

Extragalactic Background Light and Gamma-Ray Attenuation

Alberto Domínguez

Ramón y Cajal Fellow IPARCOS / Universidad Complutense de Madrid

IPARCOS Workshop @ UCM, Madrid – June 16, 17 (2022)

Galaxy Evolution and Cosmology

Scientific American, June 2015

$$\Omega_{\rm m} = \Omega_{\rm b} + \Omega_{\rm D}$$
$$\Omega_{\rm m} + \Omega_{\rm A} = 1$$

Cosmic Diffuse Extragalactic Backgrounds

TABLE 2 DECOMPOSITION OF THE DIRBE INTENSITY		
Total Zodi ISM Stars, <i>m</i> < 9 mag Stars, <i>m</i> > 9 mag EBL	$\begin{array}{c} 137.5 \pm 0.3 \\ 101.8 \pm 3.8 \\ \dots \\ 7.4 \pm 2.2 \\ 11.9 \pm 0.6 \\ 16.4 \pm 4.4 \end{array}$	$\begin{array}{r} 105.3 \pm 0.3 \\ 80.4 \pm 3.3 \\ 1.1 \pm 0.2 \\ 5.3 \pm 1.8 \\ 5.7 \pm 0.3 \\ 12.8 \pm 3.8 \end{array}$

EBL is an order of magnitude lower than foregrounds and subject to large systematic uncertainties, e.g. Gorjian+ 00

Zodiacal light, visible under the right conditions: typically after the sunset in Spring and right before sunrise in Autumn

Galaxy number counts in the Hubble Deep Field, e.g. Madau & Pozzetti, 2000

Theoretical (e.g. Gilmore+ 12; Inoue+ 13

Observational

Direct galaxy observations

(e.g. Stecker+ 06, Franceschini+ 08, Domínguez+ 11; Helgason+ 12; Stecker+ 16; Saldana-Lopez+ 21) Indirect observations (e.g. Kneiske+ 10; Finke+ 10; Khaire+ 14, Finke+ 22)

Extragalactic Background Light (Local)

Extragalactic Background Light (Evolution)

Strong divergence

New EBL Model Saldana-Lopez+ 21

New EBL Model Saldana-Lopez+ 21

New EBL Model Finke+ 22

Gamma-ray Attenuation

Gamma-ray Attenuation

Cosmic Gamma-Ray Horizon

Cosmic Gamma-Ray Horizon

Cosmic Gamma-Ray Horizon

Optical Depths from Gamma-ray Data

Extragalactic Background Light from Gamma Rays

Cosmic Star Formation Rate

Tension on H₀ **Measurements**

Gamma-ray Attenuation

Measuring H₀ with Gamma-ray Attenuation

Tension on H₀ **Measurements**

Take Home Messages

The EBL attenuates gamma rays that propagates through cosmological distances and needs to be consider for the study of these photons.