
Abstract. It is well known that periodic discrete defect-contain-
ing systems support both traveling waves and vibrational defect-
localized modes. It turns out that if a periodic discrete system is
nonlinear, it can support spatially localized vibrational modes
as exact solutions even in the absence of defects. Because the
nodes of the system are all on equal footing, only a special
choice of the initial conditions allows selecting a group of nodes
on which such a mode, called a discrete breather (DB), can be
excited. The DB frequency must be outside the frequency range
of small-amplitude traveling waves. Not resonating with and
expending no energy on the excitation of traveling waves, a

DB can theoretically preserve its vibrational energy forever if
no thermal vibrations or other perturbations are present. Crys-
tals are nonlinear discrete systems, and the discovery of DBs in
them was only a matter of time. Experimental studies of DBs
encounter major technical difficulties, leaving atomistic compu-
ter simulations as the primary investigation tool. Despite defi-
nitive evidence for the existence of DBs in crystals, their role in
solid-state physics remains unclear. This review addresses some
of the problems that are specific to real crystal physics and
which went undiscussed in the classical literature on DBs. In
particular, the interaction of a moving DB with lattice defects is
examined, the effect of elastic lattice deformations on the
properties of DBs and the possibility of their existence are
discussed, and recent studies of the effect of nonlinear lattice
perturbations on the crystal electron subsystem are presented.

Keywords: crystal lattice, nonlinear oscillations, discrete
breather, crystal lattice defect

1. Introduction

More than four decades ago, an important discovery was
made in the physics of nonlinear phenomena. It was shown
that an infinite one-dimensional anharmonic chain of
identical particles periodically arranged in space is capable
of supporting spatially localized vibrational modes [1±4]. We
can say that the precursors of this discovery were work on the
vibrational energy localization in harmonic impurity and
defect crystals [5±8],1 nonlinear molecules, and molecular
crystals at high vibrational excitation levels [10, 11]. It was
found that the discreteness and nonlinearity of a medium
were the two main conditions required for the excitation of
spatially localized modes, which were called discrete breath-
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ers (DBs) or intrinsic localized modes. The system dimension
and a particular form of the interaction potential for particles
typically affect only the DB characteristics but not the
possibility of their existence itself. Pioneering work on DBs
was devoted to a rigorous proof of the existence and stability
of DBs and most often was restricted to the analysis of one-
dimensional chains of particles interacting with nearest
neighbors via simple nonlinear potentials [1±4, 12±17].
Theoretical papers analyzing the integrability conditions for
nonlinear chains are still of current interest [18±22].

Among popular one-dimensional models actively used for
studying DBs, we refer to the Fermi±Pasta±Ulam model [23],

�xn � V 0�un�1� ÿ V 0�un�; un � xn ÿ xnÿ1 ; �1�

describing a chain of particles interacting with nearest
neighbors via the polynomial potential
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with coefficients a and b determining contributions from the
quadratic and cubic nonlinearities �in the expression for the
force V 0�un��. Instead of polynomial expansion (2), the
interaction between particles is also often described by the
Toda potential
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the Lennard-Jones potential
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or the Morse potential
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The interaction forces determined by potentials (2) and (3) do
not vanish at long distances and cannot therefore be used for
describing long-range interatomic bonds in crystals. Poten-
tials (4) and (5) are free of this disadvantage. The parameters
D and r0 in (4) and (5) respectively determine the bond energy
and the equilibrium bond length. The Morse potential has a
third important parameter a controlling the bond hardness
and thereby the crystal hardness, which makes this potential
the most attractive among other two-body potentials for
describing interatomic forces in crystals. Potential (4) is
often used in molecular dynamics calculations to simulate
the properties of liquids whose compressibility can be
ignored.

Along with interatomic interactions, one-dimensional
simplified models often include local potential describing the
interaction of atoms in a chain with their surroundings. One
such model, which is widely used in condensed matter physics
to describe the dynamics of dislocations or domain walls, is
the Frenkel±Kontorova model [25]

�xn � 1

h 2
�unÿ1 ÿ 2un � un�1� ÿ sin un ; �6�

where h is the interatomic distance. In this model, the
interatomic interactions are harmonic, while the nonlinear
local potential is periodic. The harmonic interatomic poten-
tial in (6) can be replaced with one of the nonlinear potentials
in (2)±(5).

Models leading to DBs are closely connected with the
discrete nonlinear Schr�odinger equation (DNSE) [26] and
also with the more general Salerno model [27] interpolating
between the DNSE and the Ablowitz±Ladik model [28]:

i
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� 1
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� 1ÿ d
2
jcnj2�cnÿ1 � cn�1� � 0 : �7�

Here, cn is a complex dynamic variable for the nth site of the
lattice, t is time, h is the lattice constant, and d is a real
parameter determining the crossover between the Ablowitz±
Ladik model (d � 0) and the DNSE (d � 1). A review of
discrete solitons in one-dimensional (1D) and two-dimen-
sional (2D) nonlinear systems generated by the Salernomodel
is presented in [29].

Low-dimensional models similar to those mentioned
above allowed a comprehensive investigation of the spatial
localization of vibrations in nonlinear discrete systems.

The theoretical prediction of DBs set the task of finding
these objects in real world, and after about a decade they were
experimentally observed in various nonlinear discrete sys-
tems, for example, in optical fibers [30±32], atomic wave
packets [33], superconducting Josephson junctions [34±36],
periodic nonlinear electric circuits [37, 38], mechanical
cantilevers and nano-electromechanical shuttles [39±43],
etc. [44, 45].

Of course, crystals, which are also discrete nonlinear
systems, attracted the attention of researchers as well. But
the microscopic size of such localized excitations of a crystal
lattice severely complicates their direct experimental observa-
tion. Nevertheless, several successful experiments confirmed
the existence of DBs in crystals [46±55]. In addition, the
possibility of the existence of DBs in crystals was conclu-
sively proved by many atomistic computer simulations [56±
73]. The complexity of the functional representation of
realistic many-particle potentials complicates the application
of analytic methods to the analysis of DBs in crystals.

Today, a new scientific avenue has opened up for
researchers in the field of solid state physics and materials
technology. The task is to perform detailed studies of the
properties of DBs in different crystals, the mechanisms of DB
excitation and pumping with energy, and the possibility of
their movement in a crystal, and to describe their interaction
with each other, crystal lattice defects, thermal vibrations,
and external fields. The results of such studies will elucidate
the role of DBs in crystal physics andmechanics, andDBs can
become a part of new technologies in the future.

In this review, we present recent advances in the field of
investigations of DBs in crystals and formulate unsolved
problems in the conclusion.

2. Examples of discrete breathers in crystals

We consider several examples of nonlinear spatially localized
vibrational modes, called discrete breathers, in different
defect-free crystals based on the results of molecular
dynamics simulations. In the absence of thermal lattice
vibrations, these modes have a very long lifetime of several
thousand or more vibration periods.

The first result was obtained for an alkali-halide NaI
crystal with ionic interatomic bonds (Fig. 1) [56]. The sodium
and iodine sublattices have a face-centered cubic (fcc)
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structure with a lattice constant a and one of the sublattices
displaced with respect to the other by the vector (a=2, 0, 0),
such that crystal atoms occupy the sites of a simple cubic
lattice. Large-amplitude vibrations are performed by one Na
atom in the h111i or h011i crystallographic directions with the
frequency lying in the gap of the phonon spectrum of the
crystal. Such a DB is called a gap DB. The DB frequency
decreases with increasing the amplitude, reflecting the soft
type of the nonlinearity of this vibrational mode. The
presence of a gap in the phonon spectrum is caused by a
considerable difference in the masses of crystal components
(the iodine atom is 5.5 times heavier than the sodium atom). It

was shown later that long-lived gap DBs in ionic crystals with
the NaCl structure can have the h001i, h011i, and h111i
polarizations [57, 58].

Another example is a DB in covalent Si and Ge crystals
obtained in [59] using the interatomic Tersoff potentials
(Fig. 2). This DB has frequencies exceeding those of the
gapless phonon spectrum. The DB frequency first increases,
reaches its maximum, and then begins to decrease as the
amplitude increases.

Gap DBs can be easily excited in models of ordered alloys
with components having greatly different masses, which leads
to a wide gap in the phonon spectrum, for example, in Pt3Al
[74±82]. These papers were based on Morse interatomic
potentials [83]. We note that in Pt3Al, both a gap DB and a
DBwith a frequency exceeding phonon-spectrum frequencies
can be excited (Fig. 3) [80, 81]. The gap DB is predominantly
localized on one aluminum atom and is immobile. On the
contrary, a DB with a frequency exceeding the phonon-
spectrum frequencies is manly localized on four to five
aluminum atoms and can move along a close-packed row.
Collisions of moving DBs with each other and with immobile
gap DBs were investigated in [80].

Quasi-breathers in the presence of point defects in A3B
crystals were studied in [82].

Japanese researchers studied DBs in graphene and carbon
nanotubes [60±64]. To launch a DB in graphene, a complex
procedure for choosing the initial conditions was used [60].
The DB had frequencies higher than the gapless phonon
spectrum and proved to be unstable. The gap in the phonon
spectrum could be opened by applying a uniform elastic
deformation, which allowed exciting a strongly localized gap
DB [68], shown in Fig. 4. Clusters of suchDBs were studied in
[69], where the possibility of energy exchange between DBs in
clusters was demonstrated.

a

b

Figure 1. Discrete breather in an NaI crystal (according to [56]). The

heavier iodine atoms are shown by larger circles. (a) The vibrational

amplitudes of atoms and (b) displacements of the centers of atomic

vibrations (increased ten times). We can see that vibrations are predomi-

nantly performed by light Na atoms, the Na atom vibrating in the h111i
direction having the maximum vibrational amplitude. The DB frequency

lies in the phonon spectrum gap and decreases with increasing the DB

amplitude (soft nonlinearity type). The study of DBs in ionic crystals with

the NaCl structure was continued in [57, 58].

Figure 2. (Color online.) Discrete breather in an Si crystal (according to

[59]). Large-amplitude out-of-phase vibrations are performed by two

silicon atoms (shown in blue). This DB has frequencies lying above the

gapless phonon spectrum frequencies, which first increase, reach a

maximum, and then decrease with increasing the amplitude.
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Discrete breathers can also be excited at the edge of a
stretched nanostrip with the `armchair' orientation, as shown
in Fig. 5 [70, 71]. The DB frequency lies in the phonon
spectrum gap produced by the applied stretching deforma-
tion.

A fundamentally new type of DBs in graphene, with
atoms vibrating perpendicular to the graphene sheet, is
described in [84].

An example of a DB in a two-dimensional graphene
crystal (completely hydrogenated graphene) is presented in
Fig. 6 [72, 73]. The DB is given by a hydrogen atom vibrating
with a large amplitude perpendicular to the graphene sheet.
The DB frequency lies in the phonon spectrum gap and
decreases with increasing the amplitude [73]. The energy
exchange between DBs and the influence of temperature on
the DB lifetime in graphene were studied in [85], where it was
concluded that DBs can be involved in graphene dehydro-
genation at increased temperatures.

The properties of DBs in carbon and hydrocarbon
materials are reviewed in [86].

Beginningwith [65],wheremobileDBswere excited for the
first time in an fcc Ni lattice and a body-centered cubic (bcc)
Nb lattice, DBs have been extensively studied in pure metals
[66, 87±90]. The DBs discovered so far in all pure metals have
the same structure. Atoms located in one close-packed row
vibrate out of phasewith their neighbors at a frequency higher
than the phonon spectrum frequencies, which increases with
increasing the DB amplitude. An example of the vibration of
interatomic bond lengths near a DB in fcc nickel is shown in
Fig. 7 [90]. Discrete breathers in practically all puremetals can
move along close-packed atomic rows, where they are excited
by a few hundred or thousand interatomic distances with a
speed ranging from zero to some maximal value. The
maximum DB speed for different metals is 0.1±0.5 times the
speed of sound [65, 66, 87±89].

With the example of a two-dimensional hexagonal lattice,
the authors of [91, 92] proposed launching moving DBs in
metals using an ansatz that contains a small number of
parameters having a clear physical meaning. The interaction
of moving DBs with each other was studied in [93, 94] and
with crystal lattice defects in [95, 96].

a

b

Figure 3. Stroboscopic picture of themotion of atoms near aDB in a Pt3Al

crystal (according to [80]). Heavy Pt atoms are shown by the darker color,

compared to light Al atoms. (a) A gap DB mainly localized on one light

atom oscillating out of phase with neighboring light atoms in a close-

packed atomic row. (b) A DB with the frequency above the phonon

spectrum frequencies, mainly localized on four to five Al atoms located in

one close-packed row. These atoms perform in-phase oscillations. Unlike

the gap DB, this DB can move along a close-packed row.

y

x

Figure 4. Stroboscopic picture of the motion of atoms near a DB in

uniformly deformed graphene (according to [68]). Clusters of such DBs

were studied in [69]. The DB frequency lies in the graphene phonon

spectrum gap appearing due to applied uniform deformation.

y

x

Figure 5. Stroboscopic picture of the motion of atoms representing a DB

on the edge of a stretched graphene `armchair' nanostrip [70, 71]. Atoms

on the nanostrip edge are shown in grey. The DB frequency lies in the gap

of the nanostrip phonon band appearing due to the nanostrip stretching.

z

y

x
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H2

H0

H1

C1

C0
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Figure 6. Discrete breather in graphene [72, 73]. The DB consists of one

hydrogen atomH0 oscillating perpendicular to the graphane sheet plane at

a frequency lying in the phonon spectrum gap.
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3. Experimental studies of discrete breathers
in crystals

Discrete breathers were experimentally observed in a strongly
nonlinear and strongly anisotropic �Pt�en�2��Pt�en�2Cl2��ClO4�4
crystal (`en' denotes ethylenediamine; hydrogen atoms are
omitted) [46]. These localized states are determined by analyzing
the crystal structure and resonance Raman spectra demonstrating
a strong redshift of the higher harmonics. The authors of
subsequent theoretical papers [47±49] conclusively proved that
these features of Raman spectra are related to the excitation of
localized vibrations of the Pt±Cl bond, accompanied by the
excitation of vibrational polarons.

Inelastic X-ray and neutron scattering was used in [50, 51]
to analyze the vibrational modes of an a uranium crystal
lattice at the [01z] Brillouin zone boundary. The authors of
[50, 51] observed excitation of a vibrational mode due to
fluctuations of the amplitude of another mode representing
its mirror image, which can suggest the excitation of a DB.
The found modes are extended along the [010] direction of
their polarization and are almost completely localized in the
perpendicular [001] direction.

Because discrete breathers are substantially nonlinear
modes, they are more actively excited at increased tempera-
tures. At temperatures above 450 K, both experimental
methods showed softening and a drastic decrease in the
intensity of the longitudinal branch along the [00z] direction.
In addition, a new dynamic mode appears along the [01z]
Brillouin zone boundary with a frequency somewhat higher
than the phonon spectrum frequencies. The authors of [51]
assigned this mode to a DB appearing due to strong electron±
phonon interaction.

Measurements in [52] of the high-temperature vibrational
spectra of NaI crystals by inelastic scattering of neutrons
revealed a weak peak in the phonon spectrum gap under
thermal equilibrium conditions at 555 K, which was assigned
by the authors to the excitation of gap DBs. The existence of
such DBs was earlier predicted in molecular dynamics

calculations [56]. Similar conclusions were made in [53].
However, it was shown in theoretical paper [54] that the
probability of the thermofluctuation generation of DBs in an
NaI crystal is low. Data obtained in [97, 98] demonstrate the
ordered location of DBs in NaI. In [99], thermofluctuation
DBs were not observed in an NaI crystal, which most likely
suggests that the organization of such experiments is complex
rather than the absence of DBs, because many theoretical
studies predict their existence [100±109].

The anomalous (nonexponential) decay of the slow
component of luminescence of a number of alkali-haloid
crystals doped with lead or thallium [110] can be explained
by the generation of DBs in the vicinity of an impurity
atom [111, 112].

The phonon spectrum of a solid bcc 4He crystal was
measured by the neutron scattering method [113]. In addi-
tion to three phonon acoustic branches, a new mode with
optical vibrations of atoms along the [110] direction was
discovered. One of the possible interpretations of these data is
the spontaneous excitation of localized vibrations [113].

The existence of moving DBs in germanium was quite
convincingly proved in sophisticated experimental study [55].
The authors of [55] treated a high-purity germanium single
crystal with plasma and studied the spectra, revealing five
characteristic defects of the crystal structure. The action of
plasma consists in the bombardment of the crystal surface by
2±8 eV ions. The bombardment resulted in the annealing of
defects located deeply enough in the material, a few micro-
meters beneath the crystal surface. We note that simple
heating does not produce a similar annealing of defects in
germanium. Hence, the results obtained in [55] can be
explained only by assuming that the energy in the concen-
trated form is transferred from the crystal surface inside the
crystal with the help of DBs.

The acceleration of diffusion at the copper±nickel
interface caused by the bombardment of the bimetal
sample surface by 500 eV Ar� ions was observed in cases
where the interface was at distances of 0.5, 1.0, and 1.5 mm
from the surface [114]. It is known that structural changes
caused by ion bombardment under these experimental
conditions cannot occur at such considerable depths. There-
fore, it is reasonable to assume that an effective mechanism
of energy transport from the crystal surface to its depth
exists, and the authors of [114] assume that this mechanism
involves DBs.

It was shown in [115] that heavy ion bombardment of the
surface of a common mica crystal at room temperature leads
to knocking out the atoms on the opposite surface from a
7 mm thick crystal. The authors of [115] assume that DBs are
responsible for the energy transfer sufficient for knocking out
an atom from the opposite surface of a crystal approximately
107 translational cells in thickness. Interest in the study of
nonlinear excitations in mica was initiated by Russell [116±
118], who assumed that the dark lines seen by the naked eye in
mica crystals can be the tracks of quasiparticles, which he
called quodons.

Discrete breathers in ferromagnetic spin lattices were
studied in theoretical papers [119±123]. The appearance of
DBs in a layered quasi-one-dimensional �C2H5NH3�2CuCl4
ferromagnet due to the instability of a homogeneous vibra-
tional mode was experimentally demonstrated in [124].

Using theKikuchi diffraction, the authors of [125] showed
the presence of nonlinear vibrations in graphene with
polarization properties drastically different from the polar-

11 12
Time, ps

0.4

un, A
�

0.2

ÿ0.2

ÿ0.4

0

Figure 7.Discrete breather in an fcc Ni crystal [90]. Shown are oscillations

of the lengths un of interatomic bonds: the central (solid curve) and the

third from the center (dashed curve). The DB frequency lies above phonon

spectrum frequencies and increases with increasing the amplitude.
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ization of linear modes. They assumed that this fact can be
explained by the excitation of DBs.

4. Computer simulation studies of discrete
breathers in crystals

We describe some specific problems of the physics of real
crystals that were not considered well enough in classical
pioneering papers on DBs.

4.1 Quasi-breather nature of real discrete breathers
The introduction of the concept of a quasi-breather (QB)
[126] became an important step on the way from the DB
theory to the study of DBs in real crystals. The vibrations of
individual QB particles are not completely synchronized, and
therefore QBs have a finite but long enough lifetime. The QB
degree can be estimated, for example, by the closeness of the
QB to the single-frequency vibrational mode [126].

The origin of aQB can be related, first, to some inaccuracy
in the initial conditions used for launching the idealized DB.
Second, the crystal under study may not allow an exact
solution in the form of an idealized DB at all, but can
support long-lived spatially localized vibrational modes, i.e.,
QBs. Third, an idealized DB can transform into a QB in the
presence of different types of perturbations, which inevitably
exist in real physical systems. For example, a DB located near
a topological defect undergoes crystal lattice distortion and
its lifetime is finite.

Different mechanisms of phonon emission by a DB were
studied in [127]. For each crystal, it is important to estimate
the QB degree of DBs supported in the crystal. It is necessary
to find the relation between the QB degree and the DB
lifetime. Despite the practical importance of these problems,
we are not aware of attempts to solve them for real crystals.

4.2 Lattice dimension
Solid crystals have translation symmetry in one, two, or three
spatial dimensions. Examples of one-dimensional crystals are
polymer chains [128], zigzag or armchair carbon nanotubes,
etc. Among two-dimensional crystals, graphene (mono-
atomic carbon layer) [60, 68, 69] and graphane [72, 73] have
recently been attracting great interest of researchers. How-
ever, most of the crystals used in modern physics are three-
dimensional. The influence of the crystal lattice dimension on
the existence, stability, mobility, and DB excitation methods
in real crystals is far from having been completely studied at
present.

The theoretical foundations for studying the properties of
DBs in model nonlinear discrete systems of different dimen-
sions were laid in classical papers [12, 129±138]. The existence
of DBs not moving in lattices of different dimensions was
rigorously proved by the authors of [12] based on the
anticontinuum limit, i.e., the case of noninteracting oscilla-
tors. The estimate of the upper bound on the interparticle
interaction parameter providing the DB existence is given, for
example, in [15, 16].

An important question is the presence or absence of the
lower energy bound for DBs. It was found for a wide class of
one-dimensional Hamiltonian lattices that two or three DBs
can have an arbitrarily small energy [135, 136]. These papers
refined the previous estimate in [133] based on more stringent
assumptions according to which DBs can have an arbitrarily
small energy only in one-dimensional lattices, whereas theDB
energy in higher-dimensional lattices is bounded from below.

Discrete breathers in molecular dynamics calculations for
three-dimensional crystals often have a distinct lower energy
bound [80].

Discrete breathers in one-dimensional crystals can be
polarized only along or perpendicular to the translation
direction. In higher-dimensional crystals, the number of
possible directions of atomic vibrations in DBs increases.
For example, it was already mentioned that in a crystal with
the NaCl structure, where atoms occupy the sites of a simple
cubic lattice, one atom of the easy fcc sublattice at the DB
center can oscillate with a large amplitude in the highly
symmetric h001i, h011i, and h111i directions [56±58]. Such
gap DBs have different amplitude dependences of the
frequency and different minimal and maximal energies.

Discrete breathers in one-dimensional crystals can move
only in one direction, whereas the question of possible
directions of moving DBs in two-dimensional and three-
dimensional crystals remains open. In [139±143], the DBs in
two-dimensional crystals (common mica, cuprates) could
move along close-packed atomic rows. The same is true for
DBs in a two-dimensional Morse crystal [89, 91, 92] and
pure metals [65, 66, 87, 88]. In a crystal with the NaCl
structure, the energy exchange can occur between neighbor-
ing DBs, which can cause the random walk of DBs in the
crystal [144, 145].

We discuss a nontrivial effect of the lattice dimension on
the possibility of the existence of DBs of a certain type. It was
shown in theoretical paper [146] that a one-dimensional chain
of atoms interacting via any of the classic potentials such as
Toda, Born±Mayer, Lennard-Jones, or Morse cannot sup-
port DBs with frequencies above the phonon spectrum
frequencies; all realistic interatomic interactions are hard at
small distances and soft at large distances, reflecting the
structure of atoms consisting of compact nuclei and electron
clouds surrounding them. For the vibrational mode fre-
quency to increase above the phonon spectrum frequencies
with increasing the amplitude, the hard core of the potential
mustmake a greater contribution to the dynamics than its soft
`tail' does. However, because of the local rarefaction of the
lattice in the vicinity of DBs (the local thermal expansion of
the lattice), distances between the centers of oscillating atoms
increase compared to those in the lattice, and the contribution
from soft tails increases. Under these conditions, the authors
of [146] could obtain only gap DBs by considering biatomic
chains. The frequency of such DBs decreases with increasing
the amplitude and enters the phonon spectrum gap that
separates acoustic and optical phonons. Based on the results
obtained, the authors of [146] concluded that the experi-
mental search for DBs should be performed in crystals with a
wide gap in the phonon spectrum.

However, based on the results obtained in [65], it was
shown that unlike one-dimensional crystals, two-dimensional
and three-dimensional Morse crystals without a local
potential support DBs with frequencies above the phonon
spectrum frequencies [91±93]. To explain this, we consider the
DB structure in the two-dimensional Morse crystal in Fig. 8a.
Calculations were performed with the dimensionless para-
meters of potential (5) D � r0 � 1, a � 5, and the atom mass
equal to unity. The equilibrium interatomic distance a was
0.98813 and the truncation radius of the potential was 5:5a.
Figure 8a shows that the DB is elongated along one close-
packed atomic row, but this row obviously experiences the
action of a periodic local potential induced by surrounding
atoms (Fig. 8d). This potential restricts the `thermal expan-
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sion' of the atomic row in which the DB is excited, resulting in
a noticeable contribution of hard potential cores to the
dynamics of the vibrational mode whose frequency increases
with increasing the amplitude. Because a periodic local
potential was not introduced in [146], DBs with frequencies
exceeding the phonon spectrum frequencies were not
obtained.

To excite DBs similar to those shown in Fig. 8c, an ansatz
was proposed in [91] and successfully used later in [92].
However, superimposing of bell-shaped functions on the
short-wavelength phonon mode shown in Fig. 8b proved to
be more efficient for the excitation of DBs in a two-
dimensional Morse crystal. We note that the bell-shaped
function was much more strongly localized along the vertical
direction than along the horizontal direction, reflecting the
structure of the DB shown in Fig. 8c.

It was recently shown in [147] that besides the DB
described in [91±93] (Fig. 8c), the same two-dimensional
Morse crystal (Fig. 9a) can also support the highly symmetric
DB shown inFig. 9c. ThisDBwas obtained by superimposing
a radially symmetric bell-shaped function on the short-
wavelength phonon mode in a nonlinear regime (Fig. 9b).

Figure 10 shows the dependences of the short-wavelength
phonon mode frequency o on the amplitude A in two cases:
for a constant size of the computation cell (solid curve) and
for zero pressure (dashed curve). The zero pressure was
provided by increasing the size of the computation cell,
depending on the phonon mode amplitude, to take the
`thermal expansion' effect into account. We can see that the
short-wavelength phonon mode demonstrates the hard type
of nonlinearity in the first case and the soft type in the second
case, i.e., the mode frequency increases (decreases) with
increasing the amplitude in the first (second) case. This is
explained by the fact that when the cell volume is constant, the
dynamics of the short-wavelength mode is largely determined

by the hard core of the Morse potential, while in the case of
free thermal expansion, the dynamics is determined by the
soft tail of the potential.

a b

c

d

Figure 8. (a) Two-dimensional Morse crystal with atoms located at the

sites of a triangular lattice. (b) Stroboscopic picture of themotion of atoms

for a short-wavelength phonon mode in the nonlinear regime. (c) Strobo-

scopic picture of the motion of atoms near a DB obtained by the

superposition of bell-shaped functions on the short-wavelength phonon

mode shown in Fig 8b. The displacements of atoms in Figs 8b, c are

magnified by a factor of seven for clarity. (d) Diagram of a one-

dimensional model for the qualitative study of the DB shown in Fig. 8c.

The atomic chain experiences the action of a periodic local potential

produced by atoms surrounding the close-packed atomic row in which the

DB is excited.
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Figure 9. (a) Two-dimensionalMorse crystal with atoms located at sites of

a triangular lattice. (b) Stroboscopic picture of the motion of atoms for a

highly symmetric phonon mode with the wave vector at the Brillouin zone

boundary in the nonlinear regime. (c) Stroboscopic picture of the motion

of atoms near the DB obtained by superimposing a bell-shaped function

with the radial symmetry on the short-wavelength phonon mode in the

nonlinear regime. The displacements of atoms in Figs 8b, c are magnified

seven times for clarity.
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As regards the DB shown in Fig. 9c, its nucleus demon-
strates the tendency to thermal expansion, which is restrained
by the part of the crystal surrounding theDB.The suppression
of the local expansion in theDBnucleus proves to be sufficient
for the DB frequency to exceed phonon spectrum frequencies,
increasing weakly with increasing the DB amplitude. This is
seen from Fig. 10, where the horizontal dotted straight line
shows the upper boundary omax � 2:995 of the phonon
spectrum of the crystal, and the circles connected by a solid
curve represent the dependence of the DB frequency on the
oscillation amplitude of its central atoms. We recall that
calculations are performed for the dimensionless time normal-
ized such that the atom mass is unity.

It can be shown that the static field of the radial
displacements of atoms caused by the DB in a two-dimen-
sional crystal decreases at large distances as 1=r, i.e., rather
slowly. This follows from the solution of the elasticity theory
problem for a circular thin plate with a diameter d and a
concentric circular hole with diameter c [148].We assume that
the plate is made of an isotropic elastic material with the
YoungmodulusE and Poisson ratio n. The radial pressure p is
applied to the edges of the inner cut. In polar coordinates, we
have the unknown radial displacement u�r�, two nonzero
components sr and sy of the stress tensor, and three nonzero
components er, ey, and ez of the deformation tensor. The
equilibrium equation expressed in terms of displacements has
the form

d2u

dr 2
� 1

r

du

dr
ÿ u

r 2
� 0 ; �8�

and its general solution is

u � C1r� C2

r
; �9�

where the integration constants

C1 � 1ÿ n
E

c 2p

d 2 ÿ c 2
; C2 � 1� n

E

c 2d 2p

d 2 ÿ c 2
�10�

are determined from boundary conditions, according to
which sr�c� � ÿp at the inner cut and sr�d� � 0 at the
external edge. For an infinite plate with a circular hole, the
limit d!1 should be considered, which gives C1 � 0 and
C2 � c 2p�1� n�=E. From (9), we then obtain the radial
displacement

u � c 2p
1� n
E

1

r
: �11�

Expression (11) determines the long-range static field of
radial movements of atoms in a two-dimensional crystal
along the DB center. The factor c 2p has the dimension of
force and therefore represents the effective concentrated force
acting from the DB on an infinite two-dimensional crystal.

We note that in a three-dimensional crystal, the elastic
displacement field produced by aDB decreases as u�r� � 1=r 2

with increasing the distance from the DB center, i.e., faster
than in the two-dimensional case. This follows from the
calculation of the radial displacement field for a hollow
elastic sphere produced by internal pressure in the limit of
the infinite external radius of the sphere. As a result, in a
three-dimensional crystal, the local expansion in the DB
nucleus is more efficiently suppressed by its surroundings,
and DBs should be more strongly localized in space than they
are in the two-dimensional case.

Another important conclusion is that DBs producing
long-range elastic displacement fields should interact with
each other at considerable distances, like dislocations [149].

4.3 Long-range interatomic bonds
Theoretical work typically considers chains in the approx-
imation of taking the interaction only between nearest
particles into account [44, 45]. However, interatomic forces
in crystals can be long-range (for example, the Coulomb
interaction in ionic crystals or metallic bonds). Polynomial
potentials of the a and b Fermi±Pasta±Ulam type and the
Toda potential cannot be used to describe long-range forces
in real crystals, because they do not vanish at large distances,
which is nonphysical for interatomic interactions. As men-
tioned in Section 4.2, realistic interatomic potentials are hard
at small interatomic distances and become soft with increas-
ing distance, reflecting the structure of atoms consisting of
nuclei and electron shells.

The molecular dynamics method, which is widely used for
studying DBs in crystals, is based on the interatomic
interaction potentials with the parameters chosen to repro-
duce the experimental data asmuch as possible, first of all, the
crystal structure, the lattice parameter, the sublimation
energy, and elastic constants.

Two-body interatomic potentials, for example, the Len-
nard-Jones andMorse potentials, are the simplest. The use of
such potentials is based on the assumption that the presence
of other atoms does not affect the interaction of the pair of
atoms under study. This assumption is not always justified;
for example, the unpaired component of interactions for
many metals and alloys can be significant. Classical (single-
wall) two-body potentials can reproduce only the closest
packings, for example, a two-dimensional triangle lattice or
a three-dimensional fcc lattice, but loose packings, for
example, a two-dimensional square lattice or a three-dimen-
sional bcc lattice, are always unstable for a single-component
material. In addition, when pair potentials are used for
crystals with the cubic symmetry, the Cauchy relation
C12 � C44 is always satisfied for elasticity constants [150,
151]. However, it is known, for example, from experiments
withmany fcc and bccmetals that a noticeable deviation from
the Cauchy relation is possible, and the magnitude of this
deviation characterizes howmuch the interatomic interaction
differs from a two-body one. These difficulties can be
eliminated by using many-particle potentials constructed,
for example, using the embedded atom model [152].

4.4 Interaction of discrete breathers
with crystal lattice defects
According to its classical definition, a discrete breather is a
spatially localized vibrational mode in a defect-free nonlinear
lattice. However, crystal lattice defects play a very important
role in condensed matter physics and materials technology.
Discrete breathers can interact with defects, which causes
distortions of the crystal lattice and local changes in the mass
and hardness of bonds, both directly and by exciting
vibrational modes localized on a defect or by acquiring
energy from such modes.

The first studies on the interaction of a DBwith a vacancy
were performed using the one-dimensional Frenkel±Kontor-
ova model with nonlinearly interacting particles [153, 154]. It
was shown that a moving DB interacting with a vacancy can
cause vacancy migration. Moreover, a nonlinear vibrational
mode localized on an atom near the vacancy can play an
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important role in this process [154]. The interaction ofmoving
DBs with an interstitial atom was studied using the same
model in [155]. The scattering of a DB on an interstitial atom
leads to migration of the latter, the interstitial atom being
more mobile than the vacancy, as follows from experiments.
Thus, it was found thatDBs can increase themobility of point
defects, which is in turn related to diffusion (mass transfer). It
is known that the mobility of point defects favors the
`creeping over' of dislocations [149].

A two-dimensional Morse crystal supports moving DBs
[91], allowing the study of their interaction with crystal lattice
defects, for example, vacancies [95]. Figure 11 presents the
results of such a study. The stroboscopic picture of themotion
of atoms in a two-dimensional Morse crystal, where the DB
moves along a close-packed atomic row in the vacancy
direction, is shown in Fig. 11a. The atoms of the close-
packed row, along which the DB is moving, are numbered
with an index n. To estimate the potential barrier of the
migration of atom I to a vacant lattice site, the time evolution
of the distance 2Y between atoms II and III is investigated.
Figures 11b, c show examples of the interaction of aDBwith a
vacancy at the position indicated by a vertical dashed straight
line. TheDBvelocity in Fig. 11b is half the velocity in Fig. 11c.
In Fig. 11b, elastic repulsion of the DB from the vacancy is
observed, while in Fig. 11c, the DB is scattered by the
vacancy. The deviation of the distance Y from its equilibrium
value Y0 as a function of time measured in the DB vibration
periods y is shown for two cases: the DB is elastically reflected
from the vacancy (Fig. 11d) and scattered from it (Fig. 11e).
The increase in the distance Y means a decrease in the
potential migration barrier for atom I to the vacancy. Based
on these results, we can conclude that the DB in a two-
dimensional Morse crystal does not cause vacancy displace-
ment, but reduces its migration barrier in the course of
approximately 102 atomic oscillations for as long as the
vacancy interacts with the DB [79].

The interaction of theDBwith a vacancy, dislocation, and
surface was studied by the molecular dynamics method for
the bcc of iron [96]. It was found in all cases that the
interaction of the DB with defects results in the vibrational
excitation of atoms near the defect, which can cause structural
transformations in the crystal.

The interaction of DBs with a substitution defect was
studied in [156] for a one-dimensional chain with the nearest-
neighbor interaction taking the linear component and the
cubic anharmonicity into account. A few scenarios of the
interaction of the DB with a defect were found, depending on
the substitution atom mass, the interatomic interaction
parameters, the degree of localization, and the DB velocity.
The trapping of one or severalDBs by an impuritywas studied
in the one-dimensional DNA model [157]. It was shown that
the impurity can favor the merging of two DBs into one,
resulting in a greater spatial energy localization [158]. The
interaction ofmovingDBs with several impurities was studied
theoretically and experimentally in a one-dimensional non-
linear chain to find different mechanisms of their interaction
and thereby to characterize the impurity type [159].

The existence of localized vibrational modes in a mono-
atomic chain on a heavy impurity atom was shown in [138].

4.5 Discrete breathers on the surface of crystals
The atomically smooth surface of a three-dimensional crystal
can be treated as a two-dimensional periodic system that can
support localized nonlinear vibrations, i.e., DBs. Steps on a

vicinal surface of a three-dimensional crystal have a quasi-
one-dimensional periodic structure, andDBs can also exist on
them (Fig. 12). In addition, DBs can exist on the edge of two-
dimensional crystals. An example is presented in Fig. 5 for a
graphene nanostrip [70, 71]. Such DBs can make their
contribution to the physics of solid surfaces.

Discrete breathers were identified by the molecular
dynamics method on a large step of an NaI crystal and in a
monoatomic hydrogen layer on the (111) surface of silicon
[160]. The authors of [160] assert that DBs can be more easily
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studied experimentally on the surface of crystals than in the
bulk of a crystal lattice.

A one-dimensional model of the adsorbed layer gives
three types of DBs, two of which turned out to be stable [161].

A number of papers have been devoted to the analysis of
linear and nonlinear vibrational modes localized on the ends
of one-dimensional chains [162±165] and on the edge of a
graphene nanostrip [166]. They develop the idea expressed in
pioneering work by Tamm [167] and Shockley [168] that
provided the basis for physics of surfaces. Modes localized on
the edge of one-dimensional chains cannot be classified as
DBs because the translation symmetry of the system is broken
in this case.

4.6 Influence of elastic lattice deformation
on the properties of discrete breathers
Homogeneous elastic deformation of a crystal can noticeably
affect its properties due to a change in the crystal symmetry
and interatomic interactions depending on the distance
between atoms at the lattice sites [169]. This method for
controlling crystal properties can be most efficiently applied
to nanomaterials that can withstand strong elastic deforma-
tions without structural changes and damage (graphene,
nanofibers, etc. [64, 169±171]).

It was shown in [172] that the elastic deformation of a one-
dimensional chain with the third- and fourth-order anharmo-
nicities leads to a redistribution of the contributions from
these anharmonicities, thereby changing the properties of
DBs in the chain.

The elastic deformation of graphene and a graphene
nanostrip induces a gap in the phonon spectrum, allowing
gap DBs to exist in these materials [68±71]. An elastic
deformation on the order of 0.01 noticeably affects the
phonon spectra and frequencies of gap DBs in crystals with
the NaCl structure [173].

4.7 Interaction of discrete breathers with the electronic
and magnetic subsystems of a crystal
Recently, Velarde [174] proposed a new concept of a
solectron, which extended the notion of a polaron, i.e., a
coupled electron±phonon state, by considering nonlinear
localized excitations of the lattice (solitons, DBs, etc.) instead
of a small-amplitude phonon wave. It was shown that

solectrons can be involved in electron transport [174±183].
Based on the fact that the number of anharmonic excitations
in crystals increases with temperature [184, 185] and on the
recent electron transport theory [178], the authors of [186]
obtained a power-law dependence of the electric resistance on
the temperature for the general one-dimensional model of a
crystal.

Figure 13 shows the results of numerical calculations in a
one-dimensional model described by a system of two
equations, one of which determines the lattice dynamics (the
Toda lattice) and the other the density of electronic states (the
Schr�odinger equation) [174]. In the cases in Figs 13a, b, the
interaction between the lattice and the electron subsystem is
absent. At the initial moment, a perturbation is applied to
both subsystems, resulting in a soliton excitation propagating
in the lattice and in complete delocalization of the electron
density. In the presence of interaction between the subsystems
(Figs 13c, d), a lattice soliton was launched, with electrons
completely delocalized at the zeromoment of time.With time,
electron trapping by the soliton and its transport were
observed.

Large-amplitude lattice vibrations near a DB result in
lattice dilation [187], which can affect the local magnetic
properties due to magnetoelastic effects [188].

Discrete breathers in ferromagnets have been studied
theoretically [119±123] and experimentally [124].

4.8 Excitation mechanisms of discrete breathers in crystals
The most natural excitation mechanism of DBs in crystals is
their spontaneous thermofluctuation generation in thermo-
dynamic equilibrium [52, 100±106]. Thermal vibrations of the
lattice, on the one hand, reduce the DB lifetime [79], and on
the other hand, the probability of the thermofluctuation
excitation of a DB increases with temperature [100±105]. As
a result, the DB concentration increases with the tempera-
ture [105].

A rather interestingDB generationmechanism discovered
in [189, 190] was then discussed for one-dimensional [122,
191±194] and two-dimensional [195] models and also for a
three-dimensional crystal with the NaCl structure [57].
According to this mechanism, DBs appear spontaneously
due to the modulation instability [196, 197] of a short-
wavelength phonon vibrational mode whose amplitude is
not too small. The development of the instability leads to
spatial energy localization in the form of large-amplitude
DBs, which then slowly emit energy in the form of small-
amplitude waves. As a result, the system comes into thermal
equilibrium with the equal energy distribution over all
vibrational modes. An example of such dynamics for a chain
of magnetic spins is presented in Fig. 14.

Themodulation instability of different phononmodes in a
two-dimensional nonlinear lattice was rigorously analyzed
in [198].

It is known that if a nonlinear discrete system is subjected
to a periodic force at a frequency outside the spectrum of its
small-amplitude vibrations, the energy is not transferred into
the system if the force amplitude is smaller than a certain
value, because traveling phonon waves are not excited. But in
the nonlinear regime, when the force amplitude exceeds the
threshold, nonlinear vibrational modes (for example, DBs)
can be excited that can transfer energy over the system. This
mechanism of excitation of nonlinear modes by an external
periodic force with a frequency outside the small-amplitude
spectrum of the system, which is called nonlinear supratrans-

Figure 12. Vicinal surface of a crystal. The edge of a terrace is a one-

dimensional periodic structure on which DBs can exist. The atom-smooth

surface is a two-dimensional periodic structure that can also support DBs.
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mission [199], was later studied for different nonlinear
systems [200, 201].

In [202], gap DBs were generated in a Pt3Al crystal
subjected to the action at a frequency close to theDBfrequency.

The possibility of exciting DBs in crystals irradiated by
particles with different energies was discussed in [66].

Theoretical foundations for the observation of DBs in
crystals generated by external action are developed in [203±
205].

4.9 Moving discrete breathers in crystals
and their collisions
The rigorous definition of a moving DB in a one-dimensional
chain assumes the exact repetition of its profile after a time t
displaced by some number k of lattice sites. The possibility of
the existence of such solutions in nonlinear chains has been
actively discussed and algorithms for constructing numeri-
cally accurate moving DBs have been proposed [44, 45, 193,
206±210]. Recently, amethod for constructingDBsmoving in
a chain was proposed in [211] using a nonlinear local potential
due to the compensation of one type of nonlinearity of
interatomic bonds by the opposite type of the local potential
nonlinearity.

For quasi-breathers [126] in real crystals, the concept of
moving DBs should be changed to require slow enough
energy emission by a spatially localized mode moving in the
lattice.
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Due to themodulation instability, the homogeneous energy distribution in

the chain disappears. Discrete breathers produced in this case collide with

each other and exchange their energy such that the amplitude of high-

energy DBs increases. As a result, three slow-moving DBs with large

amplitudes appear in the system, which slowly emit energy, and finally the

system comes to thermal equilibrium with the equal energy distribution

over all vibrational modes (this regime is not shown in the figure).
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Moving DBs in two-dimensional crystal models with a
local potential were studied in [139±142]. It is known that at
least in pure metals, DBs can move at the speed of 0.2±0.5 of
the speed of sound [65, 87, 212]. In addition, it is known that
strongly localized DBs in deformed graphene can exchange
their energy [69]. Thus,DBs can be involved in energy transfer
in a crystal. Collisions between DBs result in even stronger
spatial energy localization at the collision point [93]. Colliding
DBs can exchange their energy and momentum [93, 94].

Discrete solitons in a quadratically nonlinear 2D lattice
can move in arbitrary directions [213].

For a system of parallel weakly coupled fields with the
Fermi±Pasta±Ulam potential, the authors of [214] showed the
existence of a delocalization transition, when a breather
initially excited on a specified chain suddenly distributes its
vibrational energy over the entire two-dimensional system of
chains upon decreasing its amplitude (or frequency) below a
threshold. The authors of [214] also showed the existence of
two regimes: tunneling between chains and self-trapping on
one chain for stationary or moving breathers in a system of
two weakly coupled Fermi±Pasta±Ulam chains. These
regimes are separated by a separatrix on which the rate of
energy exchange between the two chains tends to zero. The
same two regimes were observed for linear Josephson plasma
oscillations and for a linear self-trapping in a tunneling
contact of two weakly coupled Bose±Einstein condensates
[215], which is not surprising because both physical systems
are described by similar pairs of equations.

Discrete breathers travel over the lattice relatively slowly,
moving by one lattice period in a time of ten oscillation
periods [65, 139±142, 144, 145]. Supersonic motion is
demonstrated by ultradiscrete kinks, whose profile is related
to the `magic' wavenumber q � 2p=�3a�, where a is the
crystal lattice parameter [216]. This wavenumber appeared
earlier in the analysis of standing or traveling sinusoidal
waves that are exact solutions of the Fermi±Pasta±Ulam
model [193, 217, 218].

4.10 Ab initio calculations
Molecular dynamics is based on empirical interatomic
potentials, which should be verified by more accurate
methods such as the quantum mechanical density functional
method, which takes the quantum nature of the electron
subsystem of the crystal into account. The importance of such
calculations is clearly demonstrated in the ab initio study of
DBs in graphane [73]. The dependence of the DB frequency
on its amplitude found previously with the help of molecular
dynamics [72] agrees qualitatively with the ab initio calcula-
tions [73] only for relatively small amplitudes. The use of the
steepest descent method allowed refining the initial condi-
tions for launching DBs in graphene [219].

An ab initio simulation of a gap DB in uniformly
deformed graphene was recently performed in [219]. In the
computation cell with periodic boundary conditions includ-
ing 18 carbon atoms, the DB was excited by specifying the
initial displacements of atoms with the numbers 10 and 15
along the Y axis in Fig. 15a. The dependence of the DB
frequency on its amplitude is shown in Fig. 15b. The DB
frequency lies in the phonon spectrum gap and decreases with
increasing the amplitude, which is in qualitative agreement
with the results obtained earlier by the molecular dynamics
method [68, 70]. The distributions of the electron density in
the vicinity of the DB nucleus in graphene at the moments of
maximum separation, passing through the equilibrium

position, and maximum approach of carbon atoms 1 and 2
(corresponding to atoms 10 and 15 in Fig. 15a) are shown in
Figs 16a±c.

Nonlinear vibrational modes in graphene were studied in
[221] using ab initio calculations. Some of the describedmodes
can be treated as periodically arranged DBs.

A quantum mechanical description of DBs is available in
the Bose±Hubbard model (see recent review [29]).

4.11 Group theory studies of discrete breathers in crystals
with different types of spatial symmetry
In one-dimensional chains, two types of DBs with different
symmetries are usually distinguished: the symmetric Sievers±
Takeno mode and the antisymmetric Page mode. In [222], in
the example of a planar quadratic lattice, group theory
methods were used for the first time to determine all possible
invariant varieties of a crystal lattice on which DBs can be
localized. The stability of DBs was studied in that paper using
the theorem on the possibility of decomposing multidimen-
sional variational systems (obtained within the Floquet
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Figure 16. (Color online). Electron density distribution in the vicinity of

the nucleus of a gap DB in deformed graphene at the moments of

(a) maximal distance, (b) passage through equilibrium positions, and

(c) minimal distance between carbon atoms 1 and 2, corresponding to

atoms 10 and 15 in Fig. 15a.
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theory) into independent low-dimensional systems [223]. The
decomposition method, based on the use of irreducible
representations of symmetry groups, is general and can be
applied for studying the stability of DBs of different
symmetry types in different two-dimensional and three-
dimensional crystal structures, irrespective of the type of
interatomic interactions.

It was recently shown in [224] that nondeformed graphene
allows 4 one-dimensional (Fig. 17), 14 two-dimensional, one
three-dimensional, and 6 four-dimensional vibrational
bushes representing exact solutions of the dynamic equations
of motion. If the frequency of these bushes increases with
increasing the amplitude, they can be used to obtain spatially
localized vibrational modes by superimposing bell-shaped
functions.

5. Contribution of discrete breathers
to the physical properties of crystals

If the properties of DBs are known, we can talk about their
influence on the properties of crystals. Discrete breathers can
contribute to the heat capacity of crystals [50], while mobile
DBs can also contribute to heat conduction. Discrete breath-
ers can transfer not only energy but also electric charge [174±
183, 186]. Large-amplitude oscillations in theDB nucleus lead
to a local dilatation of the crystal lattice, which should be
reflected in the thermal expansion of the crystal [187]. The
excitation of DBs in relaxor ferroelectrics allows explaining
many phenomena observed in experiments with these materi-
als [225, 226]. By transferring energy over considerable
distances, DBs excited by plasma processing of the surface of
a germanium single crystal are capable of transforming crystal
structure defects at a large depth [55]. Nonlinear vibrations
also play an important role in the formation of vacancies [227].

The contribution of DBs to the kinetics of thermo-
activated reactions in crystals is quite large. Although the
DB concentration is low, the rate of chemical reactions and
phase transformations in the vicinity of DBs depends on their
energy exponentially. This energy can be lower than the
activation barrier height of the reaction, but higher than the
mean thermal vibrational energy of atoms, which results
in a huge acceleration of the reaction in the vicinity of the
DB [228]. For example, for the typical DB energy of the order
of 0.5 eV, the reaction rate in the DB vicinity at 300 K

increases by eight orders of magnitude [229]. In this case, the
observed rate of phase transitions depends on the DB
concentration and increases by 4 to 5 orders of magnitude,
in accordance with experimental data [228±230].

The contribution of DBs to the kinetics of radiation-
induced reactions is especially large [231]. This is explained by
the fact that radiation efficiently excites DBs due to localized
displacements of atoms from the equilibrium positions. If the
displacement is large, a Frenkel pair containing a vacancy and
an interstitial atom appears or a cascade of initially knocked-
out atoms is observed, whose evolution is studied in the
physics of radiation damage to crystals. The threshold
energy of the Frenkel pair formation is about 10 eV. There-
fore, the greater part of the energy of incident particles is
spent to excite vibrational displacements of atoms, i.e., to the
formation of DBs. As a result, not only does the radiation-
induced acceleration of chemical reactions occurs but
qualitatively new reactions and phase transformations
appear that are not related to crystal heating.

For example, the interaction of mobile DBs with vacancy
pores results in knocking out the vacancies from them, i.e., in
dissolving the pores, called radiative annealing [232] because
its rate is determined by the radiation intensity rather than the
crystal temperature. Moreover, the natural anisotropy of the
propagation of quodons in a crystal (along close-packed
crystallographic directions) leads to a selective dissolving of
pores, resulting in the formation of a superlattice of pores
copying the crystal lattice (the bcc lattice of pores in bcc
metals, the fcc lattice in fcc metals, and a planar ordering of
pores in HCP crystals, where DBs propagate in basis planes)
[232, 233].

Another example of the qualitative difference of phenom-
ena related to the radiation-induced formation of DBs from
known phenomena caused by radiation damage is the
radiation-induced plastification (RIP) of metals [234, 235].
Radiation defects lead to the well-known radiation hardening
(and thereby brittleness) of materials of atomic reactors,
which occurs due to the stopping of dislocations on structural
defects. Such a radiation hardening accumulates for many
years and represents a severe technological problem.

At the same time, irradiation leads to the instant
weakening of a material (RIP) due to the alleviation of the
detachment of dislocations from stoppers caused by interac-
tion with DBs [234, 235]. This effect is reversible, disappear-
ing outside the reactor. For this reason, RIP was ignored by
the radiative scientific community despite direct experimental
observations of this phenomenon in reactors [236]. Recently,
due to understanding the physics of this phenomenon and
its relation to DBs, interest in it was rekindled and a
number of experimental studies of RIP were performed in
laboratories [235].

The list of new studies of the role of DBs in radiation
physics is increasing. For example, phase transformations
were investigated in [237] and the radiation growth of HCP
metals was studied in [238], where old problems were
analyzed using a new approach.

6. Conclusions

In this review, we presented the main advances in the study of
DBs in crystals and considered classic work performed over
the last three decades, which has laid the theoretical
foundation for studying DBs in crystals. Most of these
studies were performed for model low-dimensional discrete

c

a b

d

Figure 17. One-dimensional mode bushes in graphene with spatial

symmetry groups (a) Cmm2, (b) P31m, and (c, d) P6mm [224].
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nonlinear systems with greatly simplified potentials, which
allowed the use of mathematical methods for the analysis.
The main goal of these studies was to prove the existence of
DBs in a variety of nonlinear discrete systems.

Passing to the study of DBs in real crystals involves the
development of experimental work and increasing the role
of numerical methods, because the possibilities of analytic
methods with the use of realistic interatomic potentials or in
quantum mechanical calculations are scarce. The focus of
studies is shifting from the search for general laws governing
various nonlinear discrete systems to the analysis of the
specific features of DBs in particular crystals. It is this
problem that should be solved in order to explain the role of
DBs in the formation of the properties of real crystals and
the development of applications of DBs in new technolo-
gies.

We outline the scope of further possible investigations
aimed at elucidating some problems concerning DBs, which
have been poorly studied so far.

(1) The development of methods for exciting DBs in
crystals and molecular dynamics calculations. There are a
number of approaches for searching for the initial conditions
generating long-lived localized vibrations, for example, by
using the rotation wave approximation [60], the gradient
descent method [219], the spontaneous excitation of chaotic
DBs due to the modulation instability of certain vibrational
modes [57, 60, 122, 189±195], and by the rapid removal of
thermal vibrations from the computation cell [107] or
superposition of bell-shaped functions on certain short-
wavelength phonon modes in the nonlinear regime [46, 239±
241]. The complexity of this problem is that the same crystal
can support DBs of different types (see Figs 8 and 9) [80].

(2) The determination of the main properties of DBs in
crystals with different types of coupling at zero temperature:
their minimal and maximal energies, the frequency and
vibrational amplitude ranges, spatial localization degrees,
the ability or inability of the elastic strain fields produced by
them to move in crystals, etc. The main tool for solving these
problems can be the molecular dynamics method.

(3) Ab initio calculations for refining data obtained by the
molecular dynamics method. To date, only a few calculations
have been performed for DBs in low-dimensional crystals
using the density functional theory [73, 219, 220], which is
explained by time-consuming computations. Nevertheless,
computations with the use of the density functional theory
are more convincing than molecular dynamics calculations
because, unlike the latter, they are independent of empirical
interatomic potentials.

(4) The estimate of the probability of the thermofluctua-
tion generation of DBs in crystals, the determination of the
concentration and lifetime of DBs under thermal equilibrium
conditions, the development of numerical methods for DB
identification on the background of thermal vibrations of the
lattice in molecular dynamics computations.

(5) The study of the DB contribution to the physics of
crystals far from equilibrium under strong external actions.
Because DBs are nonlinear vibrational modes, they are most
likely generated under strong external actions (irradiation,
rapid heating, the flow of a high-density electric current,
plastic deformation, phase transitions, etc.) when the crystal
receives energy in large portions [55, 229, 231, 242]. There-
fore, it is reasonable to assume that the role of DBs
considerably increases in processes far from thermodynamic
equilibrium.

(6) The estimate of the DB contribution to the electric
charge [174±183, 186] and magnetic moment [122] transfer,
heat capacity and heat conductivity [106±109], thermal
expansion [187], and other properties of crystals.

(7) The study of the DB involvement in the generation of
defects and the interaction of DBs with crystal defects [95, 96,
153±155].

(8) Experimental studies of DBs in crystals, which remain
especially important. Themost direct investigationmethod of
DBs is the analysis of spectra of different waves interacting
with a crystal (see Section 3). As the amount of information
on the influence of DBs on the properties of crystals increases,
it will be possible to indirectly identify DBs by measuring
physical properties sensitive to the presence of DBs.

The solution of these problems will draw us closer to the
elucidation of the role of DBs in solid state physics.
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