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About electron transfer over long distances
with tunable sub/supersonic velocities
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ABSTRACT
Provided in this paper is a theory of long-range electron transfer with near sound (supersonic or subsonic) velocity along one-dimensional
crystal lattices. The theory represents the development of an earlier work by introducing Marcus formulation. To illustrate its applica-
tion to a realistic case, the theory is used to offer an explanation of two puzzling observations made by Donovan and Wilson in transient
photoconduction experiments with non-dopable perfectly crystalline polydiacetylene crystals in the presence of an electric field: trans-
port velocity value close to sound velocity being independent of field for four orders of magnitude of field (102 V/m–106 V/m) and, in
the low field values, an ultra-high mobility greater than 20 m2/V s. We also study factors eventually leading to lowering of the transport
velocity.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012051., s

I. INTRODUCTION

One of the most elementary chemical steps consists in bring-
ing an electron from a donor site to an acceptor site where some
reaction may be initiated. In a path breaking series of papers, Mar-
cus provided deep insight with an elegant and successful theory1–6

(see also the study of Hush7). Apparent limitations of the theory
are travel distances only in the 20 Å range and the difficulty to
take into account the detailed chemical structure of matter sepa-
rating the donor and acceptor sites. In particular, it is not pos-
sible to define a velocity of the transferred electron under such
conditions.

Recently, travel distances in the range of 20 nm and more and,
on occasion, with supersonic velocity of the charge carrier have
been observed.8–13 In the present paper, we propose a model theory
approach to the electron transfer (ET) problem in one-dimensional
(1D) crystal lattices (the theory also exists for two-dimensional crys-
tal lattices, but we shall not consider this case here). The model is
based on the use of nonlinear carriers that when binding an elec-
tron permit both the travel distance in the 20 nm range and beyond
and traveling super- or subsonically. This depends on the values of
parameters, such as the electron–lattice distortion interaction (akin
to the electron–phonon interaction). We refer to wave-like excita-
tions in arrays/chains/lattices of units such as atoms, molecules, and
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the like (expecting no confusion; in the following, we shall be inter-
changeably using unit, site, or cell). The units can exhibit on-site
vibrations and/or inter-site (otherwise said, bond) elongations due
to potential functions such as harmonic or anharmonic (for instance,
Morse potentials14).

With inter-site Morse potentials, there is the possibility of trav-
eling nonlinear crystal lattice distortions in the form of soliton-like
waves, i.e., waves that can propagate supersonically along the solid
keeping their shape without change of form.15–21 Other possible
traveling localized crystal lattice distortions are discrete breathers
[DB, aka intrinsic localized modes (ILM)].22,23 Then, if one such
soliton lattice distortion binds an electron (the argument applies ver-
batim to a positive hole), the soliton–electron compound would be
the appropriate transport quasiparticle, like the polaron in the case
of a harmonic crystal lattice.24–31

Soliton-assisted transport, although starting with harmonic
interactions, has also been advanced by Davydov and co-
workers32–34 (see also Ref. 35–41), by Heeger, Schrieffer, and
co-workers (SSH) with their so-called Hamiltonian for dopable and
messy, poorly crystalline polymer crystal like trans-polyacetylene
(tPA) and related so-called “synthetic metals,”42,43 and by Wilson for
the non-dopable perfectly crystalline polydiacetylene (PDA) crys-
tal.44 Davydov started with a harmonic crystal lattice Hamiltonian
with an added excess electron. Then, making use of the nonlin-
ear electron–phonon interaction and an adequate passage from the
discrete lattice to the continuum approximation, he was able to
reformulate the problem as one of a soliton-bearing dynamic evolu-
tion equation. Unfortunately, Davydov’s predictions—at that level—
were not supported by experiment nor did they survive going to
temperatures beyond a few K,36 although this result was not with-
out criticism.41 The instability at a few K is a property of the CO
vibration localized in an acoustic lattice distortion. There is much
greater stability for an electron localized in an acoustic instability.44

In the decades 1980–1990, Davydov and co-workers (Chap. 6 of
Refs. 34 and 40) extended the original theory by using Hamiltoni-
ans with cubic and quartic anharmonic interactions, thus allowing
for supersonic soliton-assisted charge transport with, once more,
all results studied only at 0 K. The SSH Hamiltonian builds on the
degeneracy of the ground state and the tight binding approximation
(TBA, in short) to account for band formation as a means of elec-
tron transport. Still today, there is no unifying theory accounting for
conduction in the whole range of doping fraction of such dopable
polymers.

It seems worth emphasizing that PDA is a perfect crystal and it
is non-dopable. The latter constitutes an advantage because there is
no disorder introduced by counterions. Furthermore, PDA is com-
posed of parallel long π conjugated carbon chains spaced apart by
inert side groups such that their interchain distance is sufficiently
large and the π-electron transfer between chains is not possible.
Thus, they appear as perfect 1D transport lines. Donovan and Wil-
son measured the time dependent photocurrent created by a sin-
gle light pulse of typically 5 ns duration. Such a current created
at the end of the pulse is due to the product of the charge cre-
ated and the velocity of the charge. These authors were able to
establish the amount of charge created by means of experiments
unique to the high one dimensionality of the crystal (which they
called “cuts”45 and “walls”46 experiments). In this way, the veloc-
ity of the charge carriers was measured. The great surprise was the

constancy of this velocity close to the sound velocity over four
decades of electric field (102 V/m–106 V/m) and an ultra-high
mobility, greater than 20 m2/V s in the presence of an electric field.
This is the opposite of the almost universal existence of a charge
velocity linearly dependent on field in metals, semiconductors, and
ions in solution. However, these striking findings for a non-dopable,
perfect polymer crystal passed unnoticed in the literature, most
surely because of the great success achieved with the dopable con-
ducting polymers. It is this extraordinary experimental establish-
ment of such features that is given an explanation in the present
paper.

The theory developed by Wilson44 aimed at explaining charge
transport features of the PDA crystal.45–50 Building upon the SSH
approach—with, however, no degeneracy of the ground state in
PDA—and following Davydov’s approach (distortion-dependent
electron transfer), he advanced the concept of solitary wave acous-
tic polaron (SWAP) as the charge carrier, whose stability was also
studied,44 clearly extending the original polaron realm into the
soliton-like assisted transport, and quite a different mechanism for
transport relative to the dopablet PA family. As in the cases of Davy-
dov and the SSH theory, although the lattice dynamics enters well
beyond the simplest induced lattice distortion, we still have, as in the
standard polaron case, a genuine electronic excitation, since with-
out the added excess electron, there is no evidence for the crystal
excitation.

Extending historical works on the polaron,51,52 one expects that
when the lattice inter-unit distance is modified during the wave pas-
sage, this, in turn, modifies the rate of energy or charge transfer
between two adjacent sites. In the case of an electron transfer, we
can thus imagine a situation where the electron would “surf” on the
wave as the soliton–electron compound forms a kind of bound state
(denoted as solectron). The latter is thus different from the polaron
and the transport quasiparticles introduced to account for electron
transport in tPA and the other so-called synthetic metals, as well as
different from Wilson’s SWAP concept. In the solectron case, there
is already a crystal lattice carrier, the soliton, capable of traveling
and transport at supersonic velocities. Once this is identified, we
can add an excess electron or other, thus leading to the mentioned
compound/bound state. Note that when adding an excess electron,
there is indeed a polaron effect that can be considered as a weak,
negligible disturbance upon the stronger one leading to the solec-
tron.53 If so, we can safely speak of mechanical control of electron
transfer at the nanolevel. The solectron velocity is going to depend
on the strength of the electron–lattice distortion interaction, hence
offering the possibility of super- or subsonic transport.54–61 Note-
worthy is that in a crystal lattice with Morse interactions, solitons
are expected to be significant lattice disturbances at temperatures
above the Dulong–Petit plateau in the specific heat, which is past the
Debye temperature. It has been shown that in such a crystal lattice,
solitons survive when heating the system to, say, physiological tem-
peratures (∼300 K). The same has also been shown for solectrons
formed in such a crystal lattice model.62–65 In view of the above,
we shall not dwell on the temperature influence in our problem
here.

It seems also pertinent to insist in that in the polaron realm or in
Davydov’s theory or in the SSH theory for dopable conducting poly-
mers or in Wilson’s theory for PDA, the charge transport is ensured
by an applied electric field. In the case of soliton-assisted/solectron
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transport, i.e., with an electron surfing on a soliton wave crystal lat-
tice distortion, the motion of the charge follows that of the soliton
wave, as the former is slaved by the latter, thus offering the pos-
sibility of transport in the absence of an applied electric field. Let
us also insist that at variance with the polaron, as we here have
the traveling soliton before any excess charge is added to the crys-
tal lattice, there is indeed a clear case of mechanical control of the
electron/charge at the nanolevel. For the related problem of electron
surfing on (however, high amplitude is always linear) surface acous-
tic waves, see Ref. 59. For real cases where soliton-assisted transport
would be possible, it seems clear that long distance transport (surely
in the 20 nm range and beyond) and tunable sub/supersonic veloc-
ities are to be expected. In view of the above, we see a connection
between the idea of going beyond Marcus theory and presenting a
theory that tries to account, the proper way, for the features observed
in PDA.

On-site motions changing the vibrational and electronic energy
of a given unit (independent of the inter-site distance) have a long
story. They are encountered in solid state physics in small-polaron
theory, for instance, in the work of Holstein starting in 1959.28 In
solution chemistry, there is an analogous effect (complicated by the
fact that the units are randomly distributed) leading to the the-
ory of electron transfer developed by Marcus1–6 and also by Hush.7

In molecular mixed-valence compounds, there are typically two
possible localization sites for one electron, and the intramolecu-
lar electron transfer rate depends on the competition between an
electronic interaction factor and a site-localized distortion analo-
gous to the polaron distortion.66–69 Worth also being recalled is
that intramolecular electron transfer between a donor and an accep-
tor site can be monitored over long distances,70–73 and its distance
dependence is frequently assigned to the decay of the (indirect)
electronic coupling between donor and acceptor, the process being
one-step. Another mechanism is the multiple hopping mechanism
with charge localization on intermediate bridging sites,8–12 but the
hops are uncorrelated (drunken sailor walk). By contrast, the sys-
tem studied in the present paper will present soliton-like coherent
motion.

Of course, the on-site motion introduces the possibility of
the trapping of the electron in a potential well created by its
own presence. Extracting from the well then requires a ther-
mal activation, which is a slow and random process, incompat-
ible with the coherent character of the solectron propagation.
Thus, the main question addressed in the present paper is as
follows: How far can we go without destroying the appealing
solectron process? Note that in a similar preoccupation, Moza-
fari and Stafström have elaborated a model with an on-site degree
of freedom, but since, like Davydov, SSH, and Wilson, their used
potentials are harmonic,74–76 the model cannot describe non-linear
effects of the soliton type in the absence of an added excess
charge.

The paper is thus organized as follows: In Sec. II, inspired by
Marcus seminal concepts on electron transfer (ET) and by Fröhlich
emphasis about the significant role to be played by the dynamics
of the crystal lattice on the electron–lattice cooperative behavior,
albeit with consideration of only harmonic interactions, we present
the basic features of the model bridge between donor and accep-
tor, identifying its Hamiltonian with Morse interactions and also
introducing, in a simplifying approach, an “effective” on-site degree

of freedom. In Sec. III, we discuss the parameters and their realis-
tic values, which could be convenient for the emblematic PDA and
related sulfonate derivatives. Section IV is devoted to the results
of computer simulations of the dynamical evolution (soliton-like
wave and electron probability densities). In Sec. V, we illustrate
the role of an external electric field and its interplay with the soli-
ton dynamics, thus allowing estimating the range of values where
there is possible field-independent electron transfer and, conse-
quently, the ultra-high mobility. Finally, in Sec. VI, we summarize
the major results found and a few concluding remarks targeting
experiments.

II. DESCRIPTION OF THE MODEL

Taking into account the large disparity between the large mass
of the lattice units relative to the much smaller of the electron, we
shall be considering a mixed classical–quantum model. The classi-
cal part will be accounting for the Newtonian dynamics and evo-
lution of the crystal lattice units in their allowed on-site vibrations
and in their relative motions (inter-site elongation/bond changes).
As usual with this commonly used type of Molecular Dynamics,
the classical motion is based on the Ehrenfest approximation allow-
ing defining the force acting on nuclei from the derivative of the
energy. However, this approach could be questioned as it can lead
to an underestimation of the polaron extension, or a bad descrip-
tion of excited electronic states.77,78 However, in the present case,
we still believe that the Ehrenfest approach could capture the essen-
tial features of the process because we are concerned with low-
energy excitations without an electronic component. We estimate
the solectron energy, coming essentially from the soliton part, at
about 1.3 eV, which is much lower than typical energies for excited
electronic states such as Frenkel excitons.78 In addition, due to
the complexity of the molecule, there would be too many vibra-
tional modes to combine in order to get a full quantum descrip-
tion. By contrast with nuclei, the excess electron dynamics follows
Schrödinger evolution on the discrete crystal lattice support using
the Hückel approximation (TBA in solid state physics). Thus, the
principle is to describe units classically by their potential and kinetic
energy, but electrons quantum mechanically, i.e., they are charac-
terized by their total energy without decomposition into potential
and kinetic energy. For illustration and in view of the comments
made in the introduction, we shall focus attention to PDA having
in mind the Marcus approach. Starting from its known structure
illustrated in Fig. 1, we define a site (or unit cell) as a C4R2 group
(C4, in short). An excess electron is added to generate the charge
carrier.

Working one step at a time, in the first step, we start neglect-
ing the internal structure of the unit cell and model the crystal
lattice units as point particles (solid spheres) as shown in Fig. 2.
Schematically, each sphere represents a C4R2 block, the quantity
Vn,n−1 accounts for the electronic coupling between the blocks, and
εn is the electronic energy of a block (in chemical terms, the energy
of the Lowest Unoccupied Molecular Orbital—LUMO).

The Hamiltonian is decomposed as Hlattice (a scalar) and Ĥelec
(an operator acting only on the added excess electron wavefunction).
The latter contains the electron–phonon (more precisely here the
lattice deformation) coupling term. It is of the Peierls type because
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FIG. 1. PDA structure. The unit cell is a
block with carbon atoms with an alter-
nation of single and multiple (double or
triple) bonds. Carbon atoms labeled (c)
and (d) bear bulky substituents R.

the electron motion is assumed to modify only the inter-site distance
and thus only the Vn,n−1 term.51 We have

Hlatt =∑
n
(

p2
n

2M
+ UM

(n,n+1)), (1)

where UM
(n,n+1), with r = xn+1 − xn, is Morse’s potential function

UM
(r) = D(e−2br

− 2e−br
) ensuring anharmonicity of the inter-site

bonds. The quantity xn is the displacement of the nth unit (of mass M
as all units are assumed to have equal mass) with respect to its initial
equilibrium position, pn is its corresponding momentum, b accounts
for the stiffness of the Morse potential (at vanishing b, we recover
the harmonic potential, and at very large values of b, we tend to the
hard-sphere model), and D is the potential well depth or dissociation
energy parameter of the Morse potential.

In second-quantization formalism, we set

Ĥelec =∑ εnĉn̂c†n −∑Vn,n−1(
̂c†nĉn−1 +̂c†n−1ĉn), (2)

with ĉn and ̂c†n denoting annihilation and creation operators of an
electron at site “n.” The one-electron wave function is decomposed
into localized functions |Ψ(t)⟩ = Σcn(t)|φn⟩, where |φn⟩ is a wave
function localized at site “n” and the time dependence is carried
exclusively by the cn(t) coefficient. Vn,n−1 is the absolute value of the
electronic coupling, which is strictly speaking negative and hence
the – sign in (2). Expecting no confusion, we shall be using the same
letter “c” for the operators and for the numbers/probabilities. Then,
noting that∑n ∣cn∣

2
= 1, it follows in numbers (TBA),

Helec =∑
n
εncnc∗n −∑

n
Vn,n−1(c∗n cn−1 + cnc∗n−1). (2′)

Following the study of Slater,79 the inter-site dependence of the
overlapping/hoping/transfer integrals between nearest-neighbors
(Fig. 2), Vn,n−1, is taken in exponential form

Vn,n−1 = V0 exp[ − αSL(xn − xn−1)], (3)

where V0 is the value of the electronic coupling for the initial equi-
librium crystal lattice inter-site distance. Note that in the so-called
SSH Hamiltonian used to describe the dynamics of tPA and the
like, expression (3) is given in its linear approximation. Accordingly,
our αSL has dimension of length−1, whereas the corresponding αSSH
parameter has dimensions of energy⋅length−1. Clearly, this param-
eter regulates how much the Vn,n−1 are influenced by the relative
inter-site elongations along the lattice bridge.

For universality in the argument, we make use of the natural
scales in the problem to appropriately make all quantities dimen-
sionless. Thus, we take 1/b as the length unit and 1/ωM as the time
unit with the angular frequency unit ωM = (K/M)1/2 = (2Db2/M)1/2.
This angular frequency corresponds to the oscillatory motion associ-
ated with the harmonic approximation to the Morse potential using
K as spring constant. Then, for energy, the unit is 2D, and for space
displacements, 1/b; hence, qn = bxn and αSL = bα. Note that it is
not necessary to define a mass unit, the role of mass being intro-
duced in ωM, which in turn defines the time unit. The dimensionless
electronic coupling is taken as V = V0/2D.

In view of the above, the dynamics and evolution of our
classical–quantum system are given by two sets of coupled dif-
ferential equations: one is Newton’s equations where the accel-
eration of a given unit is computed from its mass and the
force acting on it, which is itself obtained from the derivative of

FIG. 2. Crystal lattice model of the periodic 1D structure. The unit cells are symbolized by spheres. Each unit cell is characterized by an electronic energy, εn. The electronic
interaction between units is denoted as Vn,n−1 and depends on their relative distance.
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potential energy with respect to its corresponding atomic coordi-
nate, and the other is a set of discrete Schrödinger equations, coming
from the Time Dependent Schrödinger Equation (TDSE), i̵h d

dt ∣Ψ⟩
= Ĥ∣Ψ⟩ projected on each basis state [recall expression (2′) given
above]. Thus, assuming for simplicity εn = 0 (this corresponds to all
εn being equal and hence shifting adequately the energy origin), we
have

d2qn
dt2 = [1 − e

(qn−qn+1)
]e(qn−qn+1)

− [1 − e(qn−1−qn)
]e(qn−1−qn)

+ 2αV[Re(cn+1c∗n )e
α(qn−qn+1)

− Re(cnc∗n−1)e
α(qn−1−qn)

], (4)

dcn
dt
= iτ[cn+1eα(qn−qn+1) + cn−1eα(qn−1−qn)

], (5)

where τ, defined by the ratio V0/̵hωM, allows the comparison of the
time scales associated with the electron dynamics and crystal lattice
unit motions, respectively (which in frequency terms refer to ultravi-
olet/electronic vs infrared/acoustic). These equations can be solved
by alternate iteration using the Runge–Kutta method. This corre-
sponds qualitatively to the following sequence of events: (a) units
move, (b) then electron transfer occurs preferentially between units
that are nearest at this moment, (c) units move again as a conse-
quence of the previous motion (continuity of their kinetic energy)
and the newly created electronic interaction, and so on. Results from
computer simulations of the dynamics defined by Eqs. (4) and (5)
can be found in Ref. 58.

Now, we proceed to a second step in our description of the
system by focusing on the internal structure and corresponding
degrees of freedom of the units/cells. Describing explicitly the com-
plete deformation of the C4R2 block would need several parame-
ters.80 Hence, although the change in geometry of the unit cell upon
addition or removal of an electron involves several bond length
and angle changes inside the C4R2 block, for sake of simplicity, we
introduce a single on-site fictitious, “effective” intra-site bond length
and its corresponding energy. This is the “Holstein coupling.”28 For
molecular chemistry in solution, a similar process was identified
in the 1955–1965 period by Marcus.1,2,5 Mathematically, we sim-
ply add a linear term Awn (A for the electron–phonon constant
and wn a quantity linked to intra-site bond lengths) in the diag-
onal term εn of the electronic Hamiltonian.69 Holstein models are
common, but until now, no examples have been published with
the association of Holstein coupling, Peierls coupling, and anhar-
monicity. Treatments combining the Peierls and Holstein couplings
(but not anharmonicity) appeared recently. One can quote the study
of Girlando et al.81 on molecular organic semiconductors with the
role of high-frequency or low frequency phonons, that of Shuai
et al.82 on the charge mobility in organic materials starting with the
identification of several regimes (self-trapping with hopping, scat-
tering by Holstein–Peierls mechanism, and interaction with acoustic
phonons), and the work of Mozafari and Stafström,74–76 studying
the behavior of two-dimensional molecular crystal systems from the
point of view of the competition between electron–phonon coupling
and transfer integral.

Introducing such an additional “effective” single degree of free-
dom, the modification bears on the diagonal term of the electronic
Hamiltonian,

εn = ε0 + Awn (6)

and also on the lattice Hamiltonian, which becomes

Hlatt =∑
n
[(

p2
n

2M
+ UM

n,n+1) + (
p2

f,n

2Mf
+

1
2

kfw
2
n)], (7)

where the contribution of the additional degree of freedom is repre-
sented by the term in the second parenthesis. The spring constant,
kf , is an“effective” spring force constant and mf is its correspond-
ing “effective” mass associated with the “off-bridge” on-site motion
in our simplifying fictitious albeit representative form of the cells
(hence the index “f”). This simplification with a parabolic poten-
tial energy is well in the spirit of Marcus approach.74–76,83 Then,
the effect of the coupling is to replace the potential energy 1/2kfwn

2

by 1/2kfwn
2 + Awn. It is still a parabolic potential, but the location

of its minimum has been shifted and occurs at a lower energy, as
illustrated in Fig. 3.

Figure 4 schematically illustrates the structure of the crystal lat-
tice bridge with units having internal structure, denoted by cells.
This permits the depiction of the evolution in the system as a
sequence of the following steps:

● Step 1: the cell n − 1 containing the extra electron has moved
to the right by the quantity qn−1.

● Step 2: since Vn−1,n has been strongly increased, the electron
transfer to site n is possible.

● Step 3: as a result of the presence of the electron at site n, the
bond lengths change inside this site and also inside cell n − 1
(changes in wn and wn−1). This modifies the electron energy
and could hinder the subsequent electron transfer (this is the
usual effect of polaron formation).

● Step 3′: at the same time, unit at site n is pushed to the right
because of the strong repulsive interaction between n − 1
and n.

● Step 4: electron transfer to n + 1.

FIG. 3. Effect of the addition of the linear term Awn on the parabolic potential
energy curve. The addition of an excess electron has two consequences: a change
in equilibrium geometry and a relaxation process with stabilization of the system.
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FIG. 4. Schematic mechanical analogue of the crystal lattice bridge model with
both inter-site elongations and on-site vibrations. Exaggerated to emphasize the
significant role played by on-site vibrations. Upon the passage of a soliton along
the main (horizontal) axis, the nth cell moves as a whole. The on-site wn motion is
here taken independent of the qn motion.

As in the earlier presented model without on-site motion, we
now express internal on-site accelerations using Newton dynam-
ics, and for the time evolution of the added excess electron wave
function, we continue using the discretized Schrödinger equations
on the crystal lattice. Then, as both dynamics are coupled together,
the more complete problem dynamics and evolution have an addi-
tional Newton equation describing the motion of the wn coordinate
at each site. In dimensionless form, the latter is bwn, but to simplify
notation, we shall use wn in the following. We have

d2wn

dt2 = −ω
2
f wn − A1∣cn∣2, (8)

where ωf the angular frequency of on-site vibration is given by

ωf = (kf /mf )
1/2/ωM (9)

and A1 is a quantity estimating the influence of the added excess
electron upon the off-bridge motions as we shall see below.

In addition, a new term (−iA2wncn) appears in the discretized
Schrödinger equation,

dcn
dt
= iτ[cn+1eα(qn−qn+1) + cn−1eα(qn−1−qn)

] − iA2wncn. (10)

Indeed, for electron transfer to occur (cn changes with time), an
additional condition must be fulfilled: the on-site wn coordinate
must be “adapted,” as done in the Marcus approach.

In Eqs. (8) and (10), two new dimensionless parameters, A1
and A2, appear, which derive from the electron–phonon coupling
constant A. They are given by

A1 = A
b

mfω2
M
= A

M
mf2Db

and A2 =
A
̵hωMb

. (11)

It clearly appears that Eqs. (8) and (10) are coupled together.
On the one hand, A1 accounts for the cn dependence of the on-site
motion, i.e., dependence on the electronic population at site n. On
the other hand, the role of A2 is to take care of the influence of
wn, i.e., the specific state (geometry) of site n, on the rate of varia-
tion of cn with time (electron leaving or departing site n). As Eq. (8)
describes a harmonic oscillator with frequency ωf under the action
of an external force proportional to |cn|2, this implies that the inter-
action of the added excess electron with the blocks is of a resonance
kind. This is most effective when its frequency, ωf, is close to the
harmonics of the oscillation frequency associated with the crystal lat-
tice. The latter is indeed assumed to be lower (see the details below in
Sec. III). For illustration, we shall consider the casesωf = 3 andωf = 2
(in dimensionless terms, the angular frequency ωf is two or three
times higher than the ωM of the crystal lattice bridge).

Before proceeding further, it seems convenient to introduce the
following change of variable:

gn = (
dwn

dt
+ iωfwn)e−iωf t , (12)

TABLE I. Values of the used parameters. Parameters in italics are not independent, but computed from others.

Parameters group Parameter Symbol Value or range

Bond between C4 units Equilibrium distance 1.4 Å
Dissociation energy D 3.65 eV

Force constant K 13 eV Å−2–20 eV Å−2

Stiffness Morse potential b 1.33 Å−1

Mass of the moving unit and associated angular frequency Mass of the moving unit M 8 × 10−26 kg–24 × 10−26 kg
Angular frequency ωM 4 × 1013 rad/s–5 × 1013 rad/s

Intersite electronic interaction Electronic interaction V0 0.78 eV
Rate of decay with distance αSL 2.6 Å−1

Effective on-site motion Mass mf 2 × 10−26 kg–4 × 10−26 kg
Force constant kf 60 eV Å−2

Angular frequency ωf 1.55 × 1014 rad/s
Electron–phonon coupling with the on-site motion El–ph coupling A 5.1 eV Å−1

Derived parameter A1 1–6
Derived parameter A2 90–200
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which, taking into account (8), yields

dgn
dt
= −A1∣cn∣2e−iωf t . (13)

From (12), we get

wn =
1
ωf

Im(gneiωft) (14)

that when inserted in the discretized Schrödinger equation (10)
gives

dcn

dt
= iτ[cn + 1eα(qn−qn + 1) + cn−1eα(qn−1−qn)

] − i
A2cn

ωf
Im(gneiωft

).

(15)

The modulus of gn determines the vibrational energy of nth
oscillator,

En =
1
2
(
dwn

dt
)

2

+
1
2
ω2
f w

2
n =

1
2
∣gn∣2. (16)

Now we have the complete set of equations to be inte-
grated: (4), (13), and (15), but before doing this, we have to spec-
ify realistic values of the parameters involved in the evolution
equations.

III. PARAMETERS AND THEIR REALISTIC VALUES
We have tried to estimate realistic values of the parameters,

adapted to the PDA case. They are listed in Table I. Some of them
are common literature values. For the other, in particular those cor-
responding to an effective motion, there is an uncertainty so that we
give a plausible range of values. Lines in italics in Table I correspond
to parameters that are not independent, but computed from others.
The details of this estimation and corresponding references are given
in the Appendix.

IV. RESULTS OF COMPUTER SIMULATIONS
FOR ELECTRON TRANSFER IN THE ABSENCE
OF EXTERNAL ELECTRIC FIELD (MECHANICAL
CONTROL OF ELECTRONS AT THE NANOLEVEL)

As described in Sec. II, we have the interaction of an added
excess electron with two “sub-lattices.” One is the basic crystal lat-
tice, otherwise denoted as the “bridge” with a 100 units (N = 100,
n = 1 to n = 100), and the other accounts for the additional on-
site motions of the N units. Since the electron is represented by a
wave function, we deal with a three-variable interaction process. As
expected, in such a Hamiltonian conservative system, the evolution
of the system depends on various features such as initial conditions,
including energy localization at the initial time, and parameter val-
ues for both the crystal lattice (bridge and on-site units) and the
electron. It also depends on the position of the soliton excitation and
the relative localization (TBA) to that of the electron at the initial
time. The case of an electron localized in the bridge at a site different
from that of the soliton has been thoroughly studied elsewhere.55,56

Furthermore, it has also been shown that if an electron is allowed
to completely delocalize by Schrödinger evolution, the latter leads to
uniform probability density along the lattice; generally, a soliton in
a Morse crystal lattice is able to trap the electron by reconstructing
its localization in a kind of “vacuum cleaner effect.”55,56 Thus here,
for simplicity, we shall concentrate on the case where both soliton
excitation and electron are initially localized at the same site in the
bridge. For the w-vibration of the on-site units, we assume equilib-
rium, and hence, they start being at rest in the absence of interaction
with the electron. Finally, we shall consider periodic boundary con-
ditions in the N = 100 lattice units bridge. That is, periodic boundary
conditions are used for all variables (q, v, w, c), meaning that when
a representative point reaches one of the diagram boundaries, say
the right one, it is transferred to the other opposite boundary of the
panel.

Thus, we take the following initial conditions for the bridge
units, positions qn and velocities vn, and the known analytical results
for a Toda lattice adapted to the Morse case:15–21

FIG. 5. Crystal lattice bridge (N = 100) location of soliton and electron. (a) Initial coordinates, qn (red, kink-like; its derivative is the hyperbolic secant square with κ = 1) and
velocities vn (green) of units at t = 0 in the bridge with the soliton centered at site N = 50. (b) Initial electron distribution probability density, |cn|2 (red with σel = 5), at t = 0
and subsequent state at t = 100 (green) after having returned from passage through the right boundary as we have periodic boundary conditions. For illustration, Eelectron
= −1.75 eV (electron-bridge interaction energy), Ew = 8.4 × 10−4 eV (excitation energy of the second sublattice averaged over t = 100 indicating that the electron perturbation
of this lattice is negligible), and Eelectron-w = 2.9 × 10−3 eV (electron–sublattice interaction, which is also quite small). Such values indicate that the electron interaction with
the sublattice is negligible, and hence, the bound state electron-bridge soliton (solectron) is not significantly altered for such a long time.
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FIG. 6. Electron transfer along the crystal
lattice bridge. Case |gn| = 0. (a) Evolution
of the velocities, vn(t) = dqn/dt. (b) Evolu-
tion of the electron probability densities,
|cn|2(t). Parameter values: V = 0.1, α = 2,
and τ = 23.

qn = qn+1 +
1
3

ln[1 +
β2

ch2
(κ(n − nsol) − βt)

], (17a)

β = shκ, (17b)

vn = q̇n, (17c)

where 1/κ defines the width of the soliton with an initial energy
εsol∼(sinh κ cosh κ−κ).15,16 For the electron wave function, we

assume, for simplicity, a Gaussian profile,

∣cn∣2 =
2

√

2πσel
e
− 2(n−nel)2

σ2
el , (18)

where σel characterizes the width of the distribution |cn|2 of the prob-
ability density to find an electron at nth site and nel indicates the site
number with maximal value of such probability.

FIG. 7. Pinned polaron. Initial conditions at t = 0: qn = wn = dwn/dt = 0 for all n. (a) Evolution of the velocities, vn(t), of units of the crystal lattice bridge without any initial
excitation; (b) “local” coordinates, wn(t), corresponding to on-site motions in the additional off-bridge sublattice; and (c) probability densities, |cn|2(t). Note that once the excess
electron is added, it binds to both the on-site vibration and the bridge excitation of neighboring units. The former process binding creates the pinned w-polaron, whereas
the latter process produces weak motions (kind of phonons) moving forward and backward along the bridge. Parameter values: V = 0.1, α = 2, τ = 23, A1 = 5, A2 = 120,
and ωf = 2.

FIG. 8. Solectron. (a) Evolution of the velocities, vn(t), of units of the crystal lattice bridge; (b) “local” coordinates, wn(t), corresponding to on-site motions in the off-bridge
sublattice; and (c) probability densities, |cn|2(t). Parameter values: V = 0.1, α = 2, τ = 23, A1 = 1, A2 = 110, and ωf = 3.
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Accordingly, in particular, we assume that at t = 0, in the crys-
tal lattice bridge, a soliton (17a)–(17c) is created and centered at site
nsol = N/2 = 50 with velocity vsol = 1.16 (in units of the sound veloc-
ity) and κ = 1 [Fig. 5(a)]. At the same time, an electron is created
with a wave function localized on a narrow cluster of sites symmet-
rically disposed around also nsol = N/2 with the Gaussian profile (18)
[Fig. 5(b)].

The system of Eqs. (4), (13), and (15) presents two extreme
opposite particular cases: (i) if all wn = 0, the on-site motions are
suppressed. It corresponds to the Morse crystal lattice with an added
excess electron, which may be trapped by the soliton and then trans-
ported along the bridge with formation of the solectron quasiparticle
with sub- or supersonic velocity. For example, if vsol ∼ 1.16vsound
(vsound is the sound velocity along the crystal lattice bridge), we can
consider it as a rather low-energetic excitation offering the possibil-
ity of subsonic solectron transport; hence, the electron transfers via
surfing on the soliton with velocity vslctr = 0.94vsound (Fig. 6), a result
already known.58 (ii) If A is large and, at the same time, V0 is small,
there is a strong tendency for the electron to self-trap at a given site,
thus giving rise to a pinned polaron [Figs. 7(b) and 7(c)]. If excited,
the soliton passage along the bridge does not bind the electron,
which is no longer sensitive to the inter-site elongations (through
the qn coordinates), rather couples to the wn motions (Fig. 4). In this
case, there is preponderance of the Holstein–Marcus type of cou-
pling. Then, it makes sense to call the corresponding quasi-particle
a w-polaron. Such a localized pinned polaron excites only weakly
phonons in the basic lattice bridge [Fig. 7(a)] if the latter is initially
unperturbed.

If now A1 = 1 and A2 = 110, one can observe a very stable solec-
tron propagating for at least a time interval up to Δt = 1000 and
attaining very long distances Δn = 900 with subsonic velocity, vslctr
= 0.9 (Fig. 8) exhibiting only small perturbations (Fig. 9). (Recall
that sound velocity corresponds to 1 site/time unit in the dimen-
sionless scale.) It appears that the on-site wn motions just follow the
perturbations of components of the wave function [Fig. 8(b)], but
have practically no influence on the dynamics of the solectron whose
velocity is only slightly subsonic. Later on we shall consider the range
of parameter values 1 < A1 < 6 and 90 < A2 < 200.

Further increasing values, when A1 = 6 and A2 = 160, a pinned
w-polaron is formed (Fig. 10) at the initial site where the electron is

FIG. 9. Solectron. Velocities, vn(t), of units of the crystal lattice bridge at the initial
time (t = 0, red curve) and at time t = 1000 (green locus) corresponding to the
panels in Fig. 8. One can observe that the soliton keeps its shape for quite a long
time as the related disturbances of the lattice outside the main component of the
soliton are small. Parameter values as in Fig. 8: V = 0.1, α = 2, τ = 23, A1 = 1,
A2 = 110, and ωf = 3.

placed, although an initially (moving) soliton has been created in the
crystal lattice bridge like in the preceding Fig. 8. The soliton seems
to travel “free” as apparently no electron has been trapped. However,
a detailed analysis shows that the initial soliton having a velocity
about 1.1vsound splits in two solitonic components both being slightly
supersonic, but with velocities lower than that of the initial soliton
(vsol1 ≈ 1.05 and vsol2 ≈ 1.005).

Suppose we maintain constant A2 = 120 and increase A1 in
the range 1 < A1 < 6, for how long the results depicted in Fig. 6
could survive? It appears that when A1 ≤ 2, a solectron forms and
travels for a long distance practically keeping its shape and veloc-
ity. Then, as A1 reaches the value 2 and proceeds to higher values,
one may note a difference in the evolution from the one illustrated
in Fig. 8. First of all, of the two solitons created from the initial
one (like in Fig. 8), one of them becomes a subsonic solectron
after binding an electron. Then, the velocity of that slow solectron
decreases while travelling [Figs. 11(a) and 11(b)], and the larger the
A1 parameter value, the faster the velocity decreases, as observed

FIG. 10. Pinned w-polaron. (a) Evolution of the velocities, vn(t), of units of the crystal lattice bridge; (b) “local” coordinates, wn(t), corresponding to on-site motions in the
additional out-of-bridge sublattice; and (c) probability densities, |cn|2(t). Parameter values: V = 0.1, α = 2, τ = 23, A1 = 6, A2 = 160, and ωf = 3.
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FIG. 11. Evolution of the electron probability densities, |cn|2(t), for varying values of A1: (a) A1 = 4, (b) A1 = 4.5, and (c) A1 = 5. The corresponding mean soliton velocities are
(a) 0.58, (b) 0.45, and (c) 0.35. Parameter values: V = 0.1, α = 2, τ = 23, A2 = 120, and ωf = 3.

when comparing Figs. 11(a) and 11(b). In particular, at time
t = 1000, the mean velocity is vav = 0.58 for A1 = 4 and vav = 0.45
for A1 = 4.5, respectively. Finally, sooner or later, the solectron
transforms into a w-polaron [Fig. 11(c), for A1 = 5]. (The irregular
shape of the time evolution of the w-polaron, not straight trajectory
as illustrated in Fig. 10, is of no significance because the polaron
now evolves in a perturbed lattice due to the periodic boundary
conditions.)

The results so far described seem to indicate that there is a
kind of bifurcation from solectron behavior to polaron behavior. We
may convene that a traveling lattice soliton deformation binding an
added excess electron ought to be considered as a solectron if its tra-
jectory is longer than half the bridge length, N/2. Then, we expect
a “bifurcation” value A1bif(A2) for each parameter value A2. In par-
ticular, A1bif ≈ 5.5 for A2 = 120. For illustration, we plot in Fig. 12
the loci of A1bif in the A1 against A2 plane for the values ωf = 3
and ωf = 2.

In view of the results found, we can safely say that the exis-
tence domain of solectrons, with different subsonic velocities, is
quite wide for ωf = 3 and rather narrow for ωf = 2 because the inter-
action of the added excess electron with the out-of-bridge units is

FIG. 12. Loci A1bif(A2) in the (A1, A2) plane delineating the existence domains of
solectron (below each curve) and pinned w-polaron (above each curve) for ωf = 3
(red curve) and ωf = 2 (green curve). Other parameter values: V = 0.1, α = 2, and
τ = 23.

strengthened due to resonance in the second case. Despite the pos-
sibility of the electron to “surf” on a moving soliton, thanks to the
tendency of the latter to bind/slave the earlier at the beginning of
the transient process, the electron rather tends to (polaronically)
interact with the off-bridge vibrating units thus leading to losing
energy.

V. TRANSPORT BEHAVIOR IN THE PRESENCE
OF AN EXTERNAL ELECTRIC FIELD

Let us now consider the action of an externally imposed electric
field. This is achieved by adding a corresponding term to Eq. (15).
Then, we have

dcn
dt
= iτ[cn+1eα(qn−qn+1) + cn−1eα(qn−1−qn)

]

− i
A2cn
ωf

Im(gneiωf t
) + inEcn, (19)

where E = E′(h/2π)ωM/σe with E′ being the dimensional field in V
m−1 and e denotes the electron charge. The evolutionary problem is
now composed of Eqs. (4), (13), and (19). Results of simulations are
provided in Fig. 13.

A. Results
(a) Figure 13 depicts the results obtained for the case presented in

Fig. 8 but for a shorter time lapse in the evolution, t = 50, for
the parameter values corresponding to the red star depicted
in Fig. 12: V = 0.1, α = 2, τ = 23, A1 = 1, A2 = 110, and
ωf = 3. It appears that the evolution of the (solectron) quasi
particle is not significantly affected by the presence of the
external electric field as the latter is not able to accelerate it.
Furthermore, the field is not able to extract the electron from
its bound state with the soliton. One expects, however, that
such an extraction would be possible for higher enough elec-
tric field strengths, but they are supposed to be experimentally
unachievable. Accordingly, we can conclude that vslctr is inde-
pendent on E in this case (Fig. 14). The first set of two panels
in Fig. 13 corresponds to E = 0 and the second set to E = 0.1
(note that the dimensionless value E = 0.1 corresponds to the
dimensional value E′ = 106 V/m).
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FIG. 13. Evolution of the probability den-
sity, |cn|2(t) (left) and |cn|2 at t = 0 (red)
and t = 50 (green) (right). Parameter val-
ues: V = 0.1, α = 2, τ = 23, A1 = 1,
A2 = 110, and ωf = 3.

(b) For the case of Fig. 7, with parameter values V = 0.1, α = 2,
τ = 23, A1 = 5, A2 = 120, and ωf = 2, we have observed that the
electric field, in the strength range 0 < E < 0.1, does not appre-
ciably alter the evolution of vn(t), wn(t), and |cn|2(t), which
justifies that we do not present new figures here.

(c) To complete the case analyzed above, let us consider now
the following sequence of excited crystal lattice soliton cases:
κ = 1.35 with vsol = 1.3, κ = 1 with vsol = 1.16, and κ = 0.5 with

FIG. 14. Electron transfer by solectrons illustrating the role of the electric field
strength over a wide range of electric field strength values: dotted blue, red, and
green lines correspond to vslctr against E for κ = 1.35 [vsol = 1.3 (Esoliton = 3.8 eV
in dimensional units)] to κ = 1 [vsol = 1.16 (Esoliton = 1.3 eV in dimensional units)]
and to κ = 0.5 [vsol = 1.04 (Esoliton = 0.15 eV in dimensional units)], respectively.
For reference, the pink line delineates vsound = 1 the linear sound velocity along
the crystal lattice. Parameter values: V = 0.1, α = 2, τ = 23, A1 = 1, A2 = 110, and
ωf = 3.

vsol = 1.04, recalling that 1/κ characterizes the width of the
soliton. To the above, we once more consider Eqs. (4), (13),
and (19), thus offering the possibility of forming a diversity of
soliton–electron bound states.

Figure 14 illustrates the results found. Focus on the dotted blue
line. It appears that a “highly energetic” soliton (vsol = 1.3; recall that
solitons are always supersonic) is able to bind an electron, thus lead-
ing to a solectron with velocity vslctr = 1.14. We have supersonic
electron transfer with the additional feature that electron transfer
is field independent up to a field strength value 0.1 corresponding
to the dimensional value 106 V/m. As earlier noted, in experiments
with PDA, Donovan and Wilson observed, on the one hand, trans-
port velocity value close to sound velocity being independent of field
for four orders of magnitude of field (102 V/m–106 V/m) and, on the
other hand, ultra-high mobility greater than 20 m2/V s.45–51 Focus
attention now on the red line. It corresponds to launching a “mod-
erately energetic” soliton (vsol = 1.16). Once more, there is a forma-
tion of a solectron, but this time with velocity vslctr = 0.94, which is
subsonic. Yet, the outstanding feature remains that electron trans-
fer is field independent up to the field strength value 0.1. Finally,
focus on the dotted green line corresponding to a “low energetic”
soliton launched, supersonic indeed, vsol = 1.04. Once more the soli-
ton is able to bind the electron forming a solectron with velocity
vslctr = 0.46 at E = 0. Clearly, the electron transfer velocity is sub-
sonic, yet its value is growing as the field strength increases but never
reaching the sound velocity in the range of values studied up to
E = 0.1.
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VI. CONCLUDING REMARKS

When an excess electron is added to a crystal lattice, it cre-
ates a mechanical disturbance that provides a polarization field able
to trap the electron. This classical self-trapping process was Lan-
dau’s seminal idea (originally proposed for ionic crystals),24 which
later got completed by Pekar25 and appropriately framed in the
electron (Schrödinger) quantum mechanics description by Fröhlich
et al.,26–31,51,52 and led to the polaron concept so useful for the devel-
opment of the quantum transport theory in solid state physics. Let us
emphasize that such a polaron concept builds upon the addition of
linear elasticity in the crystal (on-site vibrations and inter-site elon-
gations both governed by harmonic potentials) to the (Schrödinger)
quantum description of the electron. It is known that the limi-
tation to harmonic potentials does not permit explaining all fea-
tures of a crystalline solid and may not be valid to account for
certain cases of charge transport in a crystal lattice. The approach
explored in this paper is based upon the idea that adding nonlin-
ear elasticity to quantum mechanics may provide a useful gener-
alization of the polaron concept.56 Thus, in the simplest possible
approach, we have introduced anharmonic (Morse) interactions to
describe inter-site elongations while maintaining harmonic poten-
tials to describe on-site vibrations in a crystal lattice. We have
recalled that the Morse anharmonicity allows the creation of lat-
tice disturbances in the form of solitons, which are nonlinear waves
capable of supersonically traveling undeformed along the crystal.
Furthermore, we have argued that such waves are capable of trap-
ping added excess charges and hence allowing fast charge trans-
fer over long distances. The addition of an excess electron does
indeed lead to a polaron effect.53 Yet the fact that before adding
the excess charge, we have a robust wave carrier that can bind
the charge, in a form of mechanical control of the charge, is the
dominant ingredient of the theory applied in this paper. As an
illustration of this concept, we have considered a model for non-
dopable perfectly crystalline PDA crystals in order to offer an expla-
nation of two puzzling observations made by Donovan and Wilson
in transient photoconduction experiments in the presence of an
electric field:44–48 transport velocity value close to sound velocity,
being independent of the field for four orders of magnitude of the
field (102 V/m–106 V/m), and, in the low field values, an ultra-
high mobility, greater than 20 m2/V s. The model is a significant
improvement upon an earlier attempt58 by introducing Marcus for-
mulation, as we have considered here on-site vibrations in an ade-
quate description of the PDA structure, as schematically illustrated
in Fig. 4.

With respect to the earlier work,58 the question was as fol-
lows: “Will the introduction of the on-site motion destroy the
coherent motion characteristic of solectron propagation?” We found
that, for realistic values of the parameters adapted to the case
of PDA, the charge transport is still possible, giving support to
this hypothesis. Note that a key ingredient is the non-linearity of
the main lattice, which allows a coherent motion with a definite
directionality. Such a supersonic lattice soliton is different from
the subsonic one of the SSH theory42,43 as the latter originates in
the degeneracy of the ground state of their Hamiltonian for the
dopable tPA and related other messy, poorly crystalline materials,
which is not the case for the undopable perfectly crystalline PDA.
Finally, the possibility of “mechanical control of electrons at the

nano-scale,” which is the consequence of the soliton-assisted (solec-
tron) transport theory here used, offers universality. Indeed, besides
the application here described to PDA, it is expected to be applica-
ble for other materials whose stiffness and crystal vibrations permit
strong enough compressions capable of exhibiting nonlinear soliton
excitations.
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APPENDIX: PARAMETERS IN THE DYNAMICS
Parameters for the PDA polymer crystal are obtained from a

microscopic approach, and most of them are known from previous
studies. For those whose estimation is difficult, rather than a sin-
gle value, we shall consider a kind of mean/intermediate values in a
reasonable parameter range.

1. Parameters defining the basic crystal lattice
dynamics and the soliton propagation along it
a. Bond between C4 units

It is a Morse function with equilibrium distance 1.4 Å,
D = 3.65 eV, K = 13 eV Å−2, and b = 1.33 Å−1, the latter being
obtained from K and D by the relation K = 2Db2 (recall the note ear-
lier given about the linear force spring constant). These values come
from standard references for a single C–C bond84 and from Refs. 80
and 85 for the force constant. However, to cope with various uncer-
tainties and the mixed single–double character of the bonds, we shall
take the force constant in the range K = 13 eV Å−2–20 eV Å−2.

b. Mass of the moving unit
If we restrict it to the C4 group, assuming that the off-bridge

units are intermingled and cannot follow the basic crystal lattice
bridge motion, M = 8 × 10−26 kg. However, the off-bridge groups
could partially move, so we extend the range to a threefold value,
that is, M = 8 × 10−26 to 24 × 10−26 kg. With K = 13 eV Å−2 and
M = 8× 10−26 kg, the angular frequency ωM would be 5.09 1013 rad/s.
If rather we take a value in the estimated interval, such as K
= 16 eV Å−2 and M = 16 × 10−26 kg, then ωM = 4.0 × 1013 rad/s.

2. Parameters describing electron motion along
the lattice
a. Electronic interaction between C4 units (denoted
V0 or frequently t0)

It is obtained from a model calculation of two C4 units in inter-
action using standard quantum chemical programs.86 It gives V0
(or t0) = 0.78 eV.
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b. Rate of decay of the electronic interaction
with distance αSL

This parameter is the Peierls electron–phonon coupling. As
mentioned above, the dependence of the electronic interaction on
elongations is defined by a Slater exponential (3). From literature
values,87 we take αSL = 2.6 Å−1.

3. Parameters describing the “effective” on-site
motion
a. The moving mass mf

Since this an “effective” mode, it is impossible to assign with
certainty a value. Considering that this describes internal motions
of the C4 unit, we take a range of values from C to C2 and then mf
= 2 × 10−26 to 4 × 10−26 kg.

b. The harmonic force constant
It is taken as 60 eV Å−2, considering that 20 eV Å−2 is a standard

value for such bonds with a mixed double-single character85 and that
three of them are modified by the addition/removal of an electron.

c. The associated angular frequency
Using the values mf = 4× 10−26 kg and kf = 60 eV Å−2, the angu-

lar frequency for the harmonic oscillator motion is ωf = (kf /mf )1/2

= 1.55 × 1014 rad/s, i.e., about three times ωM . Note that with a
mean/intermediate estimate 3 × 10−26, one gets 1.79 × 1014. Then,
the ratio ωf /ωM = 4.5. In such a case with all other parameter val-
ues maintained as above, solectrons can be excited and survive in
the whole range of values of A1 and A2. If, however, ωf /ωM is about
unity, only pinned polarons are to be seen (see the discussion in
Sec. IV).

d. The Holstein-type electron–phonon coupling
constant

We take A = 5.1 eV Å−1 or 51 eV/nm. This value is estimated
from quantum chemical calculations86 giving a relaxation energy of
0.22 eV upon addition or removal of an electron on the C4 struc-
ture and considering that this energy is equal to (A2/2kf) (see Fig. 3).
From this value of A and the definitions of A1 and A2, the follow-
ing ranges are obtained: 1 < A1 < 6 with a mean/intermediate value
around 3 and 90 < A2 < 200 with a mean/intermediate value around
145.
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