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a b s t r a c t 

A few salient soliton-like wave evolutionary features of one- and two-dimensional lattices of interacting 

active units are provided here. In the latter case, particular attention is given to the crystal-like triangular 

lattice. On the one hand, the units are coupled with nearest neighbors anharmonic forces (Morse poten- 

tial). On the other hand the units are endowed with the possibility of an input-output energy balance 

that permits evolution to a steady state and the appearance of metastable states which on occasion can 

be quite long lasting. The lifetimes of such metastable states depend on the lattice parameter values and 

the wave front width. Eventually, all metastable states evolve to steady translational modes especially 

under influence of noise. 

© 2021 Elsevier Ltd. All rights reserved. 
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ntroduction 

With this contribution we wish to honor the memory of our 

eloved friend and great scientist Vadim S. Anishchenko. Accord- 

ngly, in view of his widespread scientific interests [1] we shall be 

ighlighting a few salient features of the evolution of dissipative 

olitons in crystal-like lattice systems where the units behave ac- 

ively. On the one hand we have that, as established in [2–6] , the

issipative soliton concept demands a soliton-bearing evolutionary 

ynamics augmented with an adequate input-output energy bal- 

nce. Thus the system is capable of sustaining the soliton propa- 

ation, as defined for conservative systems [7–9] , as long as the 

nergy balance is maintained at steady conditions. References [2–

] originated in the study of oscillatory Bénard-Maragoni instabil- 

ty [ 10 , 11 ] where predictions and experimental observations were 

one of Boussinesq-Korteweg-de Vries interfacial solitary wave be- 

avior in one, two and three dimensions [ 5 , 10 , 11 ]. Let us insist

hat the concept of dissipative soliton extends the classical theory 

o non-conservative systems where energy (rather than being con- 

erved) is pumped and dissipated in an appropriate balance, thus 
∗ Corresponding author. 
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xciting and, eventually, maintaining past an instability threshold 

he localized structure (or a periodic nonlinear wave train). Numer- 

us other examples of application of this concept exist in one- and 

wo-dimensional systems [12–17] . Further it is of justice to refer- 

nce [18] , as referenced in [17] , for its pioneering introduction of 

he similar dissipative soliton concept when studying the Nonlin- 

ar Schrödinger evolution equation endowed with complex coef- 

cients and augmented with arbitrary growth/wave amplification 

nd wave-amplitude-damping contributions albeit in balance thus 

llowing steady state conditions. 

On the other hand, as hinted above, we shall consider the lat- 

ice units endowed with some form of “activity” which gener- 

tes energy input capable of compensating the eventual dissipation 

long the lattice whether it would be viscosity or some other form 

f wave damping. Worth recalling is that the concept of dissipa- 

ive soliton is also the natural extension of maintained dissipative 

inear waves with an underlying harmonic oscillator as a dynami- 

al system with balanced viscous friction and energy pumping to 

aintain its otherwise free vibrations. To our knowledge the ear- 

iest scientist to propose this concept was Lord Rayleigh. Back in 

883, he suggested augmenting the harmonic oscillator equation 

ith a “driving” term as an active friction force. Anecdotal, (dis- 

egarding time scales) he argued about the vibrations of a violin 

tring being fed by the action of the bow feed-backed by the noisy 

nergy stored in the soundboard which might compensate for an 
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Fig. 1. According to the main text, here appear trajectories of N = 12 active units in an one-dimensional lattice with excited (a) optical mode (6,6) , (b) one-soliton mode 

(11,1) , (c) two-soliton mode (10,2). 
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ventual air friction. Three decades later, Van der Pol proposed a 

enuine nonlinear dynamics for modeling (limit cycle) sustained 

scillations in electronic devices. Noteworthy also is that underly- 

ng most models used to describe axonal action potential transmis- 

ion, excitability and other features in neuro-dynamics, are either 

he Rayleigh or the Van der Pol modeling. On occasion such an ac- 

ive force is called negative friction if we denote by positive friction, 

 standard, passive, friction. Such a negative friction pumps rather 

han dissipates energy [14] . There is a general setting, of particular 

nterest to problems in bioenergetics, where we could place in ad- 

quate context Lord Rayleigh’s active (friction) force [ 19 , 20 ]. Such 

s the case where the units are capable of extracting energy from 

 heat bath (in more general terms from the environment) with 

nergy flux into the units’ internal depots. The latter could be as- 

umed to have internal dissipation that in the simplest case can be 

aken proportional to the instantaneous value of the energy with a 

onstant rate of energy loss. Then the units can be assumed to be 

apable of transforming the stored (internal) energy into motion 

kinetic energy). Yet another dissipative soliton-like wave case of 

nterest in biology, bio-chemistry and neurobiology is discussed in 

21] . The authors refer to nonlinear waves in an excitable medium 

here dissipation comes from a diffusion process as output ade- 

uately balancing the input provided by the excitability process. 

The evolution of dissipative solitons in a crystal-like lattice 

ystem with active units has been thoroughly studied in one- 

imensional (1D) and two-dimensional (2D) systems. It has been 

hown by various authors that there exist a number of different 

odels of active systems with different mechanisms of energy con- 

ersion and particles interaction (see, e.g., [1] ) exhibiting novel dy- 

amical features which are not observed in conservative systems. 

ne-dimensional lattices 

The research on dynamics of nonlinear lattices grew based 

pon a seminal work done at Los Alamos National laboratory (USA) 

y E. Fermi, J. R. Pasta and S. Ulam with the help of computer ex-

ert M. Tsingou referenced now in most nonlinear science text- 

ooks [22] . It received high momentum with the work of Zabusky 

nd Kruskal [7] . However, studies of the dynamics of lattices with 

ctive units started to progress much later. Some of the works 

long this direction, hence for non-conservative, non-integrable 

ystems, were done building upon the integrable and conservative 

oda lattice [8] (or its Morse potential approximation [23] aug- 

ented with dissipative otherwise denoted negative friction terms 

 13 , 24–28 ]. For instance, the study of a typical one-dimensional 

attice of point masses starts with the dynamics of an isolated par- 

icle described by the equation 

 ̈x − γ0 

(
1 − ˙ x 2 

v 2 
0 

)
˙ x = 0 (1) 

here m is the mass of the particle, γ 0 is the negative viscous 

riction coefficient and v 0 is the particle steady-state velocity. Parti- 

les form an equilibrium lattice if they are connected via potential 
2 
orces, in particular, corresponding to the Morse potential [23] 

 ( r ) = D 

(
e −2 b ( r−σ ) − 2 e −b ( r−σ ) 

)
(2) 

here D is the potential well depth ( U = −D at r = σ ), b is the poten-

ial stiffness, r is the distance between units and σ is their equi- 

ibrium distance. In view of its expression (2), like the Toda po- 

ential, is dominated by an exponential repulsive part in the limit 

f r <<σ . However, after its minimum, it tends asymptotically to 0 

s r → ∞ thus avoiding the unphysical behavior of the Toda poten- 

ial. For universality in the description, dimensionless parameters 

an be used by rescaling quantities noting that ω M 

= 

√ 

2 D b 2 /m is 

he natural frequency of small oscillations of a particle around the 

inimum of the Morse potential. Then one can rescale the time 

s τ= ω M 

t , the velocity as v = v 0 b/ ω M 

and μ= γ 0 /m ω M 

. To label the

nits, rather than using x n one can better use q n = b(x n − n σ ) which

ccounts for the dimensionless deviation of the n th particle from 

ts equilibrium position at x n0 = n σ . Overdots in equations denote 

ime derivatives with respect to the corresponding time. Periodic 

oundary conditions are used for computer simulations and for il- 

ustration of results use has been done of two kinds of initial con- 

itions. First, we apply a specified distribution of particle veloci- 

ies v n (t = 0) = v n0 at q n (t = 0) = 0 to excite one of the steady-state

odes. Then values of velocities v n (t = 0) are chosen randomly with 

 given statistics simulating stochastic initial conditions. Without 

oss of generality, it is assumed v 0 = 1 in the simulations. Then the 

quations are numerically integrated using a Runge–Kutta fourth- 

rder method with appropriate control of the accuracy of calcula- 

ions. 

The steady-state modes (attractors) of the one-dimensional lat- 

ice, with periodic boundary conditions, look like cnoidal waves 

wave trains) with a uniform spatial distribution of maxima of ve- 

ocity and density of particles. When peaks of the density distri- 

ution are significantly below the distance between them, excited 

odes may be considered as an ordered ensemble of dissipative 

discrete) solitons. Note that different modes have different average 

elocities and different number of maxima of the particle density 

long the lattice. The total number of modes in a lattice with N 

articles is N + 1 : two non-oscillatory modes corresponding to mo- 

ion of the lattice as a whole in each direction and N −1 oscillatory 

odes. If N is even, a so-called “optical” mode with opposite signs 

f velocity of adjacent particles is included. Each of N + 1 modes 

an be excited selectively by appropriate choice of initial condi- 

ions [ 13 , 25 , 26 ]. We denote the modes by (k, l) where k + l = N with

(l) denoting the number of particles spending more time with 

ositive (negative) velocity. For example, for N = 12 one may find 

 so-called optical mode when six particles move in opposite di- 

ection to the other six, hence denoted as (6, 6) mode ( Fig. 1 a). A

ode (11,1) has one particle moving, say, along the negative direc- 

ion (“to the left”) while the others move along the positive (“to 

he right”) direction ( Fig. 1 b). The average velocity of the ensemble 

quals zero in the first case and unity in the second case (5/6)v 0 
because 11 particles have velocity v , but one has –v ). Any other
0 0 
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Fig. 2. Trajectories of active particles in an one-dimensional lattice with excited a) cluster of dissipative solitons (two solitons moving close to each other), b) fragment of 

the optical mode evolving fast to a cluster of 9 solitons, c) multi (9)-soliton mode. 

Fig. 3. Regions of realization of modes with different average velocity of units in the parametric plane ( b σ , μ) a); dependence of transient time on the potential stiffness, 

b σ , in one-dimensional lattices with different number of particles N for μ = 1 , b) and for varying values of μ with N = 20 . 
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atio of particles moving to the right and to the left looks like 

noidal wave ( Fig. 1 c). 

It can also occur that for a random initial particle velocity, a 

tate with nonuniform distribution of particles’ density maxima 

rises ( Fig. 2 a). The state is similar to the distribution of parti-

les in the multisoliton mode of a conservative system [8] . But it 

oes not correspond to a steady-state. It is a metastable state with 

 long-term transition from its initial state to a steady-state mode. 

o characterize such a state we introduce a perturbation in large 

nough ( 12 and more particles) equilibrium lattice by an initial 

elocity distribution and we investigate how the mechanisms of 

issipative solitons formation depends on the velocity distribution. 

omputer simulations show that several unevenly distributed dis- 

ipative solitons can be excited ( Fig. 2 a). They behave as a lattice

f charged particles of the same sign and form a steady-state with 

niform distribution of density peaks but the time of the transi- 

ion may be quite long. This means that the distribution shown in 

 Fig. 2 a) evolves to the one shown in ( Fig. 1 c). Thus, dissipative

olitons are excited united in clusters in most of the cases. If we 

et the displacements q n and velocities v n of all particles to zero 

xcept the velocity of a single particle (e.g., v 10 = 1 ) at the initial

ime in a lattice with high stiffness ( b = 3 ) and low friction ( μ= 1 )

ne can observe the rather fast formation of a kind of localized 

tructure similar to a fragment of the “optical mode” ( Fig. 2 b). Only 

hen it evolves to a steady-state mode with an equilibrium distri- 

ution of density maxima again after a long time via a stage of a 

olitonic cluster ( Fig. 2 c). 

In general, the number of solitons, k , arising from an initial per- 

urbation depends on the potential stiffness b and on the friction 

oefficient μ. The number k can be identified in numerical simu- 

ations because the average velocity of the lattice depends on k as 

 v > ≈± [(N −2k)v 0 ]/N . The dependence of the average velocity on

arameters is presented in Fig. 3 a. It is not difficult to see that the

verage velocity is close to unity for a weak potential, that is for 

ow enough values of b ( b σ < 3 ). However, as b increases, that

s, the potential becomes more “rigid” a higher number of solitons 

s excited. The average velocity depends on the parameter μ and 

rows as μ increases for b σ > 3 . In such a manner, for random

nitial conditions, solitons are also excited in clusters, because for 

uch conditions “pushes” can exist, which “centers” are of cluster 
a

3 
ormation. To estimate how many clusters of different length, K , 

re excited in average, a probability distribution P(K) of K -soliton 

lusters’ excitation in lattices of different number N of particles 

as been calculated. Results show that the most frequently ob- 

erved clusters in a system of N = 24 particles, with typical values 

f the parameters μ= 1 and b = 3 , have four or five solitons. Increas-

ng the potential stiffness b leads to the growth of typical cluster 

ize. The size of clusters also depends on nonlinear friction. The 

ost probable cluster size decreases as the coefficient μ increases. 

t is a consequence of the fact that large amount of friction retards 

he change of particle velocity direction. However, the most prob- 

ble event in a lattice starting from random initial conditions is 

he excitation of an “optical mode” fragment. But it begins to de- 

orm almost immediately and rapidly evolves to a solitonic cluster 

 Fig. 2 c) and then after a long transient process the cluster disinte- 

rates into a set of isolated solitons. It appears that a fragment of 

he optical mode in a long enough lattice is an unstable state with 

 short lifetime. Therefore, it can be assumed that such states give 

 small contribution to macroscopic characteristics of the lattice 

nd they can be neglected. The resulting soliton cluster is unstable 

nd the scenario of its transformation is similar to the scenario of 

he optical mode fragment destruction. However, in this case the 

haracteristic times are much longer. Thus, states with nonuniform 

istribution of maxima of the particle density in the lattice can be 

xcited. Such states are metastable with long lifetimes as compared 

ith the period of the Morse oscillations (more, say, than a hun- 

red periods). The lifetime of the states grows exponentially with 

he number of particles in the lattice ( Fig. 3 b), and the increase of

ts rigidity and friction coefficient ( Fig. 3 c). For instance, an initially 

erturbed particle in the lattice with sufficiently stiff coupling can 

xcite several dissipative solitons in its neighborhood, thus lead- 

ng to forming a cluster just after a short transient period. Clusters 

ventually evolve to steady-state modes after a very long time. 

rystal-like triangular lattice of active units 

Let us now focus attention on a crystal-like triangular lattice 

ith only nearest-neighbor adequate anharmonic interaction be- 

ween units. The latter are endowed with a reasonable form of 

ctivity otherwise behaving as point particles. For computational 
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Fig. 4. Crystal-like triangular lattice. a): profiles of the standart (line 1) and modified (line 2) Morse potentials with parameter values b σ = 5, d = 1.35 σ and ν = 0.035 σ . 

b): schematic representation of a lattice with triangular symmetry; lines show the crystallographic axes. c): a steady state of a lattice with two defects: a vacancy at (17; 23) 

and interstitial particle at (30; 23). 
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urposes the number of units is limited to 10 3 and the lattice ex- 

ension is subject to periodic boundary conditions (b. c.). 

As noted above, stationary modes (attractors) in one- 

imensional lattices with periodic boundary conditions are cnoidal 

ave trains with uniform albeit discrete spatial distribution of 

ensity maxima. When the width of density peaks is significantly 

arrower than the distance between them, a mode may be con- 

idered as an ordered set of dissipative discrete solitons [9] . It 

ppears that the processes of establishing stationary modes can be 

ery long. 

For simplicity, the activity of the units is limited to experience 

egative friction with the following nonlinear velocity-dependent 

oefficient (−→ v i 
)

= ˜ μ

( 

1 −
−→ v i ˜ v 2 

0 

) 

, (3) 

here μ is the linear coefficient of negative friction, 
−→ v i is veloc- 

ty of particle i and 

˜ v 0 is the absolute value of stationary velocity. 

he velocity of each particle tends to reach the velocity | v i | = 

˜ v 0 .
ote that the nonlinear Rayleigh friction (3) is not sensitive to the 

elocity direction but only to its absolute value. 

The interaction between particles is determined by the modi- 

ed Morse potential [29] ( Fig. 4 a) 

 ( z ) = D 

(
e −2 b ( z−σ ) − 2 e −b ( z−σ ) 

)
· 1 

1 + e 
z−d 
2 ν

, (4) 

here, as for (2), z is the distance between particles, D is the po- 

ential well depth, b is the stiffness of the potential, σ is the equi- 

ibrium distance between particles, and d and ν are the parame- 

ers of the modified potential. The parameters d and ν are chosen 

o that the potential and its derivative are close to zero at dis- 

ances greater than the cut-off radius R ( Fig. 4 a). The particles in- 

eract only if the distances between them are less than R . The size

f the simulation cell and the initial positions of the particles are 

hosen in such a way that a triangular lattice is indeed formed 

 Fig. 4 b). The parameter values of the potential b σ = 5, d = 1.35 σ
nd ν = 0.035 σ correspond to the cut-off radius R ≈ 1.6 σ . 

The evolution of the i th particle is governed by the following 

imensionless equations of motion: 

¨  
 i −μ

⎛ ⎜ ⎜ ⎝ 

1 −

∣∣∣∣ ˙ → 

q 2 
i 

∣∣∣∣
v 2 

0 

⎞ ⎟ ⎟ ⎠ 

˙ → 

q i = 

∑ 

∣∣∣−→ 

q k 
i 

∣∣∣<R 

q k 
i ∣∣q k 
i 

∣∣ dU 

d q i 
(5) 

here use has been made of the dimensionless coordinate 
−→ 

q i = 

 

−→ 

r i (where 
−→ 

r i = { x i ; y i } corresponds to the dimensional coordi- 

ates), 
˙ → 

q i = 

ω c 
b 

−→ v i is the dimensionless velocity where here the 

verdot means derivative with respect to the dimensionless time 

= ω c t . Please note that later on, for convenience in the presen-

ation of results, we will change the scale velocity to the value 
4 
f ω c σ which is the (linear) “sound velocity” in the correspond- 

ng one-dimensional Morse lattice with the same values of pa- 

ameters. The parameter μ = ˜ μω c 
b 

is the dimensionless linear neg- 

tive friction coefficient v 0 = 

˜ v 0 b 
ω M 

is the dimensionless stationary 

elocity value, | −→ 

q k 
i 
| is the dimensionless distance between parti- 

les I and k and 

−→ 

q k 
i 

| −→ 

q k 
i 
| 

is the unit vector directed from the i th to

he k th particle. Thus, the scale of time is 1/ ω c , and the scale of

nergy is 2D . Here ω c = 

√ 

2 D b 2 

m 

is the frequency of small oscilla- 

ions in the Morse potential well where m is the mass of a parti- 

le. The term D n 

−→ 

ξi corresponds to a white Gaussian noise source 
 

ξi = { ξ x 
i 
; ξ y 

i 
} with intensity D n . For visualization we shall identify 

he lattice units with filled circles centered at the particles’ coor- 

inates with each a Gaussian radial density distribution [29] . 

The dynamics of the ensemble can be different according to the 

atio of the characteristic values of kinetic and potential energies 

f lattice units associated with both their individual and collective 

otions. Here the dynamics of the “lattice ensemble” is consid- 

red, in which the interactions between particles prevail over their 

ndividual dynamics. Consequently, the behavior of such a lattice of 

ctive particles should reproduce certain features of the dynamics 

f the conservative lattice. However, the tendency of each parti- 

le to reach the stationary velocity leads to new features of lattice 

ynamics. Additionally, the evolution of excitations in such a lat- 

ice depends on the relation between the characteristic time scales 

f the system, such as the growth rate of linear perturbations, the 

ecay time scale of nonlinear perturbations, and the Morse poten- 

ial natural-oscillation period, which determines the characteristic 

cale of the collective dynamics. 

For simplicity, we restrict consideration to the behavior of the 

attice with a rather fast increase of energy in the linear stage of 

volution ( μ ≈ 1.4 ) and a rather short stage of nonlinear decay 

 v 0 ≈ 0.14 ω c σ ). The main stationary state of the active lattice is 

he translational mode. In this state the entire lattice moves as a 

hole with the velocity about v 0 . The displacements from equilib- 

ium positions are absent like in ( Fig. 4 b). This state is an attrac-

or of this extended system because most of the metastable states 

ventually evolve to the translational mode. It restores kinetic and 

otential energies after a localized external impact, but the direc- 

ion of the center of mass motion is not stable and can change 

nder external influences. 

In addition, there exists a large set of translational modes with 

efects in the lattice, as presented in Fig. 4 c. The existence of such 

tates is possible because the lattice can possess a local minimum 

f potential energy: the particle which is knocked out of its equi- 

ibrium position can get stuck between sites of the lattice. Such 

efects can arise, for example, as a result of propagation of a crow- 

ion [30] . The crowdion excitation is possible when v 0 is high 

nough and the stationary value of kinetic energy of the particles 

s comparable with the potential well depth. 
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Fig. 5. Crystal-like triangular lattice. Metastable states: plane soliton a), soliton excited in a single rod b), two plane solitons c). All solitons propagate along the x -axis. 

Parameter values: b σ = 5, d = 1.35 σ and ν = 0.035 σ . 

Fig. 6. Crystal-like triangular lattice. Horseshoe-like shape soliton, initially embracing M = 15 units (a) and dependence of maximal track lengths on the width of the plane 

horseshoe-like shape soliton front M in a lattice with b σ = 5, μ = 1.41, v 0 = 0.14 ω c σ (b); dependence of maximal track lengths on the initial particle velocity for b σ = 4 

(line 1) and b σ = 6 (line 2), μ = 1.41 (c). 
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In addition to the stationary modes-attractors different 

etastable states can be excited by an appropriate choice of initial 

onditions. Let us insist that metastable states are in fact transient 

rocesses from initial conditions to the stationary modes (their 

ifetimes can be quite long yet they are finite). Thus metastable 

tates may, on occasion, be considered as quasi-stationary modes, 

hich play an important role on the macroscopic characteristics 

f the system. In real systems, which are under the influence 

f stochastic forces the disappearance of a metastable state is 

ccompanied by the excitation of another. As a result, the system 

upports metastability at all times. For this reason, the deter- 

ination of the features of metastable states and their lifetimes 

ppears as a relevant question. 

Results of numerical experiments show that a flat soliton- 

ike wave (denoted below as “flat soliton”) is the longest liv- 

ng metastable state. It is the superposition of identical one- 

imensional dissipative solitons [31] in adjacent rows of particles 

ropagating along any crystallographic axis. Solitons in each row 

ppear as density maxima localized at least on three lattice units 

nd moving along the row. Solitons in adjacent rows form the 

avefront which is oriented perpendicular to the direction of soli- 

on propagation. 

The propagation of flat solitons along any crystallographic axis 

s possible ( Fig. 5 a). The velocity of solitons in the lattice with pa-

ameters b σ = 5, μ = 1.41, v 0 = 0.14 ω c σ is equal to | v sol | ≈1.3

n units ω c σ in the coordinate system moving with the simula- 

ion cell. The soliton velocity does not depend on initial conditions 

or given values of b σ , μ and v 0 . In the lattice considered, soli-

ons are localized on an ordered set of lattice units. In the sim- 

lest case a single soliton in a lattice with periodically bound- 

ry conditions is excited ( Fig. 5 b). However, in the general case 

he existence of a set of solitons is possible, as is illustrated in 

 Fig. 5 c). 

The soliton-like excitations considered ( Fig. 6 a) are metastable 

tates. Their lifetime depends on the soliton spatial distribution 

as in a one-dimensional lattice [32] ) ( Fig. 6 b), and on the degree

f perturbation done to the lattice ( Fig. 6 c). Perturbation can be 

aused by thermal fluctuations and, in computer experiments, by 

ound-off errors in the numerical simulation. 
5 
The collapse of a soliton can be caused by modulation instabil- 

ty. When particles get a little perturbation in the direction perpen- 

icular to the direction of soliton propagation, as this perturbation 

rows the front of the soliton deforms and then the soliton dis- 

ppears. Nevertheless, the plane-wave solitons lifetimes are quite 

ong (of the order of 10 3 / ω c ) and solitons can pass hundreds of

imes through the simulation lattice space (recall we use periodic 

. c.). 

Let us analyze the evolution of dissipative solitons in more de- 

ails. As noted above, one of the metastable states is the state with 

onuniform distribution of solitons in the simulation cell. Soli- 

ons move away from each other and finally they reach a steady- 

tate configuration because they repel and tend to a configuration 

ith the maximal distance between them. Correspondingly, the 

etastable state with nonuniform distribution of solitons tends to 

volve to a stationary mode with uniform distribution of solitons 

 Fig. 5 c). 

Another type of metastable states is a plane soliton-like wave 

ith the wavefront oriented parallel to one of the crystallographic 

xes, which propagates perpendicularly to this axis ( Fig. 5 a). Such 

olitons have a lower lifetime because of a much greater influ- 

nce of the transverse modulation instability. Moreover, there ex- 

st plane solitons with finite width ( Fig. 6 a). They are metastable 

tates with linear dependence between the lifetime (or maximum 

rack length) and the width of the front. This dependence is shown 

n ( Fig. 6 b). The initial conditions for such solitons are similar to 

hose for the excitation of M -solitons or M -crowdions in conserva- 

ive lattices [30] . By providing an initial momentum to M particles 

f adjacent rows along a crystallographic axis the selected units 

end to form the wavefront perpendicular to the direction of prop- 

gation. 

During the propagation of M -solitons the units located at the 

ront edges transmit a pulse not only in the direction of propaga- 

ion of the soliton, but also in the perpendicular direction. As a re- 

ult, the front evolves to a horseshoe shape ( Fig. 6 a) and upon nar-

owing finally fades away. Correspondingly, the lattice goes to the 

ranslational mode. In the limiting case, the front width includes 

 single unit; this excitation may be called as one-dimensional 

oliton ( Fig. 5 b). This type of soliton-like excitation is a local- 
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Fig. 7. Dependence of value log(D n,cr ) on lattice stiffness b σ (dots) and its linear 

approximation f(x) = 8.19x-66.7 (solid line). 
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zed metastable state, which evolves to the translational mode as 

n a conservative lattice [31] . The track length of a quasi-one- 

imensional soliton depends on the velocity of the initially per- 

urbed particle v i0 , as shown in ( Fig. 6 c). There is a range of initial

elocities in which the track length rapidly grows with increas- 

ng initial velocity value. Eventually, with further increase in the 

elocity the track length does not grow and the dependence of 

he track length as a function of the initial energy reaches satu- 

ation. This behavior seems to be a consequence of the decay in 

he velocity of the faster particles under the action of negative 

riction. 

A chaotic (quasi-chaotic) transient process can be observed 

hen the system starts with a random initial distribution of the 

articles’ velocities. This state is also metastable because incoher- 

nt oscillations of particles fade away under the action of the non- 

inear friction and the lattice tends to the translational mode. The 

ifetime of the chaotic regime depends on the number of units in 

he ensemble and can be hundreds or thousands of dimensionless 

ime units. 

. Influence of noise on the behavior of dissipative solitons in 

 crystal-like triangular lattice 

Also, it is possible to excite several types of metastable states 

hat evolve in time to a stationary mode. Metastable states which 

ransform to the translational mode appear as single plane soli- 

ons and states with several uniformly distributed plane soli- 

ons (lifetimes of the order of 10 3 / ω c ), horseshoe M -solitons (life-

imes of the order of 10 2 / ω c ), and quasi-one-dimensional soli- 

ons. All these metastable solitons propagate along the crystal- 

ographic axes. However, the effects arising from noise exposure 

«heating») of the lattice have not been previously considered in 

etail. 

One of the metastable states of the system is a plane-wave soli- 

on. Recently [31] , a lattice with relatively soft bond b σ = 3–5 

as been studied. Such potential stiffness values provide displace- 

ents of particles in order σ that correspond indeed to behav- 

or of atoms in crystal-like structures. The lifetime of plane-wave 

olitons is limited because solitons in such lattices are much af- 

ected by noise. Lattices with higher rigidity provide slightly small 

ffsets of particles (in order 0.1 σ with b σ = 7 ). Nevertheless, in- 

reasing the potential stiffness increases the lifetime of solitons. 

or example, the lifetime of solitons in the lattice with b σ = 7 in-

reases for quite long time (at least no changes in their structure 

ere found for about 10 5 1 
ω c 

and can be considered long lasting 

oliton-like waves). However, presumably the lifetime of a soliton 

an be limited due to the influence of noise, including the nu- 

erical one in simulations. This point requires a more detailed 

tudy. For this let us introduce an additive noise in Eq. (5) as 

ollows: 

¨  
 i −μ

⎛ ⎜ ⎜ ⎝ 

1 −

∣∣∣∣ ˙ → 

q 2 
i 

∣∣∣∣
v 2 

0 

⎞ ⎟ ⎟ ⎠ 

˙ → 

q i = 

√ 

2 D n 

−→ 

ξi ( t ) + 

∑ 

∣∣∣−→ 

q k 
i 

∣∣∣<R 

q k 
i ∣∣q k 
i 

∣∣ dU 

d q i 
. (6) 

ere D n is noise intensity whereas 
−→ 

ξi (t) = ( ξ x 
i 
(t ) ; ξ y 

i 
(t ) ) is white 

aussian noise sour с es with two independent components for each 

lement. The Langevin stochastic differential equations (6) are inte- 

rated here by means of a Runge-Kutta algorithm adapted for solv- 

ng stochastic problems [33] . 

It seems that the limited lifetime of solitons in "soft" lattices 

 b σ = 3-5 ) is related to the existence of a kind of noise inten-

ity threshold D n,cr . Plane solitons rapidly decay when the noise 

ntensity is greater than such a threshold. Noise with intensity 
6 
ower than threshold has no significant effect on the soliton fea- 

ures. This threshold is quite low in lattices with b σ < 6.5 so that 

he numerical noise exceeds the threshold and destroys the soli- 

on as time proceeds. Increasing b σ makes the noise threshold 

ncreasing. At bσ ≈ 6 . 5 the threshold becomes greater than the 

umerical noise and the plane-wave soliton lifetimes increasingly 

rows. The dependence of the critical value of the noise inten- 

ity below which the lifetime of the soliton is not limited is pre- 

ented in Fig. 7 . It is easy to see that resistance to noise increases

apidly when b σ > 6 . The dependence of the critical value of the 

oise intensity on the lattice rigidity has an exponential character. 

ig. 7 shows the dependence of the log ( D n,cr ) on b σ and its linear

pproximation. 

As shown above in a lattice starting with stochastic initial con- 

itions the usual tendency is towards transformation to the trans- 

ational mode – a state when all particles are uniformly distributed 

n the triangular lattice and their velocities are unidirected (though 

he direction of motion of particles in translational mode can be 

rbitrary). In view of the above, let us start the numerical experi- 

ent with initial conditions in the form of translational mode with 

ome noise thus “heating up” the lattice to subsequently allow- 

ng the lattice to “cool down” by turning off the noise. Achieve- 

ent or non-achievement of the balance of dissipation and fluctu- 

tions is determined by the ratio between the duration and inten- 

ity of noise exposure. After “switching off” the noise a long lasting 

ransient process starts. During this process the nonlinear friction 

lows down fast particles (and accelerates slow particles). As a re- 

ult, the average value of particles kinetic energy slowly decreases 

n time. The value of parameter μ influences the duration of the 

ransient process with higher values of μ favoring a faster transi- 

ion. 

Two situations are possible after a transient time lapse. In the 

rst case, one can observe the usual translational mode with uni- 

orm spatial distribution of particles (i.e. triangular lattice with 

nidirected velocities of all particles as in Fig. 4 b). In the sec- 

nd case, the particles velocities are unidirected (see low panels 

n Fig. 8 , p(E k ) shows a relative part of units having kinetic energy

 k , �p(E k ) = 1 ) but the crystal lattice exhibits some heterogeneity 

 Fig. 8 , a-d). 

When the potential is hard enough ( bσ > 5 ) the transient pro- 

ess can be very long. It includes two stages. First, a short stage, 

patially rather chaotic oscillations decay quickly, and then differ- 

nt harmonic-like waves propagate along the lattice against the 

ackground of the translation mode for very long time ( Fig. 9 , a-d).

hey have different sets of kinetic energy values ( Fig. 9 , e-h) how-

ver their kinetic energy distribution eventually evolves to those of 

ig. 8 , e-d. 
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Fig. 8. Crystal-like triangular lattice. Translational mode after noise influence (from left to right - with different realizations of noise). Presented states correspond to local 

potential minimum; these defects are remaining in the lattice which translates in some direction "as a whole". Top panels: a)-d) spatial distribution of units. Bottom panels: 

e)-h) kinetic energy distribution p(E k ) (shows a relative part of units with kinetic energy E k ). Average translation velocity goes along the OY axis (see Fig. 4b). Parameter 

values: bσ = 3 , μ = 7 , D n = 0 . 5 , τn = 200 . 

Fig. 9. Crystal-like triangular lattice. Translational mode after noise influence (from left to right – with different realizations of noise). Top panels: a)-d) spatial distribution 

of particles. Bottom panels: e)-h) kinetic energy distribution. Average translation velocity is along the OY axis. Parameter values: bσ = 5 , μ = 7 , D n = 0 . 5 , τn = 350 . 

5

a

t

d

i

m

M

p

t

a

p

t

d

o

m

b

t

o

s

s

a

p

w

r

s

l

a

t

D

C

i

d

F

i

. Concluding remarks 

A few salient soliton-like wave evolutionary features of one- 

nd two-dimensional lattices of anharmonically (Morse poten- 

ial) interacting active units have been provided here. In one- 

imensional lattices, states with nonuniform distribution of max- 

ma of the particle density can be excited. Such states are 

etastable, with long lifetimes as compared with the period of the 

orse oscillations (more than a hundred periods), which grow ex- 

onentially with the number of units and the values of the poten- 

ial stiffness and friction parameters. An initially perturbed unit in 

 lattice with sufficiently rigid coupling can create several dissi- 

ative solitons in its vicinity, which quickly forms a cluster. Even- 

ually, clusters evolve to steady-state modes hence with uniform 

istribution of density particle peaks. 

In a lattice of active units with triangular symmetry, the set 

f stationary modes (attractors) is represented by translational 

odes (lattice motion as a whole), both with a uniform distri- 

ution of particles in space and with topological defects. As for 

he one-dimensional case, it is possible to excite several types 

f metastable states that transform with time into a stationary 

tate. Metastable states can be single plane solitons and states with 

everal uniformly distributed plane solitons, horseshoe M -solitons, 
7 
nd quasi-one-dimensional solitons. All these metastable solitons 

ropagate along the crystallographic axes. In the triangular lattice 

ith high stiffness perturbed by noise influence (heating) spatially 

ather chaotic oscillations appear. Then they decay fast with pos- 

ible onset of different harmonic-like waves propagating along the 

attice against the background of the translation mode. Eventually, 

fter very long time they evolve to the steady-state as a transla- 

ional mode. 
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