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We study by means of numerical simulation collisions of quasi-one-dimensional solitonic excitations in a 2D lattice of 
particles interacting via Morse potential forces. Local mobile excitations arise as a result of strong kicks for one or some 
selected particles stimulating motion of compression of density along crystallographic axes. It is shown that both two colliding 
head-on excitations and two excitations moving in parallel rods behave as real solitons and do not deform after contact with 
each other. Excitations moving in non-parallel axes collapse while meeting each other in the same point. But only one of 
them is destroyed if it crosses a trajectory of other local excitation just after passing of the latter because of temporal local 
deformation of a lattice behind a solitonic excitation. This effect provides possibility of control of motion of solitons and may 
be used for control of soliton assisted transport of charged particles.
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1. Introduction

In several previous papers [1 – 9] we studied the behavior 
of local mobile supersonic soliton-like excitations in one-
dimensional lattice of interacting particles focusing on 
problems of soliton-assisted transport of charges. The 
particles dynamics was treated classically always. The 
lattice interactions were of Toda or Morse type akin to the 
Lennard-Jones interaction, hence allowing for phonon — 
and soliton  — vibrations with compressions governed by 
the repulsive part of the potential. Here we concentrate 
on 2D-systems. Solitons on a 2D rectangular lattice were 
studied in [10] and in [11 – 12]. Soliton-like excitations 
in triangular lattice were found in simulations in [13 – 15, 
11 – 12]. Both horseshoe-like and high-energetic quasi-
one-dimensional solitons with a high life-time have been 
observed. Note also that the simulations earlier performed 
suggested the existence of (thermal) solitons in 2D 
lattices [16, 17]. We proceed here with study of dynamics 
of triangular lattices and concentrate on collisions of 
high-energetic quasi-one-dimensional solitons in both 
cases  — moving along the same rod or parallel rods of 
crystallographic axes and moving ones along rods oriented 
not parallel to each other.

2. Molecular-dynamical simulations of 
two-dimensional lattices with solitonic 

excitations and visualization

We study a Hamiltonian model for particles with interactions 
via finite-range Morse potential
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VM = D · (exp [ — b (r — σ)] — 2) · exp [ — b (r — σ)] 
(2)

Here M denotes the mass of a lattice particle, rn, pn, r = 
rn — rk , n, k = 1, …, N) describe their respective coordinates 
and momenta, b characterizes the stiffness of the spring-
like constant in the Morse potential, and D is the depth of 
the potential well, σ defines equilibrium lattice spacing (see 
[18]). The finite-range Morse potential was used because 
of some numerical advantages, due to the cutoff at 1.5σ. To 
have dimensionless variables we consider in the following 
the spatial coordinates rescaled with σ as unit length. Time 
is normalized to the inverse frequency of linear oscillations 
near the minimum of the potential well, ω0, whereas energy 
and temperature are scaled with twice the depth of the 
well 2D. In our simulations we consider systems of a few 
hundred atoms on a plane. Coordinates and velocities of 
particles are obtained by solving the equations of motion of 
each particle under the forces of interaction. Our simulation 
algorithm corresponds to a molecular dynamics code, i.e. 
the particles are not fixed to any lattice node but may move 
freely through the system, exchanging places with neighbors 
etc. Rather than using Cartesian coordinates x and y, we 
use complex coordinates Z = x + iy. Then the classical 
Newton deterministic equations corresponding to the lattice 
Hamiltonian (1)
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are solved.
In more recent work we developed a method of 

visualization of solitons in nonlinear 2D-lattices [12 – 15]. We 
modeled the atoms as little spheres with “cores” represented 
by a Gaussian distribution centered at each lattice site:
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Using data about trajectories of particles Zn (t) and their 
velocities we can calculate the lattice atom distribution ρ 
(Z, t) at the instant t. To make the picture much clear we 
introduce an “extra density” ρex = ρ  — ρc with ρc = 1  — δ, 
|δ|  << 1. Furthermore, to clearly distinguish moving “local 
compressions” we use ρac = ∑k ρex (ktac), where tac is the time 
interval for producing ρex (x, y, ktac), with k = 1, 2, ….

3. Collisions of quasi-one-dimensional solitons

We consider here only dynamics of high-energetic quasi-
one-dimensional solitons. Each of them is excited by a 
strong kick of one particle at initial time: νm (0) = vm0, qm 
(0) = 0. Here only two solitons are supposed to be excited to 
take part in collisions, initial velocities vm0 are supposed to 
be directed along one of crystallographic axes of a triangular 
lattice. Values of initial velocities must be strong enough 
to prevent a lateral phonon radiation because a spectrum 
of fast moving particles locates above the phonon band of 
the lattice [11], like in breather-like excitations [19]. Such 
excitations are localized in the one rod and behave as real 
solitons at head-on collisions. In  Fig.1 one may observe  
two solitons, excited in a one rod with opposite directions 
of initial velocity, pass through each other without visible 
deformation and proceed to move as independent excitations 
in spite of some local deformation of a lattice behind each of 
them (“deformation tail”).

Also solitons do not “feel” each other if they meet while 
running at adjacent parallel rods (Fig. 2). Tracks and density 
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Fig. 1. (Color online) Head-on collisions of solitons. Two identical high-energy solitons are excited by strong kicks (velocity ν0 = 1.8 in units 
ω0σ, energy 0.5(bσ)2ν0

2 in units 2D) imposed to two lattice particles in the same rod at the left and right borders, oppositely each other. Tracks 
of the excitations (in “bubble chamber representation”, ρac ) of the running solitons density are represented in a cumulative sequence of 
snapshots (a) as time proceeds during the time interval Δt = 4 and density of the atomic cores (b) after passing solitons through each other 
is presented as a snapshot at time t = 4 after launching the solitons. Parameter values: N = 400, bσ = 4, λ = 0.3.

Fig. 2. (Color online) Interaction of solitons running in parallel adjacent rods. Two identical high-energy solitons are excited by strong kicks 
imposed to two lattice particles in adjacent rods at the left and right borders, oppositely each other. Figures a) and b) as in Fig. 1. Parameter 
values as in Fig. 1 as well.

a) b)

a) b)
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distribution of each of them look like those in a case if each of 
them has been excited separately (here is not shown). It proves 
that perturbations induced by fast moving soliton in adjacent 
rods are really negligibly weak. Note that such behavior has 
been shown for quasi-one-dimensional breathers [19].

However the other results of collisions are observed if 
solitons run in non-parallel rods. We considered interaction of 
two identical, for simplicity, solitons. One had initial velocity 
v10 = v1x0 = v0 and moved in the beginning along an axis x. 
The other one was excited at t = 0 in a rod lower than the first 
rod and has initial velocity v20 = v0 (cos60° + i sin60°) moving 
in the beginning along one of two other axes of a lattice and 
then crossing a trajectory of the first soliton (Fig. 3,4). Results 

of interaction of solitons depend on their positions relatively 
each other at the instant when the second one (for certainty) 
crosses a trajectory of the first soliton. If they meet at the same 
point both of them crash (Fig.3). Energy of both excitations 
scatters in all directions, preliminary along crystallographic 
axes, invoking temporal local perturbation of a lattice like 
local melting. Spreading wave of a horse-shoe form scatters 
energy in increasing area and a lattice returns to the initial 
state after some relaxation (here is not shown).

However if the second soliton crosses the trajectory of the 
first one behind it the second soliton crushes but the first one 
proceeds to run as it moves alone (Fig.4 a,b). Oppositely, if 
the second soliton rushes just before the first one it keeps its 

Fig. 4. (Color online) Collapse of a soliton crossing a “tail” of a soliton running in non-parallel rod. Two identical high-energy solitons are 
excited by strong kicks imposed to two lattice particles in rods parallel to different crystallographic axes, one (the first ) excited at the left 
border and other (the second) close to the lower border. In two upper panels the second soliton crosses a “tail” of the first one and collapses. 
In two lower panels the first soliton crosses a “tail” of the second one. Figures a) and c) are like Fig.1a, figures b) and d) are like Fig.1b. 
Parameter values as in Fig.1.

a) b)

c) d)

Fig. 3. (Color online) Collapse of two solitons running in non-parallel rods at impact. Two identical high-energy solitons are excited by 
strong kicks imposed to two lattice particles in rods parallel to different crystallographic axes, one excited at the left border and other close 
to the lower border. Figures a) and b) and parameter values as in Fig. 1.

a) b)
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motion but the first soliton crushes (Fig. 4c,d). In both cases 
a disturbance of the lattice in a “tail” of moving soliton is 
enough to break conditions to move for other soliton crossing 
a trajectory of the first of them. Similar behavior of solitons is 
observed if a second soliton moves along other axis with an 
angle 120° to the x axis (here is not shown). Such effect may 
be used for controlling solitonic transport when an electron 
carried by one of the solitons may be intercepted by another 
soliton to change direction of its motion and to deliver it to 
a chosen drain. Evidently, there are limitations for realization 
of the effects presented in Fig.4 (it may be supposed that 
behavior of solitons under interaction depends on initial 
energy of solitons, stiffness of bound between particles, a 
minimal distance between solitons under their interaction, 
temperature of a lattice) but we leave these questions for 
future study.

4. Conclusion

It is shown that quasi-one-dimensional soliton-like 
excitations in a triangular Morse-lattice behave as real 
solitons under collisions head-on and under running in 
parallel rods, they do not deform each other and proceed 
moving after contact between them. However under 
travelling in nonparallel rods they both collapse if colliding 
or only one of them destroys crossing a “tail” of the other 
one. The last suggests the possibility to control solectron 
motion (electron bound to a soliton).
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