Preprint Series in Particles and Cosmos Physics n° IPARCOS- UCM-23-005

Flow-oriented perturbation theory

by Alexandre Salas-Bernárdez, Michael Borinsky, Zeno Capatti, Eric Laenen

January 2023

Plaza de las Ciencias, 1 28040 Madrid, Spain www.ucm.es/iparcos/

Abstract

We introduce a new diagrammatic approach to perturbative quantum field theory, which we call flow-oriented perturbation theory (FOPT).

Within it, Feynman graphs are replaced by strongly connected directed graphs (digraphs).

FOPT is a coordinate space analogue of time-ordered perturbation theory and loop-tree duality, but it has the advantage of having combinatorial and canonical Feynman rules, combined with a simplified i dependence of the resulting integrals.

Moreover, we introduce a novel digraph-based representation for the S-matrix.

The associated integrals involve the Fourier transform of the flow polytope. Due to this polytope's properties, our S-matrix representation exhibits manifest infrared singularity factorization on a per-diagram level.

Our findings reveal an interesting interplay between spurious singularities and Fourier transforms of polytopes.

