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Abstract. Under the umbrella of nano-mechanical control of electrons
in crystalline solids, provided here are i) a discussion of aspects of the
influence of static piezoelectricity on semiconductors, ii) a description
of electron surfing on traveling piezopotentials/surface acoustic waves,
iii) comments on the role of solitons in (dopable) polymer conduc-
tors/synthetic metals, and iv) the major component of these notes, a
discussion of basic aspects of lattice solitons and discrete breathers per-
mitting to understand genuine electron surfing on nanosolitons. This
surfing offers a form of long range, fast and robust transport process
in crystalline solids. The particular case of the undopable highly crys-
talline polydiacetylene polymer serves to illustrate the invention of a
novel solectron field effect transistor (SFET).

1 Introduction

Our sensations like touch, hearing or pain follow from the conversion of mechan-
ical stimuli into electro (chemical) signals along nerves/the neural system, from
mechanoreceptors to neurons. On the other hand, the minimal act for a chemical
“reaction” to occur is the transfer of an electron from one site (called it “donor”) to
another (called it “acceptor”). Referring to “crystalline molecular wires” (nanowires
or nanobelts; natural or synthetic DNA or other macromolecules) at the nano-level,
the mechanical control of electrons offers the possiblity of guiding electrons along them
with velocities that could be supersonic. The latter is expected when electrons surf
on lattice solitons [1]. Already using linear (albeit strong/high amplitude enough)
traveling piezoelectric waves as surface acoustic waves (SAW) the electron surfing
with sonic velocity has been observed though only over rather short distances on
homogeneous substrates [2–19]. Appropriate (linear or nonlinear) traveling acoustic
waves may help overcoming Anderson localization in (one-dimensional/1d) disordered
crystal lattices thus permitting electron transport [20]. Noteworthy is the spectacular
progress already achieved using the static linear piezoelectric effect in appropriate
semiconductors where electrons can be mechanically guided to offer the possibility of
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alternatives (nano-electric generators) to commonly used (e.g. 3V) batteries (which
if small have a short finite life span), and other electronic devices like piezoelectric
solar cells, light emitting diodes (LED), etc. [21–24].
In Sect. 2 the basics of piezoelectricity and its influence on semiconductors is suc-

cinctly recalled. It seems pertinent to highlight some achievements of significant tech-
nological potential in the linear world that piezoelectric-assisted mechanical control
of electrons at the nanolevel has produced; then open avenues for further progress
are easily seen when, in particular, we think of adding nonlinear dynamics or just
nonlinear relationships among effects. Section 3 is devoted to comments on electron
surfing on SAW; once more easily seen appear open lines of research. In Sect. 4 a
succinct discussion is provided about the possible yet not actual role of solitons and
electron surfing in conducting polymers. In Sect. 5 genuine electron surfing on solitons
in anharmonic crystal lattices is presented together with a sketchy discussion about
discrete breathers (aka intrinsic localized modes, DB/ILM) [25]. Finally, in Sect. 6
some concluding remarks are provided.

2 Static piezoelectric control of electrons and their transport
in semiconductors

In 1880, the brothers P. and J. Curie discovered that in natural crystals, such as
quartz, tourmaline, and Rochelle salt, “pressure” can generate electric charge. In 1881,
the term “piezo-electricity” was first suggested by W. Hankel, and the inverse effect
was deduced by G. Lipmann from thermodynamics principles. In the following three
decades the field of piezoelectricity was established, and by 1910, W. Voigt published
a standard reference monograph detailing the mechanical and electrical relationships
in piezoelectric crystals. (N.B.: there are thirty-two crystal classes, twenty-one of these
do not have a center of symmetry, and only twenty are piezoelectric).
Elasticity refers to the relationship between mechanical stress and strain. For

small stress-strains, most elastic materials, exhibit linear behavior (Hooke’s law).
Piezoelectricity is the electric polarization produced in certain materials in response
to an applied mechanical stress, hence a relationship between elasticity (strain in
the form of compression-stretching, bending or torsion) and electricity (exhibited in
the distribution of charges on the surface of the material). To a first approximation,
the electric polarization is proportional to the stress and its direction reverses if the
sign of stress changes. This direct piezoelectric effect is always accompanied by the
inverse piezoelectric effect which refers to the mechanical deformation (changes in
shape and/or size) caused by an applied electric field/voltage drop in these materials
(the direct effect is usually explored to produce sensors while the inverse effect is
used for actuation purposes). Clearly, the first approximation to piezoelectricity is
restricted to linear elasticity as well as linear mechanical-electrical relationship. Be-
sides the mentioned materials, certain ceramics, polymers, biological and some other
materials, insulators or semi-conductors, are piezoelectric.
Referring to static piezoelectricity the electronic and photonic communities are

particularly interested on it because materials like wurtzite-structured materials
(ZnO, ZnS, GaN, InN, . . . ) simultaneously exhibit semiconductor and photon ex-
citation properties. Their common crystalline specificity is the lack of the earlier
mentioned central symmetry which naturally produces piezoelectricity once the ma-
terial is strained, thus leading to a potential drop along the straining direction in the
crystal. The coinage of piezotronics (2007) and piezophototronics (2010) is attributed
to Z.L. Wang [21] who wanted to emphasize that one can utilize the deformation
imposed by a substrate to induce electric signals that can be used directly for con-
trolling, e.g., Si-based electronics thus permitting direct generation of digital signals



Mathematical Modeling of Complex Systems 923

and control using mechanical actions. In short piezotronics is for devices fabricated
using the piezopotential as a “gate” voltage to control the transport of electrons or
positive holes across a junction like a metal-semiconductor/M-S interface. Optoelec-
tronics corresponds to using electronic devices to produce, harvest and control light.
Electroluminescence and photovoltaics are two major effects adopted in optoelec-
tronic devices. Being reverse processes to each other, both utilize the p-n junction or
its derivatives to transfer energy between electrons, (positive) holes and photons. By
further introducing piezoelectricity into play, we have piezophototronics as a three
way coupling process with the piezopotential significantly enhancing the performance
of optoelectronic devices. Referring to electronics of standard use the functionality
offered by piezotronics and piezophototronics is a bonus to Si-based CMOS technol-
ogy. In particular, due to their versatile functionality and tunable semiconducting
properties, piezoelectric nanowires (NW, single or in piles) offer significant potential
for applications in electronic, sensing and energy harvesting devices. Micro electro
mechanical systems (MEMS) need low power, in the range of microwatts; accordingly
piezoelectric approaches are among the most common and practical in MEMS scale
energy harvesters. Finally, as a curiosity already operating at night clubs and rail-
way stations, note that in our environment there is much waisted mechanical energy
(dancing, walking). This ambient source of energy can be converted to useful electrical
energy by piezoelectric transducers [21–24].

Fig. 1. Piezoelectricity and (static) piezopotential. Left block panel: typical piezoelectric
response (voltage drop/piezopotential across opposite faces as shown in the right column)
due to compression (left panel) and stretching (center panel) along the longest axis of a ZnO
wurzite crystal of 600 nm height and 25 nm hexagonal side (compression-stretching, bending
and twisting all offer chances for piezopotential). Right block panel: predicted values for a
nanowire (100 nm in length and 50 nm in width) when applying a varying compression force,
f = 0, 100, 200 nN providing about 1V drop (adapted from figures in [21]; with permission,
courtesy of Prof. Zhong Lin Wang).

To make this section a bit more complete, albeit remaining at the qualitative level,
it seems pertinent to add a few more lines on how piezotronics works. At an M-S
interface the Fermi level of the latter will be aligned with that of the former, leading
to redistribution of charges at the junction area. Depending on the types of materials,
either Ohmic contact or Schottky contact (rectifying junction) may be formed. The
piezopotential modulates the interfacial energy at the junction area. The modulation
can be directly reflected by the effective resistance of the junction. Accordingly, the
strength of this effect is positively related to the ratio of the junction resistance to the
bulk resistance. Thus the Schottky barrier is the prerequisite for the piezopotencial
to control electrons at the M-S interface. By applying strain to the piezoelectric semi-
conductor, either positive or negative polarization charges are induced at the contact
interface. Taking n-type semiconductor as an example, positive polarization charges
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attract free electrons and decrease the level of depletion, leading to reduced Schottky
barrier height as well as its effective resistance; negative charges repel electrons and
increase the level of depletion, leading to increased Schottky barrier height as well as
its effective resistance. This is how the piezopotential modulates the electron trans-
port across the M-S interface. When two semiconductors are brought into contact
(n-n, p-p and p-n interfaces) their difference in Fermi levels will give rise to energy
barriers at the contact interface. For the same reason, if polarization charges are in-
troduced, the energy barrier height will be modulated accordingly.
Now let us turn to open lines of research. Four state variables are involved

in the piezoelectric relations: two from elasticity/mechanics (mechanical stress and
mechanical strain) and two from electricity (electrical field, and electrical displace-
ment or otherwise polarization or static piezopotential). Experimental data show that
the relations between these variables may not be linear, the high loading regime being
the obvious mechanical case. When linear, the corresponding constitutive relations
are derived from quadratic energy relations/Hamiltonian (which in the mechanical
part originate in harmonic interactions between atoms in a crystal). A general ap-
proach to establish nonlinear constitutive relations is to consider higher order terms
in the Hamiltonian or otherwise said building e. g. for mechanics upon anharmonic
interactions. In some materials (like GaAs and InAs) it has been established that
the piezopotential in response to crystal deformation has strong contributions from
second-order terms in such a way that linear and quadratic contributions have the
opposite effect on the electric field, and for large strains the quadratic terms even
dominate eventually leading to a sign reversal of the piezopotencial. This feature may
be significant for nanostructures (like ZnO nanowires), their functions like in energy
harvesting devices and their stability. It has been claimed [26] that nonlinearities
in the piezoelectric field in certain materials (heterostructures like wurtzite InGaN)
may lead to new areas of exploitation for optical devices such as quantum sources
of entangled photons or novel LED with significantly increased efficiency relative to
those commonly used today. Little has been explored along these lines of thought
[26–39]. Furthermore, hysteresis and creep are also among the mechanical nonlinear-
ities. Hysteresis means shortcoming, or delay. Creep is a time-dependent response to
a constant load over an extended period of time. In piezoelectric materials, hysteretic
phenomena could result in instabilities of devices, and, moreover, the time-dependent
behavior may happen under electrical and mechanical loads, items whose influence
is demanding serious exploration. It seems pertinent to alert about the interest of
exploring in depth the expected significant role at the nano-level of strain gradients
not considered here.
Also little research has been conducted to assess the role of adding an external elec-

tric field, a line of natural development for further novel and functional piezotronic
devices [40]. It seems worth recalling an observation made long ago. For “normal”
materials if one applies an electric field E along some crystal axis and measures the
current density j along the same direction, the Ohmic relation will be obtained so
long as E is sufficiently small. It was observed, however, that there appears a break-
down of linearity in the j-E characteristic for piezoelectric semiconductors such as
CdS and ZnO, -when E reaches some critical value Ec [41–43]. In a first exploration
Abe [44] realized that at such value of the field strength the drift velocity, vd = μE
(μ is the mobility) is approximately equal to the sound velocity. Since the materials
are piezoelectric semiconductors, there should exist a “piezopotential” acting on the
carriers, say electrons, which is generated by the lattice dynamics. If such potential
is of sinusoidal form then the electrons will find their places at the trough of the
potential so as to make the potential energy as small as possible (see Fig. 6 below).
Thus the electrons have a tendency to move through the crystal with the sound ve-
locity, surfing on the sound waves. If the drift velocity is below the sound velocity
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Fig. 2. Interatomic potentials (arbitrary units along the axes, just illustrating relative sizes).
Left panel: Lennard-Jones, Morse and Toda interactions. Center panel: stiffness of the Morse
or Toda potentials, as measured by a parameter b, from harmonic (b going to cero; b=0.01)
to “hard sphere” (b going to infinity; b=100) interactions. Right panel: harmonic (dotted
line) versus Morse potential illustrating, on the one hand, the lack of validity of the for-
mer when dealing with certain material characteristics like thermal dissociation, melting or
thermal expansion and, on the other hand, the “softnesss” of the latter as the equilibrium
lattice interatomic distance grows.

the electrons are accelerated by the sound waves so that energy of lattice vibration
is transferred to the electrons. Then the lattice is in a damping state and nothing
happens in the j-E characteristic. If, however, the drift velocity is greater than the
sound velocity, electrons should give their energy to sound waves, leading to insta-
bility of lattice vibration. This instability will manifest itself as an amplification of
sound waves. Actually some nonlinear mechanisms (nonlinear piezoelectricity, anhar-
monicity of lattice vibrations, nonlinear terms for current density) must make the
(exponentially) growing amplitude saturating to a finite value; otherwise the crystal
will break down. Then the electrons will pile up in the potential troughs and move
with sound velocity. Consequently the current density is constant independent of E
when the drift velocity exceeds the sound velocity. More on electron surfing on (sur-
face) acoustic waves in Sect. 3, and in Sect. 4 the role of anharmonicity in the crystal
lattice dynamics is considered leaving out piezoelectricity.
Finally, thinking about novel research possibilities offered by e. g. synthetic ma-

terials it seems pertinent to recall that the cubic interatomic potential is typical
of crystals lacking central symmetry which is a must for piezoelectricity to exist,
as alreay noted. Then referring to the soliton-bearing Boussinesq-Korteweg-de Vries
(B-KdV) equation [45–47] it is to be noted that such potential underlies its dynam-
ical system description. Its repulsive part does not appreciably differ from that of
the Morse or the Toda potentials, the latter, like in the case of the cubic potential,
not being physically acceptable in its attractive part (Fig. 1). There is more on using
these potentials in Sect. 5.

3 Traveling piezopotential and the electron surfing on surface
acoustic waves (SAW)

Linear and nonlinear SAW have been intensively studied since the pioneering works
of Lord Rayleigh (1885) and A.E.H. Love (1911) [13–19]. A propagating SAW along
a (linearly elastic) homogeneous substrate does not experience dispersion. However,
most materials are not perfect and hence dispersion eventually spoils linear wave
propagation beyond a rather short path. On the other hand, dispersion can be tuned
according to needs if over a given material is deposited a layer of another material
with appropriate thickness. If the underlying substrate is elastically nonlinear then the
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Fig. 3. Linear versus nonlinear waves. Schematic view of the space-time evolution, along
a crystal lattice nanobelt, of a linear wave (left panel) and a nonlinear wave, eventually a
solitonic wave (right panel). Starting with the same initial condition on the left (a) we see
the fate of the linear wave due to dispersion whereas on the right (b) we see how nonlinearity
permits piling up, hence selforganization, to a level that eventually is maintained “as long
as we wish” (using the appropriate substrate, i.e., appropriate potential among the units in
the lattice or otherwise appropriate heterostructures as discussed in the main text).

Fig. 4. SAW, cnoidal, periodic nonlinear wave typical solution of the B-KdV equation as
observed by Nayanov [15] on an heterostructure fomed by GaAs substrate covered by a thin
film of SiO added by evaporation (courtesy of V.I. Nayanov).

Fig. 5. SAW excitation and detection by differential interferometry. Either a beam from a
single laser shining at two different spots along the path or two laser beams at a single spot
permit the characterization of the SAW (adapted from a figure in [17]).

SAW produced could be a nonlinear wave eventually a solitonic wave. The latter is the
kind of wave that can travel over “long distances” without altering its characteristics
and with supersonic speed. Those characteristics can be modified applying electric
fields or varying temperature as well as playing with the type and dimensions of the
herterostructure used. Figure 3 illustrates the expected evolution of both a linear and
a non-linear wave along an (ideal, quasi-one-dimensional) crystal lattice nanobelt.
Nayanov [15] used a substrate made of LiNb03 covered by a thin film (50 nm) of

SiO deposited by evaporation. Starting with an initial sinusoidal wave he observed
the evolution to a typical nonlinear wave very much like the kind of cnoidal periodic
solution of the B-KdV equation [45–47]. Indeed, the combination of the substrate
and the added film on top of it permitted balancing nonlinearity and dispersion.
He also observed other wave forms. Hess and collaborators [16–19] used a variety of
heterostructures and played with the appropriate nonlinearity of the material and
the dispersion introduced by an additional film, considering both cases of normal and
abnormal dispersion (long waves travel faster/slower than shorter ones, respectively).
They followed the evolution of the SAW by using a set-up as schematized in Fig. 5
and observed a variety of nonlinear wave forms.
The invention of the interdigital transducer (IDT, 1965) [48], permitting conver-

sion of electric signals in SAW and viceversa, has opened means of benefiting from
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Fig. 6. SAW. Electron surfing on mechanical/surface acoustic waves. Left panel: artistic
depiction of a SAW on a heterostructure with and added upper film of thickness d. Right
panel: only with long lasting, strong/high amplitude enough traveling piezopotential waves
electron surfing and hence electron transport is possible (adapted from a figure in the 1999
AIP free access archives).

Fig. 7. SAW ping-pong table. SAW (most surely already a nonlinear wave) with surfing
electrons have been observed traveling back and forth between two quantum dots (LQD,
RQD) (adapted from a figure in [13]).

the controllable delay of five orders of magnitude in the propagation speed of linear
acoustic waves relative to electromagnetic waves (note that a piezoelectric crystal
is, in fact, an electromechanical transducer and that high voltages may bring only
tiny changes in the size of the crystal). Following the pioneering work of several au-
thors (since at least 1982) [2,3]) and, in particular, A. Wixforth and colleagues [4–9]
two experiments in 2011 have given “celebrity” to electron surfing in piezoelectric
materials [10,11]. The experiments so far known are limited to using linear waves
on perfectly homogeneous substrates. Figure 6 offers a schematic, artistic view of
electron surfing on SAW, illustrating the role of wave amplitude (in the polarization
field/traveling piezopotential). Wixforth and colleagues have profited from the five
orders of magnitude delay in the speed of sound relative to electromagnetic waves for
a variety of electronic purposes by using a double IDT (emitting-receiving) set-up,
similar to the one depicted in Fig. 7, with one and the same signal splitted along two
different paths, one mechanical along a material and the other traveling in free space.
The experiments of Meunier, Ford and collaborators [10–12] on GaAs substrates

permitted the transfer of one or more electrons (single or pairs) from one quantum
dot to another having in mind possibilities offered by SAW for quantum computa-
tion devices (thus incorporating spins). As my purpose was simply to illustrate how
electrons can be mechanically controlled using traveling piezopotentials I shall not
dwell here on their electronics achievements thus referring to their papers. Suffices
for fun presenting Fig. 7 which illustrates the kind of ping-pong game they played
with electrons going back and forth from one quantum dot to another, as earlier also
done by Wixforth. This game and other achievements should be better played over
quite long paths using nonlinear soliton waves of tunable speed.

4 Conducting polymers/synthetic metals and (topological) solitons

Conducting polymers belong to an affordable economically huge electronics technol-
ogy that permeates our daily life. Yet everything started with the accidental, not
exactly serendipitous, discovery of the “metallic” aspect of the paradigmatic, albeit



928 The European Physical Journal Special Topics

Fig. 8. tPA, cisPA and PDA illustrating dimerization (consequence of Peierls’ instability
for an infinitely extended crystal lattice; a gap (ca 1.4 eV) opens between the valence and
the conduction bands and the polymer is a semiconductor). At each corner there is a CH
group. Roughly a single bond contains one σ, a double bond one σ and one π, and a triple
bond one σ and two π. More bonds make their total length shorter and stronger.

of not practical use, transpolyacetylene (tPA; it is easily oxidized under standard
atmospheric conditions, it easily decomposes when heated instead of melting, it is
easily affected by acids and electric fields tend destroy its dimerization/conjugation)
[49–59]. Since then quite many papers (well over a thousand) have been published
dealing with a rich variety of conducting polymers (otherwise denoted as synthetic
metals).
Figure 8 provides a schematic representation of tPA, cis-polyacetylene (cis-PA)

and polydiacetylene (PDA) in their ground state. In lattice terminology the units
are π-electrons (a block with single and double bonds between CH groups) whereas
σ-electrons provide the stable backbone (not really affected if one π-electron goes
away; though the π-electrons are weaker and more delocalized than the other they
may be thought of as a practically “submerged” in a larger sea of σ-electrons).
Focusing on tPA we note that the single bond is longer than the double bond,
L1>L2 (approximately L1 = 1.44 Å, L2 = 1.36 Å; in energy terms a single bond
is ca 3.6 eV and a double bond ca 5 eV hence shorter and stronger). As the orienta-
tion of the bonds is twofold there is degeneracy of its ground state. Hence a defect is
the only possible way of joining them (both configurations belong to the same energy
level; Fig. 9). This defect is a kink (aka topological soliton of zero charge and spin
1/2 as there is an impaired π-electron; though it contains one electron it is a neutral
free radical). When a π-electron is removed by e.g. doping by oxidation the defect
remains and hence the soliton becomes positively charged (p-doping; it leaves a posi-
tive hole albeit with zero spin/radical cation) while reduction adds a second electron
to the defect, giving it a negative charge (n-doping) but still zero spin. At variance
with conventional materials this symmetry breaking of the charge-spin relationship
is specific to “infinitely extended” systems with degenerate ground state. Figure 10
illustrates the movable character (translational invariance) of the soliton as well as
that of a polaron, the latter being the bound state of a charged soliton and a neutral
soliton; when two charges with opposite spins are trapped or lost thus leaving two
positive holes the excitation becomes a bipolaron).

The basics of tPA dynamics is beautifully contained in the so-called SSH
Hamiltonian whose core is a harmonic lattice backbone augmented with the evolution
of an added excess charge in the tight binding approximation (TBA) [52]:

H =
∑

n,s

(
tn−1,na+n+1,san,s + h.c.

)
+ (K/2)

∑

n

(un+1 − un)2

+(M/2)
∑

n

(dun/dt)
2
(n = 1, . . . , s = ±1/2) , (1)

where un accounts for the distorstion (relative to equilibrium) of the nth unit (single
and double bond together) along the lattice (ca 0.04 Å). There is an additional factor
un = (−1)nu to account for the dimerization. This degeneracy of the ground state
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Fig. 9. tPA. Defect/kink/topological soliton: Due to the degeneracy of the ground state
its two dimerized configurations (upper panel) join via a defect (dotted peak). The center
panel illustrates the corresponding charge density wave peaked at the defect. The bottom
panel illustrates the defect as a tanh-like topological soliton when plotting the values of the
so-called “alternation” parameter (L1-L2)/[(L1+L2)/2] around the defect.

Fig. 10. Soliton and polaron in tPA. Left panels: movable/translationally invariant soliton
(neutral, no charge transport). Right panels: movable positive hole polaron. Similar figures
are for charged (electron or positive hole) solitons and for an electron polaron (which is the
lowest energy excitation in tPA).

Fig. 11. tPA (dc) conductivity versus doping fraction (adapted from [52,53,60,61]).

(Fig. 9, upper panel) is incorporated by completing (1) with a double well quartic
potential. Then the soliton solution of such (nonlinear) SSH dynamics comes naturally
as φn = tanh[(n− n0)a/ξ], centered at n0, with n going to plus and minus infinity; ξ
is its reticular extension (Fig. 9, bottom panel). K(ca 20 eV/ Å2) is the elastic (linear,
Hooke) constant of the σ “springs” (in the potential energy) andM(ca 10−23 g) is the
mass of the CH unit (in the kinetic energy). The operators a+n,s/an,s create/annihilate
a π-electron of spin s at the nth CH site. The factor tn+1,n = t0−α(un+1−un), t0 to
first approximation in the TBA, estimates the energy for a nearest-neighbor hop (the
matrix elements account for overlapping or hopping integrals in the kinetic energy
of the π-electrons); t0(1–3 eV) is the value prior to dimerization and α(ca 4 eV/ Å)
estimates the electron-phonon (lattice) interaction following dimerization (before its
value is zero). The quantities t0 and α parameterize the Coulomb repulsion among
π-electrons. Since a+n,san,s annihilates an electron on site (n) and creates one on site
(n+ 1), in this way an electron moves (hops) from site (n) to site (n+ 1). Thus the
first term of (1) represents the kinetic energy of the π-electron.

Figure 11 depicts experimental data on the (dc) electric conductivity, going
from about 5 × 10−5 S/cm, a practical insulator when undoped, to become a good
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(synthetic) metal as the doping fraction is increased. Yet an open question still re-
mains many years after the discovery of conducting polymers: what the actual trans-
port mechanism is. In view of the soliton solution of the SSH dynamics (Fig. 9) the
first idea was that transport could have been with charged solitons, later on the sug-
gested carriers were polarons and even bipolarons (hence transport via bosons) [55–
58]. Noticeable is that, at variance with metals, the conductivity of tPA (and others)
increases with increasing temperature, a fact that still is in demand of a satisfactory
explanation. In view of the messy structure of tPA as a bunch of interlaced “fibrils”
(like spaghetti), as shown with high resolution electron microscopy, another idea was
that transport was saltative from one fibril to another and so on, and hence essentially
three-dimensional; even the fibrils were supposed to be formed of fine metallic balls
linked together [56]. For light to moderately doped samples Mott’s variable range
hopping [62–64] seems to work but no one mechanism seems to apply to tPA over the
whole range of doping. I come back to the SSH Hamiltonian and to the concept of
genuine soliton-assisted charge transport in the next section.

5 Lattice solitons and dicrete breathers (DB/ILM). Electron
surfing on anharmonic crystal lattices

5.1 Nanoscale lattice solitons and discrete breathers

The study I wish to refer now, albeit in succinct presentation, is based on a “natural”
extension -still in 1d- of the SSH Hamiltonian, obtained by replacing the harmonic
backbone lattice intersite potential with the Morse potential or some other similar
anharmonic one:

Hlattice =
∑

n

[(
p2/2M

)
+ V (r)

]
, (2)

where, as in (1), referring to lattice units/“atoms”/sites, p, M and r denote, respec-
tively, momentum, mass of unit “n” and interatomic distance. For Morse interactions
we take:

V (r) = (a/2b)
(
e−2br − 2e−br) = D (e−2br − 2e−br) , (3)

where D is the potential depth (or dissociation energy; D = a/2b, with a and b
denoting, respectively, the linear Hooke elastic constant and the (anharmonic) stiff-
ness of the intersite “springs”) (Fig. 2). The lowest order hence harmonic vibration

is ωM = (ab/M)
1/2
=
(
2Db2/M

)1/2
. Referring to relative intersite motions we set

qn = b (un − σ), with σ, here the equilibrium value (ca 1–3 Å). The qn may not be
limited to infinitessimal elongations and could go beyond, say, 0.04 Å. To be recalled
is that in 1d the kinetic energy is twice the potential energy.
The dynamical system (2)–(3) is integrable for the Toda interaction (Fig. 2).

For the non integrable case with Morse interaction the solution has been obtained
numerically and the results are within ten percent error relative to the exact Toda
solutions found analytically [45]. Note that solitons are predicted in the slopped region
of the specific heat (at constant length), versus temperature, past the Dulong-Petit
plateau (Fig. 12, right panel). This result is confirmed by the computation of the
dynamic structure factor (frequency spectrum of the correlations between density
fluctuations for a given wave vector in the crystal) (Fig. 13), a typical quantity for
experiments with thermal neutron scattering.
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Fig. 12. Specific heat at contant volume/length. Left panel: predictions of Einstein and
Debye theories (the latter agreeing with experiment at low temperatures) ending in the
classical Dulong-Petit plateau at high enough temperatures (curves rescaled with their cor-
responding Debye and Einstein temperatures). The right panel illustrates, for a Morse lattice,
the Dulong-Petit plateau and its continuation as the temperature increases on the way to
melting. It is along the slopped region (0.1–1) where solitons are predicted for a Morse
(and also a Toda) lattice agreeing with the prediction of the dynamical structure factor as
depicted in Fig. 13. Along the abscissa T is rescaled with the well depth of the potential
(see main text).

Fig. 13. Morse lattice. Dynamic structure factor (suitably rescaled for illustrative purposes)
versus frequency as a function of increasing temperature below (left panel) at (center panel)
and above (right panel) the expected transition, along the slopped region in Fig. 12, We can
observe the transition from phonons to a messy background where the soliton emerges in
a Toda or Morse lattice (highest peak at extreme right). The value “1” along the abscissa
indicates the dimensionless sound velocity and hence the soliton appears with supersonic
speed (adapted from figures in [66]).

Fig. 14. Morse lattice (2)–(3). The upper portion in the left panel corresponds to three
atoms compressed to being quite near to each other whereas in the right panel the corre-
sponding compression is weaker and affects only a couple of atoms. The middle rows show the
atoms along the lattice. The lower portions of the panels depict the corresponding traveling
polarization field. Further details are given in the main text (compare to SAW piezopotential
in Figs. 4 and 6).

Although further below the complete classical-quantum dynamics of the problem
is explictly provided it seems pertinent before doing this to introduce just a phenom-
enological first approach, built upon the classical Drude-Lorentz theory, in order to
compare with what was earlier presented about SAW (though no piezoelectricity is
invoked in this section) [65,66]. For an added excess electron to the ions in the lat-
tice, Fig. 14 qualitatively shows the electric polarization field consequence of a local
compression along the horizontal axis y. In the reference frame of the atoms, the
lattice deformation appears as a soliton correlated to a polarization wave which is
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very much like the SAW earlier described (Fig. 6). There is a difference; here there is
a “single” deepest well/trough whose depth depends on the actual finite amplitude
local lattice compression (stronger in the left panel relative to the right panel). Oth-
erwise all the troughs would have the same depth and would be placed one at each
atom site. If atoms were considered moving (cion to the right) then the solitonic wave
moves (cwave) in the opposite direction to that of the overall atomic motions. Such
a behavior is quite the same as that of the solitonic bore wave (hydraulic jump) in
a river which travels upstream while the water flows downstream towards, say, the
sea (recall Figs. 9 and 10). Here the added, excess electron would fall in the deepest
trough and, only in it, would be moving bound to it as a surfing motion. In the SAW
case electrons are transported/surf trapped using each and every single trough of the
traveling piezopotencial.
As noted above, the interaction considered in the Hamiltonian (2)–(3) refers to

change in relative intersite distances and hence longitudinal motions. Noteworthy is
that the particular Morse potential (3) is a “soft” potential in the sense that when
widening the intersite/atomic separation it is of weaker strength than the linear
Hooke/harmonic spring. Or otherwise said the frequency of small amplitude oscil-
lations around the minimum decreases with increasing amplitude. The converse case
is considered as a “hard” potential. It turns out that discreteness in a lattice provides
bounds and gaps to the spectrum of linear oscillations whereas nonlinearity makes
the amplitude of oscillation frequency-dependent. The combination of discreteness
and nonlinearity has led to the finding of a form of local excitation denoted intrinsic
localized mode (ILM) or otherwise said discrete breather (DB) [25,67–79], a surpris-
ing finding as the lattice might be quite perfect defect less. DB could be mobile,
subsonic or otherwise, pinned or even impossible depending on parameter values in
the potentials. Inside the phonon band DB/ILM are not possible since any reso-
nance of their harmonics with the extended phonons will radiate the DB/ILM away.
They can only appear below or above the phonon band. Accordingly, they cannot
decay by emitting linear radiation/phonons. (N.B.: Following [74], “a DB is a lo-
calized, oscillatory excitation that is stabilized against decay by the discrete nature
of the periodic lattice”; “an ILM is an excitation that is localized in space by the
intrinisic nonlinearity of the medium, rather than by a defect or impurity”; a more
comprehensive mathematical description is given by Iooss and James [75]). This is
at variance with common lattice solitons, corresponding to atomic lattice longitu-
dinal elongations, which are generally supersonic moving localized excitations like
those exhibited by the Toda or Morse lattices [45–47]. If to longitudinal elongations
we add onsite vibrations and, accordingly, we add an onsite potential at each lat-
tice site then the picture becomes rich of possibilities. For instance localized modes
could be pinned or mobile depending not only on parameter values in the absolute
sense but also on the ratio of the stiffness and depth of the intersite and onsite
potentials involved in the dynamics. DB/ILM are to be expected when strong on-
site potentials compete with weak intersite interactions as the latter may allow one
kind of “opportunistic”/selfish or cooperative atom (think about spontaneous fluctu-
ations) to start profiting from the support of the neighboring others to grow above the
rest.
In view of the above a series of numerical experiments have been conducted with a

lattice whose dynamics is governed by intersite elongations obeying Morse potentials
and onsite vibrations also obeying Morse potentials, albeit with controllable ratios
of spring stiffnesses and potential well depths. Figure 15 illustrates the supersonic
traveling soliton found when the onsite potentials are switched off, whereas Fig. 16
illustrates the extreme opposite case when the intersite potentials are practically
switched off and a pinned DB/ILM appears. The space-time evolution of localized
excitations between these two extreme cases has been provided in Ref. [80].
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Fig. 15. Typical lattice soliton in a 1d lattice with only intersite Morse interactions (and
periodic boundary conditions). The upper panel shows the actual motion along a lattice of
two hundred units during two hundred time units (made dimensionless using as scale the
inverse of the harmonic vibrations around the minimum of the potential well). Lower panels
illustrate, from left to right, the velocity as a defining quantity at time instants t = 10, 20
and 50, in appropriate dimensionless units (see main text). Motion is supersonic with value
1.05 the sound velocity (adapted from figures in [80]).
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Fig. 16. Typical DB/ILM in a 1d lattice with strongly dominating onsite Morse interactions
(and periodic boundary conditions). The upper panel shows the actual motionless character
of the local excitation. The lower panels show how there is local periodic alternance between
a maximum and a minimum as time proceeds, for time instants t = 0.1, 1.2 and 2 in
appropriate dimensionless units (see main text) (adapted from figures in [80]).

5.2 Electron surfing on nanoscale lattice solitons

Focusing on lattice solitons with (2)–(3), then for the electron again the TBA is used,
see Eq. (1). In terms of probability density coefficients we have:

He =
∑

n

En (qn) cnc
∗
n −
∑

n

Vn,n−1 (qn)
(
cnc

∗
n−1 + c

∗
ncn−1

)
, (4)
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with

En = E
0
n + χ0qn + χ1 (qn+1 − qn−1) + . . . and Vn,n−1 = V0 exp [−α (qn − qn−1)] ,

(5)

where following Slater the matrix elements (overlapping or hopping integrals between
nearest-neighbors) are taken in exponential form [81,82]. Clearly, Taylor expanding
(3) and (5) and inserting the first approximation in (2) and (4) we get the core SSH
Hamiltonian (1). The parameter α regulates how much the Vn,m (En,min (1)) are
influenced by the corresponding intersite separations, (qn − qn−1). In the simplest
case it is enough to account for the compound product αV0 (earlier αt0 in (1)). The
case α = 0 was considered by Davydov and numerous other authors to discuss models
for charge transfer in proteins and other biomolecules albeit with not much realistic
success [83–85].
To make the description of universal value all quantities can be rescaled (marked

with tilde) using new units. Thus we set V = V0/2D, α̃ = α/b, τ = V0/hωM ∼ 10−20
and ε0n = E

0
n/hωM . Accordingly, in terms of energy we have:

En =
[
ε0n + χ̃0q̃n + χ̃1 (q̃n+1 − q̃n−1)

] |cn|2

−2τ
∑

n

Re (cn+1c
∗
n) exp [α̃ (q̃n − q̃n+1)] . (6)

In what follows we delete the tilde, for simplicity. Then from the complete Hamiltonian
(2)–(4) the following equations of motion are obtained:

d2qn/dt
2 = [1− exp (qn − qn+1)] exp (qn − qn+1)
− [1− exp (qn−1 − qn)] exp (qn−1 − qn)
+ 2αV

{
Re
(
c∗n+1cn

)
exp [α (qn−qn+1)]−Re

(
cnc

∗
n−1
)
exp [α (qn−1−qn)]

}

+ (V/τ) [−χ0 |cn|2 + χ1(|cn+1|2 − |cn−1|2)], (7)

i (dcn/dt) =
[
ε0n + χ0qn + χ1 (qn+1 − qn−1)

]−
τ {cn+1 exp [α (qn − qn+1)] + cn−1 exp [α (qn−1 − qn)]}
− (n− nel)Ecn. (8)

The latter is the lattice discretized Schrödinger equation. For completeness we have
added an external electric field, with E and Ê such that E = (hωM/σe)Ê(V/m) (no
confusion expected with former use of the same symbol to denote energy). It seems
clear that the the external electric field is capable of altering the lattice dynamics and
hence affecting acoustic excitations (waves, phonons, solitons) in the system.
The Eqs. (7) and (8) are a mixed classical-quantum system that is to be inte-

grated using periodic boundary conditions, qN+1 = q1 and dqN+1/dt = dq1/dt, and
initial conditions, recalling the conservative character of the dynamics and the prob-
ability density constraint for the electron

∑
n |cn|2 = 1. To a first approximation we

can restrict to χ0 = χ1 = 0 and ε
0
n can be eliminated by rescaling the reference en-

ergy level. Quite many results have been obtained for such a dynamical system (and
its extensions to 2d geometries) [65,66,86–91]. Suffices now to say that following a
short transient quickly the electron of (8) (in probability density) is trapped by the
soliton wave of (7) thus forming a bound state which has been denoted a solectron.
The latter is the natural generalization of the commonly used polaron concept (and
charge carrier). It is just another form of expressing the electron surfing on the me-
chanical, acoustic lattice soliton wave, very much as in the above mentioned cases of
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Fig. 17. Separate evolution of soliton in a Morse lattice (left panel) and of an electron (right
panel) as provided by Eqs. (7) and (8) when α = V = 0. Initially both are localized at site
200. The soliton evolves almost unaltered whereas the electron peaked at the intial time
“uniformly” spreads all over the lattice in accordance with Schrödinger equation (adapted
from figures in [86]).

Fig. 18. Morse lattice. Alternative view of the process described in Fig. 17 (extreme left and
center panels) accompanied by the predicted evolution (extreme right panel) of the soliton
(initially placed at site 25) and the electron (initially placed at site 50) first when α = V = 0
and subsequently (extreme right panel) when α and V are non vanishing. It appears that
the soliton gathers the tiny (practically) uniform electron probability density piling it up to
a peak around itself (kind of vacuum cleaner process) and then travels as a solectron bound
state.

Fig. 19. Morse lattice. Space-time trajectories of the soliton and the electron when the
former is placed at sites 200, 300 and 400 whereas the latter is always localized at site 200
at the initial time. Following a short transient the soliton manages to catch the electron (in
probability density) thus forming the solectron bound state. Needless to say there is also a
polaron process which we do not consider here for simplicity (adapted from figures in [86]).

electron surfing on traveling piezopotential waves and SAW. To be noted is that the
soliton exists alien to the presence of an excess electron which is at variance with the
polaron concept where it is the electron that selftraps thus creating the new charge
carrier. In the present case there is indeed the action of the two influences, polaronic
and solitonic [88]. Figure 17 illustrates how a soliton and an electron evolve sepa-
rately. Figures 18 and 19 depict how a lattice soliton and an (excess) electron evolve
in space and time either separately (Fig. 18, extreme left and center panels) or bound
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Fig. 20. PDA. Left panel: perfect crystals of mm size. Right panel: PDADCH high resolution
electron microscope picture with 1.2 nm separation between lines (courtesy of E.G. Wilson).

together forming a solectron (extreme right panel). Indeed if the Schrödinger equation
is integrated separately alone (α = V = 0), the electron as time proceeds “diffusively”
becomes delocalized all over the lattice ring (Fig. 18, center panel). Then when, after
the delocalization is established, α and V are switched-on, hence nonvanishing, soon
the electron becomes trapped by the lattice soliton as the latter forces reconstruction
of a peaked electron probability density around itself in a kind of “vacuum cleaner”
process (Fig. 18 extreme right panel).

5.3 Electron surfing on nanoscale lattice solitons in PDA and related crystalline
polymers and the solectron field effect transistor

In 1987 PDA was included in the list of most important conjugated polymers. It
was unique in offering magnificent crystals of mm size (Fig. 20, left panel). Added
to PDA are its sulfonate derivatives PDATS [(=CR-CtC-CR=)n, t: triple bond,
R:-CH2-O-SO2-C6H4-CH3] or PDADCH (the lateral group DCH contains di-N-
carbazolyl). As the right panel of Fig. 20 shows, PDADCH is indeed a polymer
comprised of π-conjugated carbon chains, perfectly parallel, and separated from each
other by a distance large compared to electron wave function overlap (π-electron
transfer between chains is not possible). Thus, each chain is an ideal one dimen-
sional electronic system. In the fashion of three decades ago the overhelming major-
ity (almost hundred per cent scientists working in the field) disregarded the highly
crystalline polymer PDA and the work done on it as, at variance with what tPA
and similar dopable polymers offered, no particularly interesting electric conduction
was measured being non dopable [52]. It is a remarkable fact that solectron prop-
agation was experimentally stumbled upon [92–96]. Donovan and Wilson found a
charge carrier which moved at a velocity of close to the sound velocity, unchanged
when the electric field was varied by four orders of magnitude (recall the above men-
tioned behavior of piezoelectric semiconductors like CdS and ZnO [41–44]; PDA is
not piezoelectric). The velocity was measured for fields from 102 to 106 volts per me-
ter, and was constant. The solectron travelled almost mm distance before trapping,
transiently, at some defect thus reflecting the purity and perfection of the polymer
chains.
In order to refer to the mentioned experiments by Donovan and Wilson

[92–95], for illustration one chain is modeled by a lattice with four hundred units.
To simplify, the internal structure with single, double and triple bonds of the lattice
unit is neglected [91]. Then using Eqs. (7)–(8) with periodic boundary conditions, to
simplify their integration, as initial condition (t = 0) is taken the soliton of the Toda
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Fig. 21. PDA. Left panel: solectron velocity, vslc, versus electron-lattice interaction para-
meter αV, for κ = 0.5 with initial vsoliton = 1.04 (pink/bottom line) and for κ = 1.3.5 with
initial vsoliton = 1.3 (green/upper line). Dots are computer results and straight lines approx-
imate fits for illustration, vslc = 1.3 −0.9αV (upper line) and vslc = 1.04 −1.7αV (lower
lines). Right panel: dimensionsless subsonic (blue/lower curve) and supersonic (red/upper
line) solectron velocity versus dimensionsless field strength. These are two extreme cases and
life may exist in between them. The green/horizontal line at the value unity corresponds
to the (linear) sound velocity. For illustration, dimensionless E=0.1 corresponds to a E=
106 V/m (adapted from figures in [91]).

lattice exp[3(qnqn+1)] = 1 + β
2/ cosh2(κnβt), with the corresponding formula for its

velocity; β = sinh(κ) and κ is the mid-height inverse width of the soliton (in units
1/σ). At t = 0 the electron probability density (normalized to unity,

∑
n |cn|2 = 1)

is taken as a Gaussian distribution, centered at site nel, with a width σel, which is
approximately that of the chosen soliton initial condition; in practical terms σel = 3
and τ = 10 in all the computations. There is also the earlier assumed limitation
χ0 = χ1 = ε

0
n = 0. Other values used are M∼ 10−22 g, D∼0.03–0.3 eV, b∼2–5 Å−1,

ωM ∼ 5.1012 s−1 and ωe ∼ 1014 s−1. For illustration purpose the compound αV in (7)
will be used as a monitored variable parameter. Also for simplicity, the soliton and
the electron are placed at lattice site 100 to rule out boundary effects. Appropriate
photoexcitation is a way of doing it simultaneously for both, soliton and electron.
This is not a limitation since, as earlier illustrated, wherever the electron is placed
along the lattice, the soliton placed in the same or different site is always able to trap
it (Fig. 19).

After a short transient, there is the formation of a bound state of the soliton with
the electron which is the solectron. The solectron velocity (in units of sound velocity)
is estimated as the slope of its trajectory in the space-time (n, t) plot. The results
found are displayed in Fig. 21 [91]. Its left panel depicts the solectron velocity vs
versus the compound parameter αV accounting for the electron-lattice interaction.
As expected, the latter affects the soliton. Its right panel shows a domain up to, say,
E = 0.1 where the drift velocity is field independent for quite a wide range of values
of the field strength. On the other hand, in the subsonic case the drift velocity grows
with the increasing field value reaching saturation at the sound velocity. That panel
also shows two significant consequences. On the one hand, as the field strength goes
down, an ultrahigh mobility is expected, in agreement with the experimental results
(between 200.000 and 500.000 cm2/Vs) found by Donovan and Wilson [92–96]. On
the other hand, the electric field appears as a (left-right) symmetry-breaking agent.
Indeed, in general, as motion is always expected even in the absence of an external
electric field, once the soliton is excited, as solitons, and hence the solectrons, can
move to the left or to the right, on the average no net conduction would be the
outcome. Switching on the field breaks the symmetry thus allowing one or the other
to be realized. Further details can be found in Ref. [91].

Clearly the lattice soliton described in this section is different from the soliton of
the SSH theory [52] which originates in the degeneracy of the ground state of their
Hamiltonian for tPA. Yet, as earlier noted, once completed the SSH dynamics with
the double well quartic potential the solution is a genuine (lattice) soliton. Finally,
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note that the soliton-assisted (solectron) transport theory offers universality. Indeed,
besides the application here described to PDA, it can be used for other materials
whose stiffness and crystal vibrations permit strong enough compressions capable of
exhibiting nonlinear soliton excitations. It is one more case of mechanical control of
electrons at the nano-scale [89].
As a by-product of the theory just sketched there has been the invention of a

solectron field effect transistor using PDATS and PDA (SFET; UK patent applica-
tion submitted Dec. 9, 2014; Ref. GB 1421866.3 by M.G. Velarde and E.G. Wilson,
coinventors). In such a field effect transistor the charge carrier in the source-drain
channel is an electron solectron and similarly a (positive) hole solectron. The inverter
is constructed from these field effect transistors and is predicted to operate at very
low supply voltages. So also can circuits that rely on the inverter such as the Boolean
logic gates used in computers. The gate channel insulator thickness can be large, in
comparison to the silicon field effect transistor (SiFET). For in the latter the insulator
thickness is constrained to be increasingly small as both the supply voltage and hence
the threshold voltage, are reduced. A larger insulator thickness is desirable as it leads
to a smaller gate input capacity, and so less energy consumption on switching. It can
operate at quite small currents, leading to rather low quiescent energy consumption.
As the inverter is constructed from two SFET the energy cost of an inverter switch
scales proportionally to the square of the supply voltage, and inversely proportional to
the gate insulator thickness. Thus, in view of the above much lower energy consump-
tion is predicted using SFET compared to current silicon technology. It is necessary
that the source-drain distance be sufficiently small, and the PDATS sufficiently pure,
that solectrons travel from source to drain without trapping at impurities or defects.
The limit to the response time of the SFET is the transit time from source to drain.

6 Concluding remarks

Along these notes I have tried to illustrate how charge (electron or positive hole)
transfer/transport can be controlled and directionally guided by “mechanical means”
in e.g. semiconductor crystals either by an induced static piezopotential at a metal-
semiconductor interface or by charge surfing on acoustic waves (in particular SAW).
Comments have also been provided about the possible yet not actual role played by
(defects/topological) solitons in charge transport in dopable conjugated conducting
polymers like tPA. Special attention has been paid to the possible and eventually
actual role of nonlinearity in all cases and in that of lattice solitons in anharmonic
crystal lattices. In the latter case the concept of solectron has been recalled. It is a gen-
eralization of the commonly used (Landau-Pekar) polaron concept in standard solid
state physics (based on harmonic atom interactions and phonons) [1,88,97–99]. There
is also a natural extension of the bipolaron concept which is the bisolectron offering a
bosonic way of transport [100,101]. Noticeable is the more than “formal” equivalence
between the solectron in PDA and the polaron in tPA. The role of the solectron qua-
siparticle has been shown for charge transport in the undopable PDA polymer and
derivatives for which electron surfing on solitons permits a form of field independent
transport. The solectron theory has permitted the understanding of the experimen-
tal observations carried out in the 1980–90 decade by Donovan and Wilson [92–96]
on PDA and derivatives though never adequately appreciated until 2014 [91]. The
solectron approach offers a novel line for progress in (anharmonic) solid state physics.
As a by-product of the theory a novel field effect transistor based on the solectron
has been invented. The claims of the invention are few and straightforward with
universality and not just limited to PDA and derivatives. Computation currently
consumes orders of magnitude more energy in digital switching events than is
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theoretically necessary according to statistical physics [102,103]; but the technology
to reduce the consumption does not exist. The SFET offers a radically new idea to
produce computer elements that enable switching with orders a magnitude reduction
in energy consumption. Its production will lead the way to substantial energy reduc-
tions by IT industries in use of digital computers, server farms, and smart phones.

The author wishes to express his gratitude to W. Ebeling and A.P. Chetverikov for a decade
of research cooperation, and to L. Bryzhik, L. Cisneros-Ake, L. Cruzeiro, S. Dmitriev,
D. Hennig, V.P. Lakhno, J.-P. Launay, G. Röpke, R.G. Rubio and E.G. Wilson for many
fruitful discussion meetings held at IP-UCM. E.G. Wilson has been instrumental for our un-
derstanding of the characteristics and electronic behavior of PDA and related polymers.
Furthermore, without his cooperation the invention of the SFET would have not been
possible.
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