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Abstract. Localized supersonic long-living nonlinear modes excited in triangular lattices of 
point particles interacting via potential Morse bonds are studied in a frame of a model with 
appropriately chosen bonds to rule out redundancy bonds. Numerical simulations on a base of 
Newtonian equations are performed to define configurations (coordinates and velocities of all 
particles) of steady-state (meta-stable) modes and their characteristics including in particular 
excitations being lump soliton-like.  
Keywords: 2D Morse lattice; solitons in adjacent rows; meta-stable states; track length; life 
time. 
  
  
1. Introduction  
Molecular lattices with nonlinear particle interactions and possessing rather simple structure 
are able to support long-lasting, high-energy localized excitations of both immobile and mobile 
type. They may be interpreted as waves of deformation which influence mechanical properties 
of materials. Also the mobile excitations (waves of deformation) can be considered as potential 
carriers of charged particles, electrons or holes (positive charges). Due to this, problems of 
excitations and dynamics of nano size localized modes in both one-dimensional (1d or quasi 1d 
chains or molecular wires) and two-dimensional (2d) nonlinear lattices are of great interest, in 
particular when excitations are supersonic.  

The 1d nonlinear lattice dynamics problem has been studied extensively by many 
researchers, following the pioneering work by Fermi-Pasta-Ulam [1], and subsequent works by 
Zabusky and Kruskal [2] and Toda [3]. The characteristics of fast solitonic waves have been 
analyzed in details. One should mention that soliton-like excitations (in short solitons) having 
supersonic velocities are expected to emerge on the background of low-frequency phonons. 
Other localized modes, so called discrete breathers (a.k.a. intrinsic localized modes), can be 
excited in a 1d lattice mainly when having on-site potential, with the exception of some special 
cases. In 2d lattices both discrete breathers and solitons may be excited as mobile modes in 
lattices without on-site potential. The characteristics of discrete breathers have been studied 
intensively (see, e.g. [4-12]). A peculiar type of high-energy supersonic solitons called 
crowdions [13] can be excited in a simple way, just by kicking a single particle along one of 
the crystallographic axes. However excitation of a crowdion carrying both energy and mass 
concentrated on the extra particle is associated with formation of a topological lattice defect. In 
order to avoid defect formation one can excite a quasi-1d soliton in one crystallographic 
direction of a 2d-lattice by assuming an initial excitation in a lattice with a form close to a 
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soliton in the underlying 1d lattice [14].  Such excitations do not cause emergence of permanent 
topological lattice defects. However, a supersonic soliton “radiates” energy to adjacent atomic 
rows. In case of high soliton velocity its energy has relatively small values due to the fact that 
the spectrum of frequencies of lateral excitations is located predominantly outside of the lattice 
phonon band [15-17] and small lateral perturbations are localized along the soliton path. 
Generally the track length of a quasi-1d soliton is limited to a few dozens of interatomic 
distances. In order to increase such length we may think about exciting solitonic modes in some 
(M) adjacent atomic rows. In such way a front of M-solitons is expected moving transverse to 
the given main direction of soliton motion. 
 
2. Model description 
A triangular lattice of point particles interacting via potential Morse bonds is studied by means 
of computer simulation. A molecular-dynamical ensemble model with complex variables 
Zn=xn+iyn is used. The latter are introduced to describe a position of n-th particle in  
the (x,y)-plane. The Newtonian or Langevin equations of motion are solved in computer 
simulations to describe the lattice dynamics at 0 K or at elevated temperatures [14-17]:  
  (1) 

 
Here Znk=Zn - Zk, znk=(Zn - Zk)/ |Zn - Zk|, Fnk(|Znk|) is an interaction force between n-th and 

k-th particles, γ is a friction coefficient, Dv is intensity of the chaotic force, ξnx,ny are independent 
sources of Gaussian white noise. Dv and γ connect with the noise by a fluctuation-dissipation 
relation, Dv equals to zero in a case of the cold lattice considered here. γ=0 stands for natural 
losses in a lattice not taken into account. Forces of interaction are described by modified Morse 
potential: 

 
 (2) 
 

where r = |Znk|, parameters D and b reflect the values of potential minimum depth and stiffness 
coefficient respectively, σ is an equilibrium radius of the Morse potential, parameters d and ν 
are chosen to provide negligibly small values of both potential and force at distances larger than 
a cut-off radius. Usually in our simulations the cut-off radius rcut = 1.5σ is chosen in order to 
provide interaction of each particle only with particles of the first coordination sphere.  

Both zero deviations of particles from equilibrium positions and zero velocities of all 
particles, excluding those involved in initial excitations are used as initial conditions. 
Simulations are performed in a cell with lengths Lx,y corresponding to geometry of a lattice and 
a number of particles N. Soliton-like excitations are defined initially in one or several atomic 
rows in accordance with the standard shape of solitonic excitations [2]  

 
 (3) 
 

where qn is a dimensionless displacement from an equilibrium position of n-th particle along 
one of crystallographic axes, vn is a corresponding velocity. Periodic boundary conditions are 
used. The characteristics of a soliton-like excitation are specified by parameters κ (where 1/κ 
corresponds to soliton width at mid-height) and amplitude A. In our simulations narrow high 
energetic supersonic solitons are considered (κ = 2, A = 1.5 – 2.4). One should note that for a 
soliton in 1d chain A=1 but in case of higher dimensionality the values of A should consider the 
compensation of bonds with particles in adjacent lattice rows.  
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3. Results of simulations  
First of all we should take into account that in case of high initial amplitude of a quasi 1d 
soliton-like excitation its “radiation” to adjacent rows is low because frequencies of the 
perturbations spectrum of the fast running soliton are higher than the critical frequency of the 
phonon band [15-17]. For this reason, initially excited soliton (Fig. 1a, b) first moves with low 
energy losses.  
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f) 
Fig. 1. Triangular Morse lattice. Distributions of density ρ (x,y) (a, c, e) and velocity modulus 

|vn| (b, d, f) at initial time t = 0 (a,b), at intermediate time instant t = 5 (c,d) and at the  time 
instant before disintegration of the quasi 1d soliton t=10 (e,f). N = 1600, bσ = 4, A = 2,  

κ = 1.5. The value bσ = 4 is chosen to be optimal one in a range of possible values of the 
stiffness coefficient b. 

 
Nevertheless as it moves the soliton velocity vsol decreases significantly. The radiation 

intensity increases with decreasing vsol value. The formation of a new localized excitation behind 
a soliton in the same atomic row has been observed (Fig. 1c, d). In 1d lattice this phenomenon 
of splitting of initial excitation which is not an exact soliton of the equation of motion defines 
a solitonic train. However in the considered case such splitted part of the initial excitation is 
breather-like. The process is terminated when the whole soliton disintegrates without the 
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formation of any topological lattice defect (Fig. 1e, f). One should note that the path length of 
such quasi 1d excitation is not too long. It increases with the energy of the initial excitation 
(amplitude A), see Fig. 2. However this pattern works in a limited amplitude range because of 
increase of lattice strain at high A values. 

 

 
Fig. 2. Triangular Morse lattice. Dependence of the localized solitonic excitation track 

length on its amplitude A. N = 1600, bσ = 4, κ = 1.5. 
 

One can increase the path length by exciting initial solitons in adjacent atomic rows in 
such a way that a fragment of a plane wave with a front transverse to the direction of solitons 
velocity can be formed (Fig. 3a, b). In this case first only external solitons affect the lattice 
significantly while the transverse motion of internal solitons is collapsed between external rows. 
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Fig. 3. Triangular Morse lattice. Distributions of density ρ (x,y) (a, c) and velocity modulus 
|vn| (b, d) at initial time t = 0 (a,b) and at an intermediate time instant t = 15 (c,d) with the 

excitation of M=5 solitons in adjacent rows. N = 1600, bσ = 4, A = 2, κ = 1.5. 
 

When external solitons loose considerable part of their energy and slow down, the next 
two internal solitons increase energy loss. It takes place while the initial excitation transforms 
to a state of quasi 1d soliton followed by further dissintegration. Of course the larger is the 
number of initially excited rows, M, the longer is the path length (Fig. 4). 
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Fig. 4. Triangular Morse lattice. Dependence of the localized solitonic excitation track length 

on the number, M, of excited solitons in adjacent rows. N = 1600, bσ = 4, A = 2, κ = 1.5. 
 
4. Conclusion 
A numerical study of quasi one-dimensional supersonic soliton-like excitations and soliton-like 
supersonic modes involving M adjacent atomic rows (M-solitons) propagating in a triangular 
Morse lattice has been performed. Solitons in adjacent atomic rows were excited in such a way 
that a solitary wave front is transverse to the close-packed direction along which the main 
soliton excitations move. It appears that the maximal distance the solitons can travel grows with 
increasing soliton amplitude, which in 2d must be higher than in 1d lattices. The maximal 
distance is not too long due to losses of energy, mainly, from the edges of the soliton-like wave 
front. Noteworthy is that such maximal distance travelled by the solitons increases with 
increasing M (the number of excited solitons).  
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