-07	Blanks Ordering			PIR THE CHICK	2025 June
2022-12-07	Detector Ordering		ד ור	Phase E	2020 Julie
2022-12-30	FP Optics. Image Slicer. Contract for DD and MAIT. Start	MALL, I	hase I) I made L	
2023-10-11	Preliminary Design Review (PDR). Start				
2024-11-12	Critical Design Review (CDR). Start		1	5	
2025-04-06	SP-B1. Optics/Optomechanics Manufacturing. End	CDR FDR	4) Vr	2024 November
2025-04-06	SP-R1. Optics/Optomechanics Manufacturing. End	CDK, FDK			
2025-05-07	AIV. LICA. Start		2025-06-15	Pre-Integration Review (PIR). Start	
			2025-06-17	Focal Plane Optics. Image Slicer. Delivery B1	
	Detaile	ed Design, Phase G	2025-08-16	Focal Plane Optics. Image Slicer. Delivery B2	
		0 /	2025-09-30	ICS. Release. AIV	
	PDR		2025-09-30	SciSW. Release. AIV	2023 October
			2025-10-03	SP-B2. Optics/Optomechanics Manufacturing. End	
	Preliminar	v Design Phase R	2025-10-15	Focal Plane Optics. Image Slicer. Delivery R1	
		y Design, I mase D	2025-12-14	Focal Plane Optics. Image Silcer. Delivery B3	
			2026-03-29	SciSW Bolosco 1.0	
47	Optics PDR		2020-03-23	Focal Plane Ontics At LICA	2022 November
5	optics i bit		2026-05-01	SP-B3 Optics/Optomechanics Manufacturing End	—
			2026-07-30	AIV. LICA. End	
Conceptual Design Review, 2026-08-01 Pre-Shipping Review. Start			2022 September		
	CoDR		2026-08-09	Packing. Start	
	Concentual Degime D		2026-08-24	Shipping. Start	
	Conceptual Design, P	Thase A	2026-09-06	AIV. CAHA. Start	2022 June
24			2026-10-01	Commissioning. Start	
47			2026-12-31	TARSIS Day One	

BUDGET: Cash

TETRA-ARMED SUDER-IFU SDEETROGRADH

25

Conclusions

- TARSIS is feasible albeit ambitious since its driving science demand it.
- TARSIS is not simply another large-FoV IFU. With a FoV of 9 sq. arcmin will provide CAHA with a workhorse instrument that will also give CAHA international projection and visibility.
- The Consortium, the Science and Instrument teams are all committed and have ample experience in instrument design, construction and exploitation.
- TARSIS will be ready at the telescope in 2026. Despite being a "management challenge" we have done it before.
- Although optimized for CATARSIS, TARSIS should serve to multiple scientific purposes. TARSIS is also a discovery machine and an ideal tool for transients' *first-response* follow-up.

Tetra-ARmed Suder-Ifu Sdeetrogradh

Webpage:

https://tarsis.caha.es/ https://guaix.ucm.es/tarsis

27 Dates is a construction of the second sec

