Dispersion relations and the QCD spectra

J. Ruiz de Elvira

Departamento de Física Teórica, Universidad Complutense de Madrid

Iparcos 2022 Workshop, June 16th 2022

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨー

Introduction: why the strong interactions are hard

Part I: dispersion relations for low-energy Hadron Physics

• Analiticity, unitarity and crossing symmetry

Part II: strong strong interactions

- Pion-pion scattering and the lightest scalar meson
- Pion-nucleon scattering and the nucleon mass

Part III: strong interactions and electromagnetism

• Isospin-breaking corrections to $e^+e^-
ightarrow \pi^+\pi^-$ and the muon g-2

Summary / Outlook

 matter particles: quarks and leptons

• force carriers: gauge bosons

- matter particles: quarks and leptons
- force carriers: gauge bosons
- how did we find these?

- matter particles: quarks and leptons
- force carriers: gauge bosons
- how did we find these?
- how to find something beyond?

- matter particles: quarks and leptons
- force carriers: gauge bosons
- how did we find these?
- how to find something beyond?

Beyond the Standard Model of particle physics?

Beyond the Standard Model of particle physics?

Freeman Dyson on 16 discoveries awarded the Nobel Prize between 1945 and 2008:

"four discoveries on the energy frontier, four on the rarity frontier, eight on the accuracy frontier. Only a quarter of the discoveries were made on the energy frontier, while half of them were made on the accuracy frontier. For making important discoveries, high accuracy was more useful than high energy."

(Freeman Dyson, review of The Lightness of Being, F. Wilczek, The New York Review of Books, April 2009)

Perturbation theory and coupling constants

- expand amplitudes in powers of coupling constants α
 - \hookrightarrow scattering amplitude $\propto \alpha(\cdots)$

Perturbation theory and coupling constants

- expand amplitudes in powers of coupling constants α
 - \hookrightarrow scattering amplitude $\propto \alpha(\cdots) + \alpha^2(\cdots)$

• works well for electromagnetic and weak interactions: $\alpha \sim 10^{-2}$

Running coupling of QCD

 Asymptotic freedom at high energies ("weak QCD")

QCD strongly coupled at low energies

 \hookrightarrow confinement ("strong QCD")

no quarks + gluons, only (color-neutral) hadrons

Running coupling of QCD

[Bethke et al. 2012]

- Asymptotic freedom at high energies ("weak QCD")
- QCD strongly coupled at low energies
 - \hookrightarrow confinement ("strong QCD")

no quarks + gluons, only (color-neutral) hadrons

- At the typical hadronic scale 1 GeV
 - \hookrightarrow Perturbation theory fails
 - \hookrightarrow Need non-perturbative methods

Non-perturbative methods for low-energy hadron physics

Effective field theories:

 \hookrightarrow symmetries, separation of scales

Non-perturbative methods for low-energy hadron physics

Effective field theories:

 \hookrightarrow symmetries, separation of scales

Dispersion relations: analyticity (\simeq causality),

unitarity (\simeq probability conservation), crossing symmetry

 \hookrightarrow Cauchy's theorem, analytic structure

Non-perturbative methods for low-energy hadron physics

Effective field theories:

 \hookrightarrow symmetries, separation of scales

Dispersion relations: analyticity (\simeq causality),

unitarity (\simeq probability conservation), crossing symmetry

 \hookrightarrow Cauchy's theorem, analytic structure

Lattice: Monte-Carlo simulation

 \hookrightarrow solve discretized version of QCD numerically

Part I:

Dispersion relations:

analyticity, unitarity and crossing symmetry

- Dispersion relations: analyticity, crossing, unitarity
 - \triangleright analitycity constrains the energy depedence of scattering amplitude
 - crossing symmetry connects different physical regions
 - > unitarity constrains imaginary part
- model independent aproach
- analytic continuation for the complex plane
 - \hookrightarrow resonances, unphysical regions

• Cauchy's Theorem

$$t(s) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{ds' t(s')}{s' - s}$$

• Cauchy's Theorem

$$t(s) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{ds' t(s')}{s' - s}$$

• Dispersion relation

$$t(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} t(s')}{s' - s}$$

 \hookrightarrow analyticity

• Dispersion relation

$$t(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} t(s')}{s' - s}$$

- $\hookrightarrow \textbf{analyticity}$
- Subtractions

$$t(s) = t(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} t(s')}{s'(s'-s)}$$

• Dispersion relation

$$t(s) = \frac{1}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} t(s')}{s' - s}$$

- \hookrightarrow analyticity
- Subtractions

$$t(s) = t(0) + \frac{s}{\pi} \int_{\text{cuts}} \frac{ds' \text{Im} t(s')}{s'(s'-s)}$$

- Imaginary part from unitarity
 - \hookrightarrow forward direction: optical theorem

$$\operatorname{Im} t(s) = \sigma(s) |t(s)|^2, \quad t(s) = \frac{\eta(s)e^{2i\delta(s)} - 1}{2i\sigma(s)}, \quad \sigma(s) = \sqrt{1 - \frac{4m_\pi^2}{s}}$$

t(s)

t(s)

Part II: meson sector

Pion-pion scattering and the lightest scalar meson

The lightest scalars and the nuclear force

- lightest scalar-isoscalar meson

- vacuum quantum numbers
 - \hookrightarrow spontaneous chiral symmetry breaking

- vacuum quantum numbers
 - → spontaneous chiral symmetry breaking
- identification of glueballs
 - \hookrightarrow lightest glueball expected to be a scalar

- vacuum quantum numbers
 - → spontaneous chiral symmetry breaking
- identification of glueballs
 - \hookrightarrow lightest glueball expected to be a scalar
- classification: number of states, multiplets?

- vacuum quantum numbers
 - → spontaneous chiral symmetry breaking
- identification of glueballs
 - \hookrightarrow lightest glueball expected to be a scalar
- classification: number of states, multiplets?

• inverted hierarchy: ordinary mesons?

ordinary resonances are narrow

 ordinary resonances are narrow $dN/dM_{K\pi}$ 14 dual background Statistical uncertainties ALICE preliminary p-Pb / s_m = 5.02 TeV Min. bias. -0.5 1.2 ≤ p_ < 1.4 GeV/d 0.7 0.75 0.8 0.85 0.9 0.95 1.05 $M_{\rm K\pi}$ (GeV/ c^2)

ъ

- ordinary resonances are narrow
 - \hookrightarrow Breit-Wigner resonances

- ordinary resonances are narrow
 - \hookrightarrow Breit-Wigner resonances
- resonance mass
 - \hookrightarrow energy where $\delta = 90^{\circ}$

- ordinary resonances are narrow
 - \hookrightarrow Breit-Wigner resonances
- resonance mass
 - \hookrightarrow energy where $\delta = 90^{\circ}$
- lightest scalars are broad

- ordinary resonances are narrow _
 - \hookrightarrow Breit-Wigner resonances
- resonance mass

Old K decay data Na48/2 K->2π decay Kaminski et al.

yer et al. Sol. C

Grayer et al. Sol. D

Hyams et al. 73

Estabrooks et al (s-channel

- \hookrightarrow energy where $\delta = 90^{\circ}$
- lightest scalars are broad

δ.⁽⁰⁾

s^{1/2} (MeV)

- ordinary resonances are narrow ______
 - \hookrightarrow Breit-Wigner resonances
- resonance mass
 - \hookrightarrow energy where $\delta = 90^{\circ}$
- lightest scalars are broad
 - \hookrightarrow no Breit-Wigner shape

$f_0(500)$ pole position until 2012

J. Ruiz de Elvira (UCM)

- particle physics at the precision frontier
 - \hookrightarrow good understanding of strong interactions at low energies

• particle physics at the precision frontier

 \hookrightarrow good understanding of strong interactions at low energies

• input for Heavy-meson decays: CP-violation and New Physics searches

- particle physics at the precision frontier
 - \hookrightarrow good understanding of strong interactions at low energies
- input for Heavy-meson decays: CP-violation and New Physics searches

• first inelastic correction to many observables

 \hookrightarrow nucleon structure, muon g-2, proton radius puzzle

Experimental $\pi\pi$ status

Roy-equations: $\pi\pi$ results

[Garcia-Martin, Kaminski, Pelaez, JRE, Yndurain 2011]

イロト イヨト イヨト イヨト

$f_0(500)$ pole before 2012

Part II: baryon sector

Pion-nucleon scattering and the nucleon mass

 \hookrightarrow haven't we discovered the Higgs boson,

giving mass to all elementary particles of the Standard Model?

J. Ruiz de Elvira (UCM)

Dispersion relations and the QCD spectra

June 16th 2022 23

Well, not quite:

$$m_{
m atom} = m_{
m proton} + m_{
m electron} - E_{
m binding}$$

= 938 MeV + 512 keV - 13.6 eV

Well, not quite:

$$m_{
m atom} = m_{
m proton} + m_{
m electron} - E_{
m binding}$$

= 938 MeV + 512 keV - 13.6 eV

Well, not quite:

$$m_{\text{atom}} = m_{\text{proton}} + m_{\text{electron}} - E_{\text{binding}}$$

= 938 MeV + 512 keV - 13.6 eV

 $m_{\rm up} \approx 2.2 \, {
m MeV}, \quad m_{
m down} \approx 4.7 \, {
m MeV}$

→ proton mass is almost completely made of (gluon) field energy!

Well, not quite:

$$m_{
m atom} = m_{
m proton} + m_{
m electron} - E_{
m binding}$$

= 938 MeV + 512 keV - 13.6 eV

- → proton mass is almost completely made of (gluon) field energy!
- switching off all quark masses ($m_{\rm quark} \rightarrow 0$) the proton mass is almost the same

Well, not quite:

 $m_{\text{atom}} = m_{\text{proton}} + m_{\text{electron}} - E_{\text{binding}}$ = 938 MeV + 512 keV - 13.6 eV

- → proton mass is almost completely made of (gluon) field energy!
- switching off all quark masses ($m_{
 m quark}
 ightarrow$ 0) the proton mass is almost the same
- how precisely do we know that?

Well, not quite:

 $m_{\text{atom}} = m_{\text{proton}} + m_{\text{electron}} - E_{\text{binding}}$ = 938 MeV + 512 keV - 13.6 eV

- → proton mass is almost completely made of (gluon) field energy!
- switching off all quark masses ($m_{
 m quark}
 ightarrow$ 0) the proton mass is almost the same
- how precisely do we know that?
 - > from lattice QCD: varying the parameters (quark masses) freely

Well, not quite:

 $m_{\text{atom}} = m_{\text{proton}} + m_{\text{electron}} - E_{\text{binding}}$ = 938 MeV + 512 keV - 13.6 eV

- → proton mass is almost completely made of (gluon) field energy!
- switching off all quark masses ($m_{
 m quark}
 ightarrow$ 0) the proton mass is almost the same
- how precisely do we know that?
 - \rhd from lattice QCD: varying the parameters (quark masses) freely
 - \triangleright from pion-nucleon scattering: "sigma term" $\sigma_{\pi N} \doteq$ part of m_N due to m_{quark}

Role of the pion-nucleon σ -term

• scalar coupling of the nucleon

 $\langle N|m_q \bar{q}q|N \rangle = f_q m_N, \quad f_q = \frac{\sigma_{\pi N}}{2m_N}$

- $\hookrightarrow \textbf{Dark Matter detection}$
- $\hookrightarrow \mu \to e$ conversion in nuclei
- Condensates in nuclear matter

$$\frac{\langle \bar{q}q \rangle(\rho)}{\langle 0|\bar{q}q|0 \rangle} = 1 - \frac{\rho \,\sigma_{\pi N}}{F_{\pi}^2 M_{\pi}^2}$$

- CP violation in πN couplings
 - $\hookrightarrow \text{hadronic } \textbf{EDMs}$

$$g_{\eta N} \propto - \left(rac{\sigma_{s}}{m_{s}} - rac{\sigma_{\pi N}}{2\hat{m}}
ight)ar{ heta}$$

• $\sigma_{\pi N}$ closely related to πN scattering at the Cheng–Dashen point

• $\sigma_{\pi N}$ closely related to πN scattering at the Cheng–Dashen point

• $\sigma_{\pi N}$ closely related to πN scattering at the Cheng–Dashen point

• $\sigma_{\pi N}$ closely related to πN scattering at the Cheng–Dashen point

• evaluation of scattering amplitude at an unphysical point

• $\sigma_{\pi N}$ closely related to πN scattering at the Cheng–Dashen point

- evaluation of scattering amplitude at an unphysical point
 - \hookrightarrow dispersion relations

J. Ruiz de Elvira (UCM)

Pion-nucleon scattering

- low energies: test chiral dynamics in the baryon sector
- higher energies: resonances, baryon spectrum
- πN scattering appears as subprocess in NN and 3N forces

- crossed channel $\pi\pi \to N\bar{N}$: nucleon form factors
 - \hookrightarrow probe the structure of the nucleon

Particle	J^P	overa	11	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$
N	$1/2^{+}$	****						
N(1440)	$1/2^{+}$	****		****	****	****	***	
N(1520)	$3/2^{-}$	****		****	****	****	**	****
N(1535)	$1/2^{-}$	****		****	****	***	*	****
N(1650)	$1/2^{-}$	****		****	****	***	*	****
N(1675) N(1680)	Partic	le J	Ρ	overa	n .	$N\gamma$	$N\pi$	$\Delta \pi$
N(1700)	$\Delta(123$	2) 3,	(2^{+})	****	*	***	****	
N(1710)	$\Delta(160$	0) 3,	(2^{+})	****	*	***	***	****
N(1720)	$\Delta(162$	20) 1,	(2^{-})	****	*	***	****	****
N(1860)	$\Delta(170$	10) 3,	(2^{-})	****	*	***	****	****
()	$\Delta(175$	i0) 1,	(2^{+})	*	*		*	
	$\Delta(190$	0) 1,	$/2^{-}$	***	*	**	***	*
	$\Delta(190$	15) 5,	(2^{+})	****	*	***	****	**
	$\Delta(191$	0) 1,	(2^{+})	****	*	**	****	**
	$\Delta(192$	20) 3,	(2^{+})	***	*	**	***	***

Dispersive results: s-channel pw

Dispersive results: t-channel pw

• Use Roy equations to extract the pion-nucleon sigma term

 $\sigma_{\pi N} = (59.1 \pm 3.5) \, {
m MeV}$

[Hoferichter, JRE, Kubis, Meißner 2015]

• Use Roy equations to extract the pion-nucleon sigma term

 $\sigma_{\pi N} = (59.1 \pm 3.5) \, \text{MeV}$

[Hoferichter, JRE, Kubis, Meißner 2015]

• recent lattice determination of $\sigma_{\pi N}$ at (almost) the physical point

$ ho$ BMW $\sigma_{\pi N}=$ 38(3)(3)MeV	[Durr et al. 2015]
$ ho \chi ext{QCD} \ \sigma_{\pi extsf{N}} = 44.4(3.2)(4.5) ext{MeV}$	[Yang et al. 2015]
$ ho$ ETMC $\sigma_{\pi N}=$ 37.22(2.57)(1)MeV	[Abdel-Rehim et al. 2015]
$ ho$ RQCD $\sigma_{\pi N}=$ 35(6)MeV	[Bali et al. 2016]

• Use Roy equations to extract the pion-nucleon sigma term

 $\sigma_{\pi N} = (59.1 \pm 3.5) \, \text{MeV}$

[Hoferichter, JRE, Kubis, Meißner 2015]

• recent lattice determination of $\sigma_{\pi N}$ at (almost) the physical point

$ ho$ BMW $\sigma_{\pi N}=$ 38(3)(3)MeV	[Durr et al. 2015]
$ ho \chi ext{QCD} \ \pmb{\sigma_{\pi N}} = ext{44.4(3.2)(4.5)} ext{MeV}$	[Yang et al. 2015]
$ ho$ ETMC $\sigma_{\pi N}$ = 37.22(2.57)(1)MeV	[Abdel-Rehim et al. 2015]
$ ho$ RQCD $\sigma_{\pi N}=$ 35(6)MeV	[Bali et al. 2016]

sigma-term puzzle

Part III:

Isospin-breaking corrections to $e^+e^- \rightarrow \pi^+\pi^-$ and the muon g-2

Contribution	Value $\times 10^{11}$
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116591810(43)
Experiment	116592061(41)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	251(59)

- HVP dominant source of theory uncertainty
- $\bullet~$ relative size $\sim 0.6\%$

 \hookrightarrow radiative corrections in $e^+e^- \to \pi^+\pi^-$ must be under control

- RC evaluation based on models so far
 - \hookrightarrow a dispersive approach could lead to model-independent results

Initial State Radiation:

can be calculated in QED in terms of $F_{\pi}^{V}(s)$

• Final State Radiation:

- requires hadronic matrix elements beyond $F_{\pi}^{V}(s)$
- known in ChPT to one loop

[Kubis, Meißner 2001]

Interference terms

• also require hadronic matrix elements beyond $F_{\pi}^{V}(s)$

Interference terms

- also require hadronic matrix elements beyond F^V_π(s) other than in the π-exchange approximation
- one-pion contributions analyzed dispersively [Colangelo, Hoferichter, Monnard, JRE. (in preparation)] do not contribute to the total cross section and will be ignored

• Neglecting intermediate states beyond 2π , unitarity reads

$$\begin{split} \mathsf{Im}\, F_{V}^{\pi,\alpha}(\boldsymbol{s}) &= \int \mathsf{d}\phi_{2} F_{V}^{\pi}(\boldsymbol{s}) \times T_{\pi\pi}^{\alpha*}(\boldsymbol{s},t) + \int \mathsf{d}\phi_{3} F_{V}^{\pi,\gamma}(\boldsymbol{s},t) \times T_{\pi\pi}^{\gamma*}(\boldsymbol{s},t') \\ &+ \int \mathsf{d}\phi_{2} F_{V}^{\pi,\alpha}(\boldsymbol{s}) \times T_{\pi\pi}(\boldsymbol{s},t)^{*} \end{split}$$

 \hookrightarrow need $T^{\alpha}_{\pi\pi}$ as well as $T^{\gamma}_{\pi\pi}$ and $F^{V,\gamma}_{\pi}$ as input

• The DR for $F_{\pi}^{V,\alpha}(s)$ takes the form of an integral equation

• Radiative corrections to $\pi\pi$ scattering required as input

- Compute them using analyticity, unitarity using as input dispersive results for F_V^{π} , $T_{\pi\pi}$ and $A_{\pi\pi}^{\gamma\gamma}$
- Non-trivial problem. E. g. triangle topology in the t-channel

 \hookrightarrow s-channel cut requires a double-spectral function

Having evaluated all the following diagram

the results for $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ look as follows:

[Colangelo, Monnard, JRE (in progress)]

J. Ruiz de Elvira (UCM)

Dispersion relations and the QCD spectra

Having evaluated all the following diagram

the results for $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ look as follows:

[Colangelo, Monnard, JRE (in progress)]

J. Ruiz de Elvira (UCM)

Dispersion relations and the QCD spectra

June 16th 2022 39

Ideally one would use the calculated RC directly in the data analysis (future?).

To get an idea of the impact we did the following:

- remove RC from the measured $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$
- fit with the dispersive representation for F_{π}^{V}
- insert back the RC

The impact on a_{μ}^{HVP} is evaluated by comparing to the result obtained by removing RC

$$10^{11} \Delta a_{\mu}^{\rm HVP} = \left\{ \begin{array}{ll} 10.2 \pm 0.5 \pm 5 & {\rm FsQED} \\ 10.5 \pm 0.5 & {\rm triangle} \\ 13.2 \pm 0.5 & {\rm full} \end{array} \right.$$

3 pieces of modern strong-interaction physics using dispersive techniques:

- Dispersion relations: analyticity, unitarity, crossing symmetry
 - ▷ respect all symmetries
- Pion-pion scattering and the lightest scalar meson
 - \triangleright f₀(500) meson properties finally settled
- Pion-nucleon scattering and the sigma term
 - \triangleright high-precision determination of the pion–nucleon sigma term
- Radiative-corrections to $e^+e^-
 ightarrow \pi^+\pi^-$

 \triangleright new formalism for evaluating dispersively RC and its contribution to a_{μ}^{HVP}

Thank you

< 口 > < 🗗

Spare slides

Image: A math a math

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

Dispersion relations: crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

Dispersion relations: crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

 3 different processes described by same scattering amplitude T (for very different energies/angles)

- scattering amplitude in 2 variables (e.g. CMS energy & angle)
- relativistic QM: "antiparticles = particles going backward in time"
 - \hookrightarrow crossing symmetry

• scattering amplitude: $\langle \mathbf{f} | S | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | T | \mathbf{i} \rangle$

- scattering amplitude: $\langle \mathbf{f} | \mathbf{S} | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | \mathbf{T} | \mathbf{i} \rangle$
- unitarity \Rightarrow conservation of probability

- scattering amplitude: $\langle \mathbf{f} | \mathbf{S} | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | \mathbf{T} | \mathbf{i} \rangle$
- unitarity \Rightarrow conservation of probability

$$SS^{\dagger} = S^{\dagger}S = \mathbb{I}$$

- scattering amplitude: $\langle \mathbf{f} | S | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | T | \mathbf{i} \rangle$
- unitarity ⇒ conservation of probability

$$SS^{\dagger} = S^{\dagger}S = \mathbb{I}$$

$$\operatorname{Im} t_{lJ}^{fi}(s) = \sum_{n} \sigma_{n}(s) t_{lJ}^{fn}(s) t_{lJ}^{ni}(s)^{*}$$

- scattering amplitude: $\langle \mathbf{f} | \mathbf{S} | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | \mathbf{T} | \mathbf{i} \rangle$
- unitarity ⇒ conservation of probability

 $SS^{\dagger} = S^{\dagger}S = \mathbb{I}$

- scattering amplitude: $\langle \mathbf{f} | S | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | T | \mathbf{i} \rangle$
- unitarity ⇒ conservation of probability

 $SS^{\dagger} = S^{\dagger}S = \mathbb{I}$

• $Imt_{IJ} \neq 0$ above the first production threshold \Rightarrow Right-Hand-Cut (RHC)

- scattering amplitude: $\langle \mathbf{f} | S | \mathbf{i} \rangle = \langle \mathbf{f} | \mathbf{i} \rangle + \mathbf{i} \langle \mathbf{f} | T | \mathbf{i} \rangle$
- unitarity \Rightarrow conservation of probability

 $SS^{\dagger} = S^{\dagger}S = \mathbb{I}$

- $\text{Im}t_{IJ} \neq 0$ above the first production threshold \Rightarrow Right-Hand-Cut (RHC)
- $\text{Im}t_{lJ} \neq 0$ production threshold in the crossed channel \Rightarrow Left-Hand-Cut (LHC)

• bound states:

poles in the real axis below threshold

- bound states: poles in the real axis below threshold
- RHC and LHC: cut above the production thresholds

- bound states: poles in the real axis below threshold
- RHC and LHC:

cut above the production thresholds

 $t(\mathbf{s} + i\epsilon) - t(\mathbf{s} - i\epsilon)$

- bound states: poles in the real axis below threshold
- RHC and LHC:

cut above the production thresholds

 $t(s + i\epsilon) - t(s - i\epsilon) = t(s + i\epsilon) - t(s + i\epsilon)^*$

- bound states: poles in the real axis below threshold
- RHC and LHC:

cut above the production thresholds

 $t(s+i\epsilon) - t(s-i\epsilon) = t(s+i\epsilon) - t(s+i\epsilon)^* = 2i \operatorname{Im} t(s)$

- bound states: poles in the real axis below threshold
- RHC and LHC:

cut above the production thresholds

 $t(s + i\epsilon) - t(s - i\epsilon) = t(s + i\epsilon) - t(s + i\epsilon)^* = 2i \operatorname{Im} t(s)$

 \hookrightarrow unitarity imposes $\text{Im}t(s) \neq 0$ above threshold

- bound states: poles in the real axis below threshold
- RHC and LHC: cut above the production thresholds

 $t(s + i\epsilon) - t(s - i\epsilon) = t(s + i\epsilon) - t(s + i\epsilon)^* = 2i \operatorname{Im} t(s)$

 \hookrightarrow unitarity imposes $\text{Im}t(s) \neq 0$ above threshold

- bound states: poles in the real axis below threshold
- RHC and LHC: cut above the production thresholds

 $t(s+i\epsilon) - t(s-i\epsilon) = t(s+i\epsilon) - t(s+i\epsilon)^* = 2i \operatorname{Im} t(s)$

 \hookrightarrow unitarity imposes $\text{Im}t(s) \neq 0$ above threshold

• resonances:

poles on unphysical Rienmann sheets

- bound states: poles in the real axis below threshold
- RHC and LHC: cut above the production thresholds

 $t(s + i\epsilon) - t(s - i\epsilon) = t(s + i\epsilon) - t(s + i\epsilon)^* = 2i \operatorname{Im} t(s)$

 \hookrightarrow unitarity imposes $\text{Im}t(s) \neq 0$ above threshold

 resonances: poles on unphysical Rienmann sheets

- bound states: poles in the real axis below threshold
- RHC and LHC: cut above the production thresholds

 $t(s+i\epsilon) - t(s-i\epsilon) = t(s+i\epsilon) - t(s+i\epsilon)^* = 2i \operatorname{Im} t(s)$

 \hookrightarrow unitarity imposes $\text{Im}t(s) \neq 0$ above threshold

 resonances: poles on unphysical Rienmann sheets

• Start from twice-subtracted DRs

$$T'(s,t) = c(t) + \frac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \left[\frac{s^2}{(s'-s)} - \frac{u^2}{(s'-u)} \right] \operatorname{Im} T'(s',t)$$

- Subtraction functions c(t) are determined via crossing symmetry
- PW-projection and expansion yields the Roy-equations

$$t_{J}^{\prime}(s) = ST_{J}^{\prime}(s) + \sum_{J'=0}^{\infty} (2J'+1) \sum_{I'=0,1,2} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{II'}(s',s) \operatorname{Im} t_{J'}^{I'}(s')$$

• $K_{JJ'}^{ll'}(s', s) \equiv \text{kernels} \Rightarrow \text{analytically known}$

[Roy (1971)]

Experimental πK status

J. Ruiz de Elvira (UCM)

Dispersion relations and the QCD spectra
Experimental πK status

Roy-equations: πK results

[Colangelo, Maurizio, JRE 2018]

Pionic atoms and pion-nucleon sigma term

- pionic atoms: atoms with $e^- \rightarrow \pi^-$
- calculate energy levels as for hydrogen in quantum mechanics

Pionic atoms and pion-nucleon sigma term

- pionic atoms: atoms with $e^- \rightarrow \pi^-$
- calculate energy levels as for hydrogen in quantum mechanics
- energy levels perturbed by strong interactions:
 - \triangleright ground state energy shift ϵ_{1s}
 - pround state instable, decays
 - $\pi^- \rho \rightarrow \pi^0 n \longrightarrow \text{width } \Gamma_{1s}$

Pionic atoms and pion-nucleon sigma term

- pionic atoms: atoms with $e^- \rightarrow \pi^-$
- calculate energy levels as for hydrogen in quantum mechanics
- energy levels perturbed by strong interactions:
 - \triangleright ground state energy shift ϵ_{1s}
 - pround state instable, decays
 - $\pi^- p \rightarrow \pi^0 n \longrightarrow \text{width } \Gamma_{1s}$
- linked to πN scattering at threshold:

$$\epsilon_{1s} \propto T(\pi^- \rho \to \pi^- \rho) \propto a^+ + a^-$$

$$\Gamma_{1s} \propto T(\pi^- \rho \to \pi^0 n) \propto |a^-|^2$$

[Deser, Goldberger, Baumann, Thirring 1954]

• Measurements of πH and πD at PSI 1995-2010

[Gotta et al. 2008, Hennebach et al. 2014]

 $\epsilon_{1s}^{\pi H} = (-7.086 \pm 0.009) \,\mathrm{eV}, \quad \epsilon_{1s}^{\pi D} = (2.356 \pm 0.031) \,\mathrm{eV}, \quad \Gamma_{1s}^{\pi H} = (0.823 \pm 0.019) \,\mathrm{eV},$

• Measurements of πH and πD at PSI 1995-2010

[Gotta et al. 2008, Hennebach et al. 2014]

 $\epsilon_{1s}^{\pi H} = (-7.086 \pm 0.009) \, \text{eV}, \quad \epsilon_{1s}^{\pi D} = (2.356 \pm 0.031) \, \text{eV}, \quad \Gamma_{1s}^{\pi H} = (0.823 \pm 0.019) \, \text{eV},$

Perturbation theory and coupling constants

• anomalous magnetic moment of the muon: $g_{\mu} = 2(1 + a_{\mu})$

$$a_{\mu}^{exp}=$$
 116592089(63) $imes$ 10 $^{-11}, \quad a_{\mu}^{SM}=$ 116591813(58) $imes$ 10 $^{-11}$

QED contribution computed at fifth order

$$a^{SM}_{\mu,\,\text{QED}} = \frac{1}{2}\frac{\alpha}{\pi} - 0.33\left(\frac{\alpha}{\pi}\right)^2 + 1.18\left(\frac{\alpha}{\pi}\right)^3 - 1.91\left(\frac{\alpha}{\pi}\right)^4 + 9.17\left(\frac{\alpha}{\pi}\right)^5$$

Â Â. AAAA b AAA Å AAA A Å Å AAAA A AAAA A A AAAAA <u>AAAAAAA</u> Particle physics at the precision frontier

 \hookrightarrow good understanding of strong interactions at low energies

Low-energy regime of QCD

[Fritzsch, Gell-Mann, Leutwyler 73]

 \hookrightarrow QCD invariant under flavor rotations of the q_L and q_R fields in the massless limit

- Symmetry group: $SU(N_f)_L \times SU(N_f)_R$
- $N_f = 2$, m_u and m_d very small

 \hookrightarrow SU(2)_L \times SU(2)_R should be a nearly **perfect symmetry**

[Nambu 60]

- $N_f = 3, \, m_s \sim \Lambda_{QCD}$
 - \hookrightarrow SU(3)_L \times SU(3)_R larger corrections

- Chiral symmetry is not "visible" in the spectrum
- Chiral symmetry is realized in the Nambu-Goldstone mode
 - \hookrightarrow spontaneous breaking of chiral symmetry
- π , K, η are the **Goldstone Bosons** from Chiral Symmetry Spontaneous Breakdown
 - \hookrightarrow relevant degrees of freedom at ${\rm low\ energies}$
- They are not exactly massless
 - \hookrightarrow chiral symmetry is not exact
- GB are weakly interacting massless
 - \hookrightarrow Calls for an effective theory \Rightarrow Chiral Perturbation Theory

Spontaneous chiral symmetry breaking

- Chiral symmetry is not "visible" in the spectrum
 - no parity doublets
 - $\triangleright \langle 0 | AA | 0 \rangle \neq \langle 0 | VV | 0 \rangle$
- Spontaneous breaking of chiral symmetry

 $\hookrightarrow \pi, K, \eta$ are the **Goldstone Bosons** from Chiral Symmetry Spontaneous Breakdown

$$egin{aligned} &\langle 0|\partial^{\mu}J^{5\,a}_{\mu}(0)|\pi^{b}(\mathcal{p})
angle =&\delta^{ab}f_{\pi}m_{\pi}^{2}\ &\langle 0|[Q^{A,a},ar{q}\gamma_{5}t^{b}q]|0
angle =&-rac{2}{3}\delta_{ab}\langle 0|ar{q}q|0
angle \end{aligned}$$

[Schael et al. (ALEPH Collaboration) 2005]

• Chiral QCD lagrangian invariant under $U(1)_L \times U(1)_R$

$$\langle 0|\partial^{\mu}J^{5,0}_{\mu}|\eta'(p)
angle = f_{\pi}m^{2}_{\eta'} = \langle 0|rac{3g^{2}}{32\pi^{2}}F^{a\mu
u}F^{a}_{\mu
u}|\eta'(p)
angle$$

 \hookrightarrow does not vanish in the chiral limit

Chiral Pertubation Theory

- Most general theory compatible with QCD symmetries
- Degrees of freedom: Goldstone Bosons of the spontaneous chiral symmetry breaking
- Power counting: based on the scale separation

 \hookrightarrow dimensional counting in *p* and *m*_q

• Breakdown scale:
$$\Lambda_{\chi_l} = \frac{m_{\pi}^2}{(4\pi F_{\pi})^2} \sim 0.014, \quad \Lambda_{\chi_s} = \frac{M_k^2}{(4\pi F_{\pi})^2} \sim 0.18$$

 \hookrightarrow Non-perturbative effects: resonances, M_{σ} , M_{ρ} , \cdots

Higher energy degrees of freedom: LECs

	$N_f = 2$		$N_f = 3$		
p ²	F, B	2	F_0, B_0	2	[Weinberg 66]
p ⁴	ℓ_i, h_i	10	L_i, H_i	12	[Gasser, Leutwyler 84, 85]
p^6	Ci	56	C_i	94	[Bijenens, Colangelo, Ecker 99, 00]

O(*p*⁶) LECs: some control from kinematical dependence → dispersive techniques

Goldstone boson interactions: pion-pion and pion-kaon scattering

• What does ChPT say about $\pi\pi$ and πK scattering?

$$A_{\pi\pi}(\boldsymbol{s},t) = \frac{\boldsymbol{s}-m_{\pi}^2}{F_{\pi}^2} + \cdots$$

$$A_{\pi K}(s,t) = rac{m_{\pi}^2 + m_K^2 - s}{2F_{\pi}^2} + \cdots$$

 \hookrightarrow parameter free prediction at LO

• Higher order corrections:

	$N_f = 2$		$N_f = 3$		$\pi\pi$	πK	
p ²	F, B	2	F_0, B_0	2			[Weinberg 66]
p ⁴	ℓ_i, h_i	10	L_i, H_i	12	4	7	[Gasser, Leutwyler 84, 85]
p ⁶	Ci	56	C_i	94	2	32	[Bijenens, Colangelo, Ecker 99, 00]

 $\triangleright \mathcal{O}(p^6)$ LECs: some control from kinematic dependence \longrightarrow dispersive techniques

poorly known via quark-mass dependence \longrightarrow lattice

[Bijnens, Jemos 11, Bijnens, Ecker 14]

• What is the size of higher orders ?

J. Ruiz de Elvira (UCM)

[Weinberg 1966, Griffith 69]

[Weinberg 66]

Goldstone boson interactions: pion-pion and pion-kaon scattering

 π's and K's appear as final state interactions of "almost every" hadronic process

 \hookrightarrow CP-violation and New Physics searches

• What does ChPT say about $\pi\pi$ and πK scattering?

- \hookrightarrow parameter free prediction
- What is the size of higher corrections?

ChPT vs dispersion theory

• How large are rescattering effects?

 $\hookrightarrow \text{look at } F^s_{\pi}(s) = P(s)\Omega_0(s), \quad \Omega_0(s) = \exp \frac{s}{\pi} \int\limits_{s_{\pi}}^{\infty} \frac{ds'}{s'} \frac{\delta_0^0(s')}{s'-s-i\epsilon}$

- ChPT converges rapid at subthreshold
- Slow convergence already at threshold

 \hookrightarrow dispersion theory for the energy dependence, ChPT for subraction constants

- Simplest process in two flavors
 - \hookrightarrow test chiral dynamics in the light-quark sector
- LO prediction for the S-wave $\pi\pi$ scattering lenths

$$a^0 = rac{7m_\pi^2}{32\pi F_\pi^2} = 0.16m_\pi^{-1}, \qquad a^2 = rac{-m_\pi^2}{16\pi F_\pi^2} = -0.045m_\pi^{-1}.$$
 [Weinberg 66]

- NLO correction: $a^0 = 0.20 m_{\pi}^{-1}$, $a^2 = -0.042 m_{\pi}^{-1}$.
- NNLO correction: $a^0 = 0.217 m_\pi^{-1}$, $a^2 = -0.0413 m_\pi^{-1}$. [Bijnens et al. 96]
 - \hookrightarrow large corrections for a_0 : LO $\xrightarrow{26\%}$ NLO $\xrightarrow{8\%}$ NNLO

$$a^0 = rac{7m_\pi^2}{32\pi F_\pi^2} \left(1 - rac{9m_\pi^2}{32\pi^2 F_\pi^2} \log\left(rac{m_\pi^2}{\mu^2}
ight) + \cdots
ight)$$

- large prefactor: slow convergence of the chiral series
 - \hookrightarrow strong curvature at threshold due to final state interactions

J. Ruiz de Elvira (UCM)

[Gasser, Leutwyler 84]

- Experiment:
 - $ightarrow K_{l4}$ and K_{l3} decays: $a^0 = (0.222 \pm 0.014) m_{\pi}^{-1}$, $a^2 = (-0.0432 \pm 0.0097) m_{\pi}^{-1}$. [Battey et al. (NA49/2) 10]

>
$$\pi\pi$$
 atoms: $|a^0 - a^2| = \left(0.264^{+0.033}_{-0.020}\right) m_\pi^{-1}$. [Adeva et al. (DIRAC) 05]

Lattice:

C

- A a² well determined since 90's [Sharpe et al. 92, Gupta et al. 93, Kuramashi et al. 93, Fukugita et al. 95, Aoki et al. 02, Du et al. 04, Chen et al. (NPLQCD) 06, Li et al. (CLQCD) 07, Beane et al. (NPLQCD) 08, Feng et al. (ETMC) 10, Dudek et al. (Had. Spec.) 11, Beane et al. (NPLQCD) 12, Dudek et al. (Had. Spec.) 12, Helmes et al. (ETMC) 15]
- $ightarrow a^0$ difficult due to disconnected contribution \longrightarrow recent high-precision results (Fu 13, Bai et al. (UKOCD & RBC) 15, Brigeño et al. (Had, Spec.) 17, Liu et al. (ETMC) 17]
- Dispersive theory:
 - ▷ Roy equations + ChPT: $a^0 = (0.220 \pm 0.005)m_\pi^{-1}$, $a^2 = (-0.0444 \pm 0.0010)m_\pi^{-1}$

[Ananthanarayan et al. 01, Colangelo et al. 01]

> Roy equations + data:
$$a^0 = (0.220 \pm 0.008) m_{\pi}^{-1}$$
,

$$a^2 = (-0.042 \pm 0.004) m_\pi^{-1}$$
.

[Garcia-Martin et al. 11]

[courtesy of Heiri Leutwyler 2015]

イロト イヨト イヨト イヨト

\hookrightarrow Extremely successfull test of QCD

$\pi\pi$ scattering lengths

- Low energies: test chiral dynamics in the strange-quark sector
 - Scattering lengths lowest energy observables
 - \hookrightarrow Spontaneous and explicit chiral symmetry breaking
- Higher energies: resonances, hadron spectrum
 - $\hookrightarrow \kappa(800)$ non-ordinary meson, PDG "needs confirmation"
- Input for Heavy-meson decays: CP-violation and New Physics searches

- Crossed channel $\pi\pi \to \overline{K}K$: first inelastic contribution to $\pi\pi$ scattering
 - $\hookrightarrow \Gamma(f_0(500) \to \overline{K}K)$ nature of the σ meson
 - \hookrightarrow Nucleon form factors, $g-2\ldots$

Pion-kaon scattering lengths: ChPT

Simplest scattering process involving strangeness

 \hookrightarrow test chiral dynamics in the strange-quark sector

• Two independent amplitudes: $I_s = \{1/2, 3/2\}$ or $I_{\pm} = \{+, -\}, T^{1/2} = T^+ + 2T^-, T^{3/2} = T^+ - T^-.$

• LO prediction:
$$a^- = \frac{m_\pi m_K}{8\pi (m_\pi + m_K)F_\pi^2} + \mathcal{O}(m_i^4), \qquad a^+ = \mathcal{O}(m_i^4)$$
 [Weinberg 66]

• NLO:
$$a_{LECs}^- = \frac{2m_K m_\pi^3}{\pi (m_\pi + m_K)F_\pi^4} L_5 + \mathcal{O}(m_i^6)$$
 [Bernard, Kaiser, Meißner 91]

$$\mathbf{a}_{LECs}^{+} = \frac{2m_{K}^{2}m_{\pi}^{2}}{\pi(m_{\pi}+m_{K})F_{\pi}^{4}}\left(4(L_{1}+L_{2}-L_{4})+2L_{3}-L_{5}+2(2L_{6}+L_{8})\right) + \mathcal{O}(m_{i}^{6})$$

- Size of higher order corrections?
 - \hookrightarrow Low Energy Theorem

$$a^{-}|_{N^{n}LO} \propto a^{-}|_{LO} \left(rac{m_{\pi}}{4\pi F_{\pi}}
ight)^{2} \left(rac{m_{\kappa}}{4\pi F_{\pi}}
ight)^{2n}, \quad n \geq 2$$

[Weinberg 66]

• NNLO: C_{1-32} , 10 for a^- and 23 for a^+

[Bijnens, Dhonte, Talavera 2004], [Bijnens, Ecker 2014]

• • • • • • • • • • •

Experimental values: DIRAC collaboration

 \triangleright lifetime of πK atoms at CERN \Rightarrow isovector scattering length

$$\left| \mathsf{\Gamma}_{1S} \propto \left| \mathsf{T}_{\left(\pi^+ K^- \to \pi^0 K^0 \right)} \right|^2 \propto |\mathbf{a}^-|^2$$

[Deser, Goldberger, Baumann, Thirring 1954]

⊳ Current result:

$$a^- = (-0.072^{+0.031}_{-0.020})m_\pi^{-1}$$

[DIRAC 2017]

\hookrightarrow huge uncertainties

Room for improvement: near future increase statistics by 10

• Lattice analysis: unquenched results only

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{l3} decays

[Flynn, Nieves 2007]

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{l3} decays

[Flynn, Nieves 2007]

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

Current status

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{I3} decays

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

ightarrow NPLQCD: dynamical $N_f = 2 + 1$ calculation, $m_{\pi} = 290 - 600$ MeV [NPLQCD 2006]

 $a^{1/2} = (0.173^{+0.003}_{-0.016})m_{\pi}^{-1}, a^{3/2} = (-0.057^{+0.003}_{-0.006})m_{\pi}^{-1}$

[Flynn, Nieves 2007]

Current status

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{I3} decays

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

ightarrow NPLQCD: dynamical $N_f = 2 + 1$ calculation, $m_{\pi} = 290 - 600$ MeV [NPLQCD 2006]

 $a^{1/2} = (0.173^{+0.003}_{-0.016})m_{\pi}^{-1}, a^{3/2} = (-0.057^{+0.003}_{-0.006})m_{\pi}^{-1}$

[Flynn, Nieves 2007]

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{l3} decays

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

ightarrow NPLQCD: dynamical $N_f = 2 + 1$ calculation, $m_{\pi} = 290 - 600$ MeV [NPLQCD 2006]

$$a^{1/2} = (0.173^{+0.003}_{-0.016})m_{\pi}^{-1}, \quad a^{3/2} = (-0.057^{+0.003}_{-0.006})m_{\pi}^{-1}$$

 \triangleright Z. Fu: dynamical $N_f = 2 + 1$ fermions, $m_{\pi} = 330 - 466$ MeV

$$a^{1/2} = 0.182(4)m_{\pi}^{-1}, \quad a^{3/2} = -0.051(2)m_{\pi}^{-1}$$

[Flynn, Nieves 2007]

[Fu 2012]

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{l3} decays

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

ightarrow NPLQCD: dynamical $N_f = 2 + 1$ calculation, $m_{\pi} = 290 - 600$ MeV [NPLQCD 2006]

$$a^{1/2} = (0.173^{+0.003}_{-0.016})m_{\pi}^{-1}, \quad a^{3/2} = (-0.057^{+0.003}_{-0.006})m_{\pi}^{-1}$$

 \triangleright Z. Fu: dynamical $N_f = 2 + 1$ fermions, $m_{\pi} = 330 - 466$ MeV

$$a^{1/2} = 0.182(4)m_{\pi}^{-1}, \quad a^{3/2} = -0.051(2)m_{\pi}^{-1}$$

[Flynn, Nieves 2007]

[Fu 2012]

• Lattice analysis: unquenched results only

 \triangleright Constraint from semileptonic K_{l3} decays

 $a^{1/2} = 0.179(17)(14)m_{\pi}^{-1}$

ightarrow NPLQCD: dynamical $N_f = 2 + 1$ calculation, $m_{\pi} = 290 - 600$ MeV [NPLQCD 2006]

 $a^{1/2} = (0.173^{+0.003}_{-0.016})m_{\pi}^{-1}, \quad a^{3/2} = (-0.057^{+0.003}_{-0.006})m_{\pi}^{-1}$

 \triangleright Z. Fu: dynamical $N_f = 2 + 1$ fermions, $m_{\pi} = 330 - 466$ MeV

$$a^{1/2} = 0.182(4)m_{\pi}^{-1}, \quad a^{3/2} = -0.051(2)m_{\pi}^{-1}$$

 \triangleright PACs: dynamical $N_f = 2 + 1$ fermions, $m_{\pi} = 170 - 710$ MeV

$$a^{1/2} = 0.142(14)(27)m_{\pi}^{-1}, \quad a^{3/2} = -0.047(2)(2)m_{\pi}^{-1}$$

[PACs-Cs 2014]

[Flynn, Nieves 2007]

[Fu 2012]

Most precise results up to date

$$a^{1/2} = 0.224(22)m_{\pi}^{-1}, \quad a^{3/2} = -0.045(8)m_{\pi}^{-1}$$

[Büttiker, Descontes-Genon, Moussallam 2003]

J. Ruiz de Elvira (UCM)

J. Ruiz de Elvira (UCM)

Most precise results up to date

$$a^{1/2} = 0.224(22)m_{\pi}^{-1}, \quad a^{3/2} = -0.045(8)m_{\pi}^{-1}$$

[Büttiker, Descontes-Genon, Moussallam 2003]

 \hookrightarrow More than 3.5 σ from $\mathcal{O}(p^4)$ ChPT results

 \triangleright Most precise results up to date

$$a^{1/2} = 0.224(22)m_{\pi}^{-1}, \quad a^{3/2} = -0.045(8)m_{\pi}^{-1}$$

[Büttiker, Descontes-Genon, Moussallam 2003]

 \hookrightarrow More than 3.5 σ from $\mathcal{O}(p^4)$ ChPT results

• This talk: where does this discrepancy come from? [Colangelo, Maurizio, JRE, in progress]

Most precise results up to date

$$a^{1/2} = 0.224(22)m_{\pi}^{-1}, \quad a^{3/2} = -0.045(8)m_{\pi}^{-1}$$

[Büttiker, Descontes-Genon, Moussallam 2003]

 \hookrightarrow More than 3.5 σ from $\mathcal{O}(p^4)$ ChPT results

• This talk: where does this discrepancy come from? [Colangelo, Maurizio, JRE, in progress]

 \hookrightarrow Overview of Roy and Roy-Steiner equation

- Effective field theories \Rightarrow systematically improvable but
 - ▷ number of LECs increase rapidly
 - > convergence problems: low-lying resonances, strong rescattering effects
- Dispersion relations: analyticity, crossing, unitarity
 - > analitycity constrains the energy depedence of scattering amplitude
 - > crossing symmetry connects different physical regions
 - > unitarity constrains imaginary part
- **Roy(-Steiner) eqs.** =Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry
 - \hookrightarrow model independent aproach
 - \hookrightarrow analytic continuation to the complex plane \Rightarrow resonances, unphysical regions

オマイカマトロマ

Roy(-Steiner) eqs. =	Partial-Wave (Hyberbolic) Dispersion Relations
	coupled by unitarity and crossing symmetry

- Respect all symmetries: analyticity, unitarity, crossing
- Model independent ⇒ the actual parametrization of the data is irrelevant once it is used in the integral.
- Framework allows for systematic improvements (subtractions, higher partial waves, ...)
- PW(H)DRs help to study processes with high precision:

$\pi\pi$ -scattering:	[Ananthanarayan et al. (2001), García-Martín et al. (2011)]
πK -scattering:	[Büttiker et al. (2004)]

• $\gamma\gamma \rightarrow \pi\pi$ scattering:

•

[Hoferichter et al. (2011)]

- Roy-equations rigorously valid for a finite energy range
 - \Rightarrow introduce a matching point s_m
- only partial waves with $J \leq J_{max}$ are solved
- Assume isospin limit
- Input
 - High-energy region: $\operatorname{Im} t_J^{l}(s)$ for $s \ge s_m$ and for all J
 - Higher partial waves: $\operatorname{Im} t_J^{l}(s)$ for $J > J_{\max}$ and for all s
 - Inelasticities η(s)

Output

- Self-consistent solution for $\delta_{IJ}(s)$ for $J \leq J_{\max}$ and $s_{ ext{th}} \leq s \leq s_m$
- Subtraction constants

Roy equations: range of convergence

- Convergence for T'(s, t) guaranteed for $t < 4m^2$
- Where does the partial wave expansion converge?
- Assumption: Mandelstam analyticity

$$T(s,t) = \frac{1}{\pi^2} \iint \mathsf{d}s' \mathsf{d}t' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)} + (t \leftrightarrow u) + (s \leftrightarrow u)$$

 \hookrightarrow integration on the support of the double spectral densities ho

• Boundaries of ρ

- Lehmann ellipses
 - \hookrightarrow largest ellipses, which do not enter

any p

J. Ruiz de Elvira (UCM)

[Lehmann (1958)]

Roy equations and resonance pole parameters

• $t_{IJ}(s)$ known in the Lehmann ellipsis

Resonances

- $\hookrightarrow \text{poles on unphysical Riemann} \\ \text{sheets} \\$
- $S^{UU}(s i\epsilon, t) = S^{U}(s + i\epsilon, t)$ $\hookrightarrow t^{UU}_{JJ}(s) = t_{JJ}(s) \cdot (\mathbb{1} + 2i\Sigma(s)t_{JJ}(s))^{-1}$
- Elastic scattering: II RS is known exactly
- Coupled channels

$$\begin{split} t_{IJ}(s) &= \left(\begin{array}{cc} t_{IJ}^{(11)}(s) & t_{IJ}^{(12)}(s) \\ t_{IJ}^{(12)}(s) & t_{IJ}^{(22)}(s) \end{array}\right) \\ \Sigma(s) &= \left(\begin{array}{cc} \sigma_1(s) & 0 \\ 0 & \sigma_2(s) \end{array}\right) \end{split}$$

 \hookrightarrow III and IV RS require crossed channels

- Solution characterized by subtraction constants and high-energy input (a, A)
- Existence and uniqueness depends on δ_i dynamically at s_m

$$m = \sum_{i} m_{i}, \qquad m_{i} = \begin{cases} \left\lfloor \frac{2\delta_{i}(\mathbf{s}_{m})}{\pi} \right\rfloor & \text{if } \delta_{i}(\mathbf{s}_{m}) > \mathbf{0}, \\ -1 & \text{if } \delta_{i}(\mathbf{s}_{m}) < \mathbf{0}, \end{cases}$$

 $\lfloor x \rfloor \Rightarrow \text{largest integer} \leq x.$

[Gasser, Wanders 1999, Wanders 2000]

- m = 0, a unique solution exists for any (a, A)
- m > 0, *m*-parameter family of solutions for any (a, A)
- m < 0, only for a specific choice of the input constrained by |m| conditions
- Physical solution characterized by smooth matching
 - \hookrightarrow non-cusp condition for each partial wave

Universal band for $\pi\pi$ scattering

• What happens in $\pi\pi$ scattering?

 \triangleright two-subtraction constants: a_0 and a_2

ho m=0, unique solution for any combination of scattering lengths

 \triangleright non-cusp for $\delta_0^0(s_m)$ condition removes cusps for $\delta_1^1(s_m)$ and $\delta_0^2(s_m)$

 $\hookrightarrow \pi\pi$ scattering case \Rightarrow universal band in the a_0^0 , a_0^2 plane

[Ananthanarayan et al. (2001)]

 \triangleright Similar problem in πN scattering

 \hookrightarrow What happens in πK scattering?

J. Ruiz de Elvira (UCM)

Dispersion relations and the QCD spectra

[Hoferichter et al. (2015)]

• Solution for the $\pi\pi$ S0-wave

[Garcia-Martin, Kaminski, Pelaez, JRE, Yndurain 11]

イロト イヨト イヨト イヨト

Dip vs no-dip solutions

• The dip vs no-dip \Rightarrow long-standing controversy

 \hookrightarrow no clear preference for any of the two scenarios in previous works

• Is it possible to satisfy Roy Equations in a non-dip scenario?

How do the dip vs non-dip solutions satisfy Roy equations

		dip	non-dip	enlarged errors			
	$\chi^{\rm 2}$ -like	1.0	3.5	1.7	[Garcia-Martin, Kaminski, Pe	laez, JRE, Yndurain	11]
Y	the non-d	<mark>ip</mark> scer	nario is <mark>re</mark>	A B > < B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B > A B A B > A B A A B A B A	(≣) ≡ 10	٩٥	
	J. Ruiz de Elvi	ra (UCM)		Dispersion relations and the QCD spectra		June 16th 2022	79

$\pi\pi$ threshold parameters

• Threshold expansion: $t_J^{(I)}(s) \simeq M_{\pi} p^{2J} \left(a_J^{(I)} + b_J^{(I)} p^2 + \cdots \right)$

	CFD	SR	
$a_0^{(0)}$	0.221 ± 0.009	0.220 ± 0.008	
$a_0^{(2)}$	$\textbf{-0.043} \pm \textbf{0.008}$	-0.042 ± 0.004	
$a_0^{(0)} - a_0^{(2)}$	0.264 ± 0.009	0.262 ± 0.009	-0.035
$2a_0^{(0)} - 5a_0^{(2)}$	0.657 ± 0.043	0.650 ± 0.015	
$b_0^{(0)}$	0.278 ± 0.007	0.278 ± 0.005	-0.04
$b_0^{(2)}$	$\textbf{-0.080} \pm \textbf{0.009}$	-0.082 \pm 0.004 \hat{e}_{s}	
$a_1(x10^3)$	38.5 ± 1.2	$\textbf{38.1} \pm \textbf{0.9}$	-0.045
$b_1(x10^3)$	5.07 ± 0.26	5.37 ± 0.14	
<i>a</i> ₂ ⁽⁰⁾ (x10 ⁴)	18.8 ± 0.4	17.8 ± 0.3	-0.05
$a_2^{(2)}(x10^4)$	$\textbf{2.8} \pm \textbf{1.0}$	1.85 ± 0.18	0.205 0.210 0.215 0.220 0.225 0.230 0.23
$b_2^{(0)}(x10^4)$	$\textbf{-4.2}\pm0.3$	$\textbf{-3.5}\pm\textbf{0.2}$	$a_0^{(0)}$
$b_2^{(2)}(x10^4)$	$\textbf{-2.8}\pm\textbf{0.8}$	$\textbf{-3.3}\pm0.1$	
$a_{3}(x10^{5})$	5.1 ± 1.3	5.65 ± 0.21	
$b_3(x10^5)$	$\textbf{-4.6} \pm \textbf{2.5}$	$\textbf{-4.06} \pm \textbf{0.27}$	

[Garcia-Martin, Kaminski, Pelaez, JRE, Yndurain 11]

*f*₀(980) pole 2010

