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ABSTRACT

We consider the dynamics of electrons and holes moving in two-dimensional lattice layers and bilayers. As an example, we study triangular
lattices with units interacting via anharmonic Morse potentials and investigate the dynamics of excess electrons and electron-hole pairs
according to the Schrédinger equation in the tight binding approximation. We show that when single-site lattice solitons or M-solitons
are excited in one of the layers, those lattice deformations are capable of trapping excess electrons or electron-hole pairs, thus forming
quasiparticle compounds moving approximately with the velocity of the solitons. We study the temporal and spatial nonlinear dynamical
evolution of localized excitations on coupled triangular double layers. Furthermore, we find that the motion of electrons or electron-hole
pairs on a bilayer is slaved by solitons. By case studies of the dynamics of charges bound to solitons, we demonstrate that the slaving effect may
be exploited for controlling the motion of the electrons and holes in lattice layers, including also bosonic electron-hole-soliton compounds

in lattice bilayers, which represent a novel form of quasiparticles.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057084

A focus of the school of Vadim Anishchenko in Saratov, in close
collaboration with the school of Lutz Schimansky-Geier in Berlin,
was the control of the dynamics of nonlinear systems.' One of the
central aims of the studies in Saratov and in Berlin has been syn-
chronization of two nonlinear dynamical systems, which is the
strongest form of control between two systems. Here, we address
the more specialized problem of how to synchronize the indi-
vidual motion of two different particles, namely, microscopic
charged (single or compound) particles and a lattice soliton. This
is part of the important issue of influencing the motion of physi-
cal particles by tools of nonlinear lattice theory. In particular, we
consider the problem of how the dynamics of electrons and holes
as well as electron-hole pairs can be influenced and controlled

by the nonlinear dynamics of an embedding system (a nonlinear
lattice). We find that lattice deformations are capable of trap-
ping excess electrons or electron-hole pairs, thus forming novel
bosonic quasiparticle compounds.

I. INTRODUCTION: HOW TO CONTROL THE DYNAMICS
OF TINY CHARGES

In this paper, we extend previous work on nonlinear exci-
tations on a lattice and, in particular, bound states of electrons,
holes, and solitons in bilayers of triangular lattices.” The focus of
our interest is charged particles, which are able to move in lattices,
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i.e., electrons and holes. Because of their intrinsic quantum char-
acter, electrons and holes are microscopic objects that are difficult
to localize and to control. The reason is that under free conditions,
these charges, represented by quantum probability densities, tend to
delocalize so that after a few seconds, they are out of control. Con-
trolling microscopic charges is one of the basic problems of quantum
mechanics, as well as of many applications in modern quantum
technologies. A special and even more difficult task is the control
of the dynamics of bosonic electron-hole pairs in bilayers, which
might become relevant for future electronics. As a matter of fact,
the traditional electronics is mostly built on controlling the motion
of charges by wires; however, modern microelectronic devices are
essentially based on generating and controlling quite complicated
paths of charge carriers between well-defined sources and sinks
on micro-scale chips. The earliest microfabrication processes were
used for integrated circuit design. Electrons move in microelectronic
devices in potential channels etched in semiconductor “masks.” The
miniaturization and design of such devices presents challenges in
many areas of science and engineering: physics, chemistry, materials
science, computer science, ultra-precision engineering, fabrication
processes, and equipment design. This also gives rise to various
kinds of interdisciplinary research. The technological concepts of
microfabrication include microlithography, doping, etching, bond-
ing, and polishing. The final aim of all these tools is the control of
the path of charges according to a highly sophisticated scheme.

Here, we propose a different method to control the path of elec-
trons or electron-hole pairs on lattices not based on given masks
but on the possibilities of nonlinear dynamics. This is a field where
the school of Vadim Anishchenko in Saratov in close collabora-
tion with the school of Lutz Schimansky-Geier in Berlin have made
fundamental contributions, in particular, with respect to the highly
relevant stochastic aspects of these problems."

We will show here how nonlinear lattice dynamics opens up
the chance for a completely different way of controlling the path
of charges on a microscopic scale. Our central idea is the follow-
ing: In order to control the path of an electron in the lattice, we
should create a kind of channel in the lattice. In microelectronics,
the channel is created by etching of the lattice, i.e., a local distor-
tion of the lattice. What we propose here is to create the channel
for controlling the charges by a local dynamic lattice compres-
sion, i.e., by excited solitons. In order to understand the interaction
between a charge and the compression wave, we have to remem-
ber that each compression of the lattice leads to a local polarization
effect, which interacts with charges in the spirit of the classical Lan-
dau-Pekar polaron effect. The interaction between the lattice soliton
and the charge is described by the polarization potential of polariz-
able atoms, which represents a moving potential well in which the
electron may be trapped.’ For sufficiently deep wells, bound states,
where the electron wave function is localized (“solectrons”), may be
formed.**

Let us consider a two-dimensional (2D) crystal lattice layer
with units interacting via anharmonic Morse potentials. Further-
more, let us consider that we can inject an excess electron whose
evolution is governed by the Schrédinger equation [here in the tight
binding approximation (TBA)]. In parallel, we consider the dynam-
ics of an electron-hole pair on a lattice bilayer. It is known that
when lattice solitons are excited in such layers or bilayers, those
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lattice deformations can trap excess electrons or electron-hole pairs
and carry them along with them with a supersonic initial veloc-
ity, thus forming localized quasi-particle compounds. In contrast,
as free particles, the electrons evolve according to the Schrodinger
equation and tend to quickly disperse over the whole lattice. Hence,
with appropriate rescaling, the overall dimensionless Hamiltonian
H for the bilayer system incorporating the Morse lattice dynamics,
the electron and hole dynamics, and the associated interactions of
lattice and charges, and Coulomb attraction between electrons and
holes can be set up.” The dynamical system we study here is treated
as a mixed classical-quantum system since the lattice atoms fol-
low Newtonian mechanics, while the charges obey the Schrodinger
quantum evolution. This mixed approach allows for novel applica-
tions in materials science at the nanolevel, for instance, graphene
technology.

In the previous work, we have studied the coupled dynam-
ics of injected electrons and nonlinear 2D atomic lattice excitations
(acoustic solitons), leading to the effect of “electron surfing.”>" In
particular, we included effects of degeneracy’ and transport® and
focused on possible applications of controlling electron transport.”
Our computer simulations have been compared successfully with
experimental data on polydiacetylene crystals.” The lattice solitons
may be excited thermally or by mechanical or electrical shocks, e.g.,
by pressing the tip of an electron field microscope onto the crystal
lattice layer. In our computer simulations, we typically considered
a few hundred atoms in a plane forming triangular”’ or hexagonal
lattices.” Furthermore, we have investigated two coupled triangu-
lar lattices separated by a small distance, where bound states of
electrons, holes, and solitons may arise.” Such bilayer lattice con-
figurations with interlayer separations between 2 and 10 nm can
be experimentally realized by graphene layers, and even barrier
thicknesses as small as d >~ 1 nm have been obtained, for instance,
by hexagonal boron nitride dielectrics with a dielectric constant
ex~3.0

The purpose of this paper is to extend our previous work by
considering solitons that occupy not only single-site rods but are
laterally extended over several adjacent lattice sites (M-solitons).
With this, it is possible to increase the lifetime of the solitons and
hence also of the trapped electrons or electron-hole pairs. In order
to provide a sufficiently long trajectory before the lattice excitation
is destroyed due to lattice defects or radiation of energy to lat-
eral rods along the trajectory of the soliton, it is advantageous to
excite the soliton simultaneously in M adjacent lattice sites. Then,
the soliton travels along several adjacent rods for a much longer dis-
tance; therefore, also, the transported electron or electron-hole pair
lives much longer before delocalizing. In this paper, we consider
this effect both for single layers and for bilayers. Two coupled tri-
angular lattices separated by a small distance are shown in Fig. 1.
Both crystal lattices are doped, the top layer with electrons (red
dot) and the bottom layer with holes (green dot), and the elec-
tron and the hole interact via Coulomb forces and can form a
bound quantum state (dashed ellipse). Such a configuration may be
of interest for technological applications.''~'° Although it has been
known for a long time that the coupling of electrons injected into
one layer to holes injected into the other layer might possibly lead
to high-temperature electron-hole superfluidity and other interest-
ing effects, only recent work has taken up these ideas,'”'® which
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FIG. 1. Scheme of the bilayer architecture. Two coupled triangular crystal lattices
with an insulating layer in between, all placed between two metal gates, are shown.
An electron is injected in the upper layer (red dot), and a hole is created in the
bottom layer (green dot). The color shaded ellipses indicate the electric potential
responsible for the bound electron-hole pair.

might also be relevant in coupled quantum dots forming mesoscopic
bilayers.'”~** In particular, double bilayer graphene heterostructures
and other two-dimensional atomic crystals that can form electri-
cally insulated, conducting bilayers, one doped with electrons and
the other with holes with tunable densities,”~”* open up exciting new
perspectives.

This paper is organized as follows. Section II deals with soliton-
assisted transport of electrons and electron-hole pairs. Details of the
model for a bilayer architecture are discussed. Section III presents
the results of our simulations, followed by a discussion of conditions
on how solitons assist the formation and transport of electron-hole-
pairs eventually ending in a boson-like quasiparticle (e~h-soliton).
Finally, in Sec. IV, we conclude, highlighting the significance of our
results for novel applications.

Il. SOLITON-ASSISTED TRANSPORT OF ELECTRONS
AND ELECTRON-HOLE PAIRS ON TRIANGULAR
LATTICE LAYERS AND BILAYERS

A. Bound states of electrons and electron-hole pairs
in polarization wells

As shown in Fig. 1, we consider two layers s = 1 (upper layer,
doped with electrons) and s = 2 (lower layer, doped with holes), sep-

scitation.org/journal/cha

The nonlinear lattice interaction in each layer is given by the
Morse potential

V() =D {exp[—?.b(f —0)] —2exp[—b(r — a)]} , (1)

where ©* = |1}, — rj| is the relative distance of atoms L o and with
constants D = 1/2, b = 4, 0 = 1 (nondimensionalized equilibrium
lattice constant). We impose a potential cutoff at 1.50 in order
to avoid unphysical cumulative interactions.” By a strong kick at
one of the atoms at the boundary, we excite traveling compression
waves in the form of supersonic solitons moving along a crystal-
lographic axis.”® Other similar localized traveling excitations are
discrete breathers (also known as intrinsic localized modes) and
crowdions.””*

The compression connected with a soliton creates a polariza-

tion potential’
/N 2
" ~-uf1-24), 2
= (-57) @

where r is the distance of the electron from the soliton, & is the range
of polarization interaction, and the constant U, ~ polarizability « is
in the range 0.05,...,0.1eV. A bound state of the electron may be
formed in this approximately parabolic potential well.

Next, we consider the Coulomb interactions between elec-
trons and holes in two coupled lattices; see Fig. 1. When the two
layers are sufficiently close, boson-like electron-hole pairs may
form."" Assuming low electron and hole densities in the two lay-
ers, we neglect their Coulomb repulsion, and the Coulomb potential
between an electron in layer 1 and a hole in layer 2 is given by'’-*"*’

U(V) = _Ue

62

Ve (R, d) = —m,

€)
where R? = (x] — xf)2 + ! —yf)z; x},y},xf,y]@ are the electron
and hole coordinates in the upper and lower layer, respectively;
&£~3,...,6 is the effective dielectric constant; and d >~ 0.1,...,
10nm is the interlayer spacing. In the following simulations, the
electrons and holes are treated quantum mechanically, while the
anharmonic lattice dynamics is described classically; the electrons
tend to follow the trajectories of soliton-like excitations, forming
solectrons. The same applies to holes resulting in hole solectrons. For
small enough horizontal distances R, Eq. (3) can be expanded in
parabolic approximation

62 R2

Va(Rd)y~ — -1+ — ], 4

J(R,d) €d< +2d2) @)

which corresponds to a two-dimensional harmonic oscillator

with frequency w., defined by maw?, = €*/(ed®). The quantum-

mechanical bound states of the electron-hole (e — h) pair are given
byj(),ﬁl

2

e
By, ===+ hwe[1+ n, +ny), (5)

with oscillator quantum numbers #n,, 1y, and the ground state wave
function of the e — h pair is

arated by a dielectric medium, with equal density of electrons and Yo®) ~ exp | — R_z X )
holes. 2a,,
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with the horizontal width
h

MepWepy

Aepp =

A condition for the existence of discrete bound states is that the layer
spacing d is sufficiently small, yet not too small, in order to rule out
interlayer tunneling. Detailed conditions were derived in Ref. 2. For
example, for ¢ > 3 and d >~ 1 nm, binding energies are in the range
of 1072,...,107" eV. Note that Perali e al.'® estimate for graphene
an effective Bohr radius for the electron-hole pair 4% ~ 8 nm with
a binding energy of 30 meV.

B. Bosonic electron-hole pairs moving with solitons

The next step is to consider the dynamics of a hole moving
under the simultaneous influence of an electron and a soliton local-
ized at the same position and at horizontal distance r from that
solectron. The total potential acting on the hole is in parabolic
approximation

e h*
Vi, (R, d) = — - U, (7)
a ev/R2 + d2 (R2 + h2)?
U, + ¢ + Lo 2 + (®)
~ — e —_— —a ey
ed 27
with
y . 24U,
Aepy = meh(weh)2 = J + n (9)

Here, m, is the effective relative mass of the “dressed” e — h pair in
the presence of a soliton and @]}, is the oscillator frequency. Due to
the decrease of the interatomic distances in the compression wave
defining the soliton, the effective mass is decreased by the soliton
influence: m}, < m,y,. In harmonic approximation, the ground state
levels of the “dressed” electron-hole pair are modified by two effects:
(i) The potential well is deepened by the compression of the lattice,
and (ii) the effective mass is decreased. In other words, the nonlinear
lattice compression favors the formation of electron-hole pairs.

C. Dynamics of electron-hole-soliton quasi-particles

The theoretical basis of the boson-like electron-hole-soliton
quasi-particle dynamics has been described in more detail in
Refs. 2-4 and 6. The lattice atoms follow Newtonian mechanics,
while the electrons and electron-hole pairs obey the Schrédinger
quantum evolution.

The quantum-mechanical description of the electron-hole
pairs in the presence of lattice deformations is given by a Hamil-
tonian with several components. The atomic Hamiltonian of each
separate triangular lattice (denoted by superscripts s =1 and
s=2)is

H,=H + H,
(10)

1 $\2 1 s S
H=- Xn: )"+ ; vir,, 1),

where p¢ is momentum and V(r}, r)) is the Morse interaction
potential. The subscripts # denote the atoms, all with equal mass m,
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and the summations over #, j run from 1 to N in the upper and lower
lattice (superscript s), respectively. The electron-hole Hamiltonian
for the bilayer architecture of coupled lattices consists of three parts
for electrons (subscript e), holes (h), and the interaction V,y,

H., = H, + Hp + V. (11)

The electron and hole Hamiltonians H, and Hj, respectively, are
given in tight binding approximation, thus restricting our consider-
ation to hopping processes along lattice sites.” The contribution V,
from Eq. (3) describes the Coulomb interaction between the electron
in the upper lattice 1 and the hole in the lower lattice 2. In second
quantization, the electron Hamiltonian is

H, =Y Eycifch+ Y tuw(ry, —1))ciic, (12)

nn’

where E! is the single-electron energy; cl*, ¢! are electron creation

and annihilation operators, respectively; and t,,, is the hopping
transition matrix. The analogous contribution of the holes is

H, = ZEflcffci + Z taw (£, — 1) C (13)

n.n'

Here, we assume only one quantum state of electrons/holes per
lattice site and transitions between positions r, and r,,.

The coordinates of the lattice point of the atoms at each time
and the interaction of lattice deformations with the electrons and
holes are calculated by solving Newton’s equations of motion for
each lattice point under the influence of all forces. The spatial coor-
dinates are rescaled by o as a length unit. Time is normalized to
the inverse frequency of linear oscillations near the minimum of the
Morse potential well, w; ', whereas energy is scaled with 2D. The ini-
tial condition is given by the equilibrium state corresponding to the
minimum of potential energy for a triangular lattice 80c x 200 . For
visualization, the lattice atoms are considered little spheres consist-
ing of the atomic “core” represented by a corresponding Gaussian
density distribution of width A centered at each lattice site. Using
the trajectories of solitons Z' (f) in layer s and their velocities, we can
calculate the lattice atomic core density p(Z°, t). For convenience, we
use complex coordinates Z° = x° + iy’, where x° and y* are Cartesian
coordinates. In the 2D triangular Morse lattice, the velocity of sound
is slightly above unity in our dimensionless units, corresponding to
soliton-like behavior. Indeed, the solitons move for a few picosec-
onds without change in their shape, and this robustness is the reason
why we can visualize them as described. Losses due to scattering and
radiation of linear waves are quite low, and the dynamics is almost
integrable. Note that the 2D solitons observed here are similar to the
lump solutions of the Kadomtsev-Petviashvili equation.’

The electron and hole dynamics follow the 2N Schrédinger
equations for the complex time-dependent coefficients ¢, of the
wave-functions in the upper and lower lattice layer,” where |c}|* is
the probability of finding an electron (s = 1) or hole (s = 2) at lat-
tice site n. We are using the tight binding approximation as in Ref. 2.
In our simulations, we assume that the electron dynamics does not
influence the lattice dynamics; i.e., we neglect the polaron effect.
This means that the mechanical excitations dominate the time and
space evolution of the bilayer.

Chaos 31, 083123 (2021); doi: 10.1063/5.0057084
Published under an exclusive license by AIP Publishing.

31,083123-4


https://aip.scitation.org/journal/cha

O . g I
lj
AR LE SCItatIOII or our ||a| clla

le|®
08
06
04
02

Ch

0.12
0.08
0.04

HH MY i ) )
:wmwmmmmw

! i m»mmu”»mmmumnnm:‘): “‘I’HNHWU M)

ﬁ%MWWM

n‘nimm i

I
HIIWHW mnmnmn )Hl m
| it 0“: M “p‘mmlm u' '
numnmmm i
:”“ W N

M
] lmmlmmmu NHINNIH
,Wmmmwmwrw
! ]
i :
il

il M “! mr
MR m M) mmumummmmmnu
i i il it f U"f
.‘. mnm‘; Il' m

IR

l mumnlmnfn lmf
A M) mum
IR 1

SR

0
60 X

p
Il“”} NN l’l ‘7“’!’
"%mmwv~w' il 08
I}
l”m' ) m”mmmm H P mlmmm 11 Pm l IHW”HN“
! 11} ) il l”“ HH ” I 16
HWHUUMIH m ”H 5 m ﬂmm I )
/] N MM M) Hmm HH H mmmmmnm 04
/] lmlun I M) ) '” ! il M |
I I | m tht ) f mh Y 12
'“IP:‘?"””’I“":’NH I ” :”W”“:H 'Pl:l'Jllll”mmmmmmlm
nMMmeWWWWWW 0
(! I ) “mm”“m 11 )|
J

LI ]
HW!Ill)lIHIU))H)NN!HHH
)
L
U”}I M) i) )

!
WWWWPMMWWWWW

luununrnn

subsequent
= 1,Asy = 2atthree su tribution
=1/2,b=40 =1, bability density dis

ice with N = 80 x 20,D = : electron proba

: rse lattice with N ice. Right column:

iton along one rod of a single-laY‘]ftr tnﬁﬂgﬁ!a;tmic core density p of the lattic:

by a soliton alo anel t = 7. Left column:

eenC. e iyaee T 5, and bottom p

FIG. 2. Tl'anspor iddle panel = ’

vy [t =0, mi

times: top panel

CZ right colum he electron is located at the center of a soli i rom left to |gh
li Ing t
[o] iti "y | is| oliton movi ttor
i lu n). Initial y
| | (I

31,083123-5
084

: doi: 10.1063/5.0057

23 (2021); doi:

Chaos 31, 0831

Yy lishi g.
Published under an exclusive license by AIP Publ I


https://aip.scitation.org/journal/cha

scitation.org/journalicha

ARTICLE

Chaos

= 2 at three

0, middle panel t = 5, and bottom panel t = 25. Left column: atomic core density p of the lattice. Right column: electron probability density

distribution |c|? (right column). Initially, the electron is located at the center of a soliton moving from left to right.

o/

=1A

=4,0

1/2,b

80 x 20,D

FIG. 3. Transport of an electron by an M-soliton along M = 5 rods of a single-layer triangular Morse lattice with N

subsequent times: top panel ¢

31, 083123-6

Chaos 31, 083123 (2021); doi: 10.1063/5.0057084

Published under an exclusive license by AIP Publishing.


https://aip.scitation.org/journal/cha

ARTICLE

scitation.org/journal/cha

I A A I
tlmlm;m;mmmmi‘ul”t“iu!!N'“Mumrrm.ﬂwm l‘l’ u':l'u’:l’
(T I A mnm‘u nfm 1y
bmm'::;’n»;mmnmnnnmsmmmmmmmnwuummmn
M T A lrlmlumnWﬁ“mm “um I
1 AT (I M i
umm‘ ! mmmmmnminmmnmmmmnnummmm‘
»mnr’ mmrmmm I H‘! W A
TN T i I i
”'; In::m:’” ’nnmnl“’mmnnmmnummmm M)
) ) I
mnmmmnfl“ an I M) M u”:»“n’“l Il
’rum|nnn»mnmommmmlmmmmnmmmmmu
M) 'HW‘III‘H ) mmtu T
muru M i M I MU
i lmmnnmmmnmmmmmnnmmmmm
'Wv"mmm;nfnmmn ] ;wm‘pmm;un I i
”1‘“";;m’l’n’;’n”l'““’n::t:l I NN | mlfmmn
il it i ’"“'"'fH!!!.‘!.‘.‘H!N.’.'.‘!!H!!.‘.’,’.’ i

I

nnnnnnnnnn

N It=0,
t times: top pane it
three subsequent fim lectron probability
: = 5and Ay = 2) at thr Right column: ele: fen
. lattice (M = 5 an iton is excited. g : t the center
iton excited in one layer of a bf"?ﬁlzrlxl?cr:ﬁnathe layer Wherehtgreeslc::lig;lyy Gl ;iéozahie i aa —1.
g n M-soliton excited ensity p of the lattice d not shown e 20,D=1/2,bs =4,
4. Transport of an e|ectron—h°|§| ;;alr bZBI)aLeft °°|”mn:|-etlto£r?s(i:t3riendthe other layer is ;:Lng?f:earnlayer. Parameters: N = 80 x
ay anet t = 2o, i ition in
;Ii(jdle panel t = 5’I glgdinb?l'tlt: r;]arr)ne Eye i h‘ﬂeaphrgﬁﬂg';&ated at the same position
ity distribution o layer, an
density distribu from left to right in one
: rom lef
M-soliton moving

i: 63/5.0057084
21); doi: 10.10! 4
31, 083123 (20 . e
Challosh d under an exclusive license by AIP Pul
Publishe:

31, 083123-7


https://aip.scitation.org/journal/cha

Chaos

I1l. RESULTS OF NUMERICAL SIMULATIONS

In this section, we present results of numerical simulations
of transport of electrons and electron-hole pairs carried by lattice
solitons. First, we show simulations of the transport of an elec-
tron by a soliton moving in a rod of atoms along one of the main
crystallographic axes of a single-layer triangular Morse lattice with
N = 80 x 20 lattice sites. The Morse potential parameters in Eq. (10)
are D = 1/2,b = 4,0 = 1. The soliton is excited initially with an
amplitude A,, = 2. Initially, the electron is localized at the center
of a lattice soliton moving from left to right. Figure 2 presents the
distribution of the atomic core density p of the lattice (left column)
and the electron probability distribution |c|? (right column) at three
subsequent times: t = 0 (top), t = 5 (middle), and t = 7 (bottom).
Note that the high-energy soliton loses some energy and splits into
two parts as it travels, and as the electron is carried along with the
lattice soliton, it also disperses and forms a two-peak probability
distribution (bottom panel).

The results of our simulations show that the amplitude of the
soliton in one rod must be strong enough to provide a sufficiently
long trajectory before the lattice excitation is destroyed due to radi-
ation of energy to lateral rods along the trajectory of the soliton. In
this case, the traveling localized excitation has a special form called
crowdion as it captures an additional particle because strong initial
excitation kicks out an atom from its equilibrium state. As a result, a
vacancy forms at the initial position and an interstitial particle gets
stuck when the crowdion is destroyed. Such a soliton is able to trap
an electron and draw it if the wave function is localized initially close
to the soliton (crowdion). The trajectory of the electron is not very
long because a crowdion transforms first into a soliton leaving an
interstitial particle behind and then it is destroyed losing energy.
An electron may be localized in a lattice compression arising due to
an interstitial particle for some time, but then the wave function is
dispersed over the lattice. Tunneling between potential wells of the
soliton and the “interstitial compression” may be observed some-
times before delocalization of the wave function. Unfortunately,
defects are formed in a 2D lattice after passing a crowdion. This
makes it difficult to re-use soliton/crowdion propagation.

However, it is possible to excite soliton-like deformations in
a few (M > 3) adjacent rods, creating an M-soliton’ and avoid-
ing formation of defects in the lattice. In practice, the M-soliton
trajectory grows in length almost proportionally to M.* Interstitial
particles are not trapped by such solitons, small lattice perturbations
caused by a passing soliton vanish since energy dissipation in the
lattice is low, and the soliton-electron may propagate in the lat-
tice over long distances. Transport of an electron by an M-soliton,
i.e., a soliton that is extended across M adjacent rods of a triangu-
lar Morse layer, is shown in Fig. 3 for M = 5. Here, N = 80 x 20,
b =4, and A, = 2. Initially, the electron is localized at the cen-
ter of the M-soliton moving from left to right (t = 0). The electron
probability density distribution (right column) spreads laterally over
several lattice sites as the electron moves along with the soliton, i.e.,
the wavepacket delocalizes.

We have performed similar simulations also for bilayers. The
dynamics of an electron-hole-soliton, which represents a novel
kind of quasi-particles, is shown in Fig. 4 for bilayers consist-
ing each of N =80 x 20 sites. Each layer has the parameters
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D=1/2,b=4,0 = 1. An M-soliton (M = 5) is excited in the first
layer with amplitude A, = 2. Initially, an electron is localized at
the center of an M-soliton moving from left to right in one layer,
and a hole is distributed around the same position in the other
layer. Again, the soliton traps an electron forming a traveling quasi-
particle in one layer, which is bound to the hole in the other layer.
Thus, a neutrally charged quasi-particle emerges. It travels for a long
time along the lattice axis, but the distance traveled before the quasi-
particle is destroyed is shorter than in the case of a single layer
because the soliton has to carry two charged particles in the bilayer
case. Note that a localized electron-hole pair can exist in the absence
of a soliton only when the Coulomb binding is strong enough.

IV. CONCLUSIONS

We have shown that control of electron transport by soliton-
assisted electron surfing is possible in single layers of a crystal lattice
as well as in two coupled layers. We have considered injection of
an excess electron in one layer and of a hole in the other layer such
that electron-hole pairs form, provided that the Coulomb attraction
is strong enough and the interlayer spacing is sufficiently narrow,
albeit large enough to prevent tunneling. In such a bilayer configu-
ration, if a soliton is excited in one of the layers (here in the upper
n-doped layer), then the lattice deformation can trap the electron
and carry it together with the hole in the lower (p-doped) layer.
Experimentally, the lattice may be excited by short laser pulses at
the lattice edge or by a wave generator using an inverse piezoelec-
tric effect. If, e.g., a sinusoidal wave is applied, due to the balance
between nonlinearity and dispersion in the dynamics of the lattice,
it eventually becomes a sequence of soliton-like pulses. Our bilayer
structure may be used for gating the flowing current; i.e., it may be
considered mimicking an electronic chip in which the electron can
be injected at three different points in one lattice layer (sources in
the transistor language),” and there are three additional points in
the other layer where holes may be created.

Furthermore, we have shown by the example of the inter-
action of an M-soliton (i.e., a soliton extending over M lattice
sites) with an electron-hole pair that quite complicated dynamical
quasi-particle compounds may be formed, involving multiple lat-
tice deformations besides the electron and the hole. The complicated
quantum-classical dynamics of these compounds as well as possible
prospects for novel nano-electronics technologies still remain to be
explored.
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