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Abstract. We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-
free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic
waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the
structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we
study the behavior of one electron in the polarization field of one and two solitons with crossing pathways
with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf
on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the
possibility to control the way an excess electron proceeds from a source at a border of the lattice to a
selected drain at another border by following appropriate straight pathways on crystallographic axes.

1 Formulation of the problem

In the present work we discuss the problem of control
of electrons by acoustic lattice soliton excitations [1], a
form of electron surfing, which may have different origins
such as e.g. mechanical or electrical shocks generated by
contacts of the tip of an electron field microscope with a
suitable anharmonic crystal lattice layer. We consider sys-
tems of a few hundred atoms on a plane interacting with
one or a few added, excess electrons. Earlier we have dis-
cussed the interaction between electrons and strongly lo-
calized lattice excitations of soliton-type in one- (1d) and
two-dimensional (2d) lattices [1–4]. For the electron dy-
namics we used the tight-binding approximation (TBA)
and for the lattice particles a classical Hamiltonian al-
beit with the quantum Morse interactions. As a result of
this mixed anharmonic classical-quantum TBA dynam-
ics we could show that the electrons “like” to follow the
trajectories of soliton-like excitations. In the 1d case we
have predicted several interesting phenomena, in particu-
lar the “vacuum-cleaner” effect, i.e., the electron probabil-
ity density is gathered by solitons which along their trajec-
tory act as long range correlators [5]. Noteworthy is that
these excitations move in general with supersonic veloc-
ity or velocities a bit below the sound velocity depending
on the parameter values, on the initial conditions and on
the electron-lattice interaction. This means that electrons
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bound to lattice solitons (in short called solectrons) can
move ballistic-like with high velocities of more than 1 km/s
in a crystalline medium hence velocities orders of magni-
tude higher than in standard conductors [6]. In the present
work we propose some new features of such soliton-assisted
transport and illustrate it by dynamic computer simula-
tions on a triangular lattice. Around a passing soliton or
solectron the lattice experiences some reversible local dis-
turbance creating a transient loss of crystallinity. After
a finite time which is 5–10 time units in our examples
the lattice returns to its ordered crystalline state. In this
transitory time solitons which try to go through cannot
survive due to the leaking of too much (linear) phonon
radiation. This time delay could be used to advantage for
a form of control of electron transport that mimics the
channeled transport in a field effect transistor with, how-
ever, no need of an additional voltage. This is the novelty
of our approach which brings a form of transport with a
drastic reduction of losses and heat.

In order to explain in a qualitative way what is our
problem let us first discuss without technical details the
changes generated by a soliton in a lattice as illustrated in
Figures 1 and 2. The technical details and the parameters
will be discussed later. In Figure 1 we show the track of a
running soliton excitation (in “bubble chamber represen-
tation”, ρex) which was created by pushing just one atom
in the direction of the crystallographic axis x, each atom
is assumed to be a ball-like Gaussian core electron density,
ρ, centered at each corresponding site. We show the space
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Fig. 1. Triangular Morse lattice. The soliton is excited by a
strong kick (velocity v0 = 2 in units σω0) imposed to one lat-
tice particle. A track of the excitation (in “bubble chamber
representation”, ρex) of the running soliton density is repre-
sented in a cumulative sequence of snapshots as time proceeds
during the time interval Δt = 5. Parameter values: N = 400,
bσ = 4, λ = 0.3σ.
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Fig. 2. Triangular Morse lattice with a soliton generated at
t = 0 by a strong kick at the left border. The kick corresponds
to a pulse velocity v0 (and a rather high energy (bσ)2v2

0/2
measured in units 2D) imposed to one lattice particle located
not far from the left border here the 2nd atom in the row. The
density of the atomic core electrons is presented as a snapshot
at time t = 5 after launching the soliton. Further details are
provided in the main text. Parameter values: N = 200, bσ = 4,
v0 = 2.

and time evolution of the initial soliton density peak for
the time interval Δt = 5 (measured in units of 1/ω0, where
ω0 is the linear frequency of lattice oscillations around the
rest point). The soliton which is moving along a crystal-
lographic axis was excited by a strong pulse of velocity v0

imposed at t = 0 to the 2nd atom in the 10th row with
rather high energy mv2

0/2. The high-energetic soliton ex-
cited this way is quite long lasting in its motion along the
chosen crystallographic axis. Transverse excitations and
scattering do not play a significant role in the interval of
observation (5 time units). In Figure 2 we show a snap-
shot of the lattice state at the time t = 5 after the kick.
The snapshot of the lattice state shows that the head of
the soliton (recall core electron density, ρ) is already at
position 15-16 but the changes in the lattice are still seen
along the path. The very left dark points remember the
initial kick. What follows is the dynamic tail of the mov-
ing soliton which excites linear oscillations, i.e. phenomena
belonging to the phonon band [7]. The soliton as it travels
disturbs the lattice. Only after a finite time which is about

5 time units in our example the lattice returns to the orig-
inally ordered crystalline state. In the transitory time we
can say that locally the lattice is in a non-crystalline state
and unable to allow solitons to maintain their path or sur-
vive. Any second soliton which would try to cross the trace
of a soliton in the delay time will get stuck. Let us show
how this effect makes possible to control the path of an
electron from a given source to a given drain like in a tran-
sistor structure, as earlier indicated. Nowadays the world
of atomically thin 2D (layered) materials is becoming of
extraordinary interest (adequately coated GaAs layers,
LiNbO3/SiO structures, graphene/strained and otherwise,
graphane or hydrogenated graphene, silicine or the silicon
analogue of graphene, hexagonal boron nitride, tungsten
diselenite, molybdenum disulfide, stanene, and other Van
der Waals heterostructures) [8–12].

2 The dynamical model for lattice
and electrons

The Hamiltonian of our 2d lattice consists of a classical
lattice component Ha, and the contribution of the elec-
trons He, which includes the interactions with the lattice
deformations. For the lattice part, the Hamiltonian is

Ha =
m

2

∑

n

v2
n +

1
2

∑

n,j

V (rn, rj). (1)

The subscripts locate the atoms all with equal mass, m,
at lattice sites and the summations run from 1 to N .
We assume that effects connected with polarization and
polaron effects are small. The atoms repel each other
exponentially and attract each other with weak disper-
sion forces [1,13,14]. The characteristic length determining
equilibrium distance between the particles in the lattice
is σ which is used as the length unit. Using the rel-
ative distance r = |rn − rj | we introduce the Morse
potential [1,13,14]:

V (r) = D {exp[−2b(r − σ)] − 2 exp[−b(r − σ)]} . (2)

By imposing the cutoff of the potential at 1.5σ, we exclude
unphysical cumulative interaction effects arising from the
influence of lattice units outside the first neighborhood of
each atom [3,4]. To study the nonlinear excitations of the
lattice and the possible electron transport in a lattice in
the simplest approximation it is sufficient to know the co-
ordinates of the lattice (point) particles at each time and
the interaction of lattice deformations with electrons. Co-
ordinates of particles are obtained by solving the equations
of motion of each particle under the influence of all possi-
ble forces. The latter may also include very weak friction
and random forces that can be accounted by a Langevin
model. For convenience in the 2d lattice dynamics rather
than using x, y, we use complex coordinates Z = x + iy,
where x and y are Cartesian coordinates. Then the initial
classical Newton deterministic equations corresponding to
the lattice Hamiltonian (1) yield to a Langevin dynamics
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for the lattice units

d2Zn

dt2
=

∑

k

Fnk(|Zik|)znk

+
[
−γ

dZn

dt
+

√
2Dv (ξnx + iξny)

]
, (3)

where index n identifies a particle among all N particles
of the ensemble, γ is a friction coefficient, Dv defines the
intensity of stochastic forces, ξnx,y denotes statistically
independent generators of the Gaussian noise. Further
Znk = Zn −Zk and znk = (Zn −Zk)/|Zn −Zk| is the unit
vector defining the direction of the interaction force Fnk,
corresponding to the Morse potential, between the nth and
the kth atoms in the lattice. To have dimensionless vari-
ables we consider the spatial coordinates rescaled with σ.
Time is normalized to the inverse frequency of linear os-
cillations near the minimum of the Morse potential well,
ω−1

0 , whereas energy is scaled with 2D. In view of the
above only those lattice units with coordinates Zk, satis-
fying the condition |Zn−Zk| < 1.5, are taken into account
in the sum in equation (3). In computer simulations the in-
teraction of lattice units is considered to take place inside
a rectangular cell LxLy with periodic boundary conditions
and depending on the symmetry of an initial distribution
of units and their number N . The initial condition is de-
fined by the distribution corresponding to the minimum
of potential energy for an equilibrium state of a triangular
lattice 20 × 20. For visualization and tracking the atomic
electron densities we model the atoms as little spheres
with “core” electrons represented by a Gaussian distribu-
tion centered at each lattice site:

ρ(Z, t) =
∑

|Z−Zn(t)|<1.5

exp
[
−|Z − Zn(t)|2

2λ2

]
. (4)

Using data about trajectories of particles Zn(t) and their
velocities we can calculate the lattice atom distribution
ρ(Z, t).

From the length of the cumulative path and the time
interval we may estimate the velocity. It appears that this
strong local compression moves with velocity exceeding
the sound velocity with a lifetime of at least several time
units. In the 2d triangular Morse lattice vsound is slightly
above 1 in our units. These features point to soliton-like
behavior. Indeed, they move a few picoseconds with nearly
unaltered profile and just this robustness is the reason
that we can identify them with the proposed visualization
method. Losses due to scattering and radiation of linear
waves are quite low, due to the nearly integrable char-
acter of the problem. Note that the 2d solitons observed
here, are similar to the so-called lump solutions of the
Kadomtsev-Petviashvili equation [15,16].

In the following section we will show that the nanosize
of our 2d-structure makes possible the existence of electric
structures due to the interactions of the electrons with the
nonlinear lattice deformations, similar to those seen in the
1d-case. Let us now focus on the role played by one or sev-
eral non-interacting electrons embedded into the atomic

lattice, maybe as a result of doping or injection. As long
ago noted by Davydov [17] a soliton is connected with a de-
formation density of the lattice along its path. In order to
study the evolution of the quantum states of the additional
electrons interacting with the atoms in the 2d-lattice, we
use the tight-binding approximation (TBA) [18,19]

Hel =
∑

n

Enc+
n cn +

∑

n,n′
tn,n′(rn′ − rn)c+

n′cn, (5)

where tn,n′ is the transition matrix. Here we assume only
one quantum state of electrons per site and transitions
between rn and r′n. The transition matrix elements tn,n′

depend on the atomic distances, tn,n′ = t(rn′ − rn). Fol-
lowing Launay and Verdaguer [18] and Slater [20] we take
an exponential expression for the transition probabilities

tn,n′ = V0 exp[−αh|rn − rn′ |]. (6)

The range parameter αh can be related to the tunneling
probability that decreases exponentially with distance. A
full quantum mechanical description of the electrons in
the field of the fast changing lattice is rather difficult.
To simplify this situation we may assume that the elec-
trons allow a Markov description, modeled as a Monte
Carlo dynamics [3,4]. This is in particular useful for high
enough temperatures. Here however we work in the region
of low temperatures, where the temperature influence is
negligible, and use as model for the electron dynamics N
Schrödinger equations in TBA for the complex amplitudes
cn given in dimensionless units by:

i
dcn

dt
=ε0cn−τ exp[αbσ]

∑

|Zn−Zm|<1.5

cm exp(−α|Zn−Zm|),

(7)
where the amplitude belongs to the quantum state of atom
n (n = 1, . . . , N) located at Zn = xn + iyn, further we use
τ = V0/�ω0, α = αhσ. We do not assume any regular
order of the atoms, except at t = 0, where a triangu-
lar lattice configuration is assumed. The electrons may
hop between the lattice sites, the constant energy ε0 of
electrons at lattice site n is irrelevant for the dynamics.
As earlier noted the sum n �= m in the transition term
is restricted over pairs with distance smaller than 1.5σ.
Quantum transitions occur preferentially between nearby
lattice sites. Then the set of evolution equations equa-
tions (1)–(7) reduce to equation (7) and the complex New-
tonian (or Langevin) equations:

d2Zn

dt2
=

∑

|Zn−Zm|<1.5

[
exp(bσ − |Zn − Zm|)

× (1 − exp(bσ − |Zn − Zm|)
+ 2αV exp[α(bσ − |Zn − Zm|)])
× Re(cncm∗)

] Zn − Zm

|Zn − Zm| (8)

(V = V0/(2D)). We assume that in our case the mechan-
ical excitations are strong enough to dominate the evolu-
tion of the system and hence the feedback from the elec-
tron dynamics to the lattice dynamics, i.e. the polaron
effects, are small [21].
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Fig. 3. Crossing soliton excitations in a 2d Morse lattice. Soli-
ton and electron initially placed at the left border travel to-
gether as a solectron bound state along the given axis. The
two panels correspond to crossing with a second soliton arriv-
ing from the lower border at an angle of 60◦. Above is a snap
shot of the lattice deformation state at t = 6 and below, in cu-
mulative sequence of snapshots, the extra compression density
(in “bubble chamber representation”, ρex) for the time interval
t = 0–6. The difference in paths, a way of monitoring delay, is
about two σ units shorter for the second (“controller soliton”).
Parameter values: N = 400, bσ = 4, v0 = 1.5, τ = 10, α = 1,
V = 0.2.

3 Changing the path of a solectron
by delayed interaction with a second soliton

Our idea of controlling the path of electrons is based on the
properties of the deformations explained in the first sec-
tion. One possibility is that just before launching (hence
delayed in controllable way) a soliton/solectron along a
crystallographic axis (which is here parallel to the lower
x-axis border) we let another soliton (with same charac-
teristics) start from the lower border at an angle with the
trajectory of the former. The first soliton will stop for a
while since it should arrive at a messy (non-crystalline)
lattice region left by the other soliton. As the electron
sitting on the first soliton starts being delocalized then
the second crossing soliton gathers its electron probability
density around its soliton polarization potential well thus
recreating a new solectron which now travels at an angle
relative to the trajectory of the former solectron. Another
possibility is to simultaneously launch the second soliton
from a point such that it is expected to travel a shorter
path than the former. This is also a form of controllable
delay. This is illustrated in Figures 3–5.

4 Controlling electron transport from source
to drain

In the electron trapping process, the local lattice compres-
sions significantly deform the potential landscape acting
on added, excess electrons and create a moving guiding
well ortrap. In a piezoelectric crystal this would corre-
spond to a traveling piezopotential like phenomena exhib-
ited with surface acoustic waves [22–28]. There is also a
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Fig. 4. The same dynamic computer simulation experiment as
shown in Figure 3 is carried out with a crossing angle of 120◦.
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Fig. 5. Triangular Morse lattice. Snapshot of the final states of
electron probability density,

∑ |cn|2, after performing the ex-
periment with crossing soliton excitations as seen in Figures 3
and 4. Note that soliton and electron were initially placed at
the left border. Subsequently they travel together as a solectron
bound state along the axis parallel to lower border (x-axis). Af-
ter crossing the path of the soliton initiated from lower border
the electron density moves to definite places (the drains) at the
upper border. Which drain is targeted by the electron, depends
on the direction (60◦ – upper panel or 120◦ – lower panel) of
the crossing (second) “controller soliton”.

feedback of the concentration of electron probability den-
sity on the lattice deformation which is small in our case.
Indeed, in the supersonic case, for the given parameter
values, this feedback is rather small, changing the results
by less than a few percent [21] (see also [29–31]). Gen-
erally, the electrons tend to be trapped in the regions of
maximal density of lattice points created by the local com-
pressions and then forced to move dynamically bound to
the soliton-like compressions which in 2d is favored along
the crystallographic axes.

Figure 3 (respectively Fig. 4) shows a soliton moving
left to right (bearing an electron). Without meeting an
obstacle the electron will be carried along the crystallo-
graphic axis to the right border. However if the soliton
encounters on its path as shown in Figure 3 (respectively
Fig. 4) another (bare) soliton at an angle 60◦ (respectively
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Fig. 6. Sketch of the proposed mechanism of electron control
and transport from source to drain like in a field effect transis-
tor. An electron and a soliton bound at the source (es) at the
left border and two soliton emitters (s) at the lower border are
displayed. Depending on which soliton dominates, the electron
may be directed to any of the drains (d) at the right border or
at the upper. Note that all crystallographic axes can be used
to have a source (and soliton emitter) or a drain.

120◦) a reorientation starts. As the former soliton cannot
proceed forward due to the locally messy non-crystalline
state in the lattice after having passed the second soliton
crossing from below (which is similar to a local “melting”)
then the latter dominates the dynamics. When the former
soliton carries an added electron hence forming a solec-
tron, then, as early noted, the electron tends to loose the
bound state with it (its first partner) and is prone to be
bound to the second, now dominant soliton, hence form-
ing a new solectron. Consequently the suitably delayed
or even simultaneous crossing of two solitons permits to
bring an electron from a given source to a given drain ei-
ther on its unperturbed first path or to another site like
one near to the right upper corner (Fig. 3) or to the left
upper corner (Fig. 4). The source-drain channel for the
electron is naturally one of three crystallographic axes.
The processes discussed here offer a novel way of control-
ling and transporting electrons from a given source to a
given drain like in a field effect transistor. Figure 6 offers
a sketch of the various possibilities for controlling the way
of an electron from a source at the left border (es) to any
of three possible drains (d) on the upper or on the right
border.

The present computer experiments belong to a nano-
scale concerning a few hundred atoms on a plane (with
periodic boundary conditions) but they can be related to
experiments on a larger scale with surface acoustic waves
(SAW). Linear and nonlinear SAW propagating in a ho-
mogeneous elastic medium, piezoelectric, or otherwise, ex-
hibit no dispersion. If the medium is nonlinear, as e.g. in
anharmonic crystal lattices, an initial sinusoidal SAW can
create higher harmonics which may grow without being
inhibited by dispersion. Dispersion can be introduced by
coating the medium with a thin film of another material
with elastic and structural/mechanical properties differ-
ent from those of the substrate. Then by an appropri-
ate choice of the film thickness, the effects of nonlinear-
ity and dispersion can balance each other thus sustaining
solitons as long ago Nayanov and others observed [22–28].
Experiments have demonstrated the possibility of acous-
tic charge transport in semiconductor heterostructures by
SAW [25,32,33]. As high amplitude SAW tend to deform to
sawtooth shape and eventually break, the suggestion com-

ing from our theory is that for electron surfing, no mat-
ter the scale involved, solitons should be better carriers
than linear waves, even if the latter are highly monochro-
matic. Finally, let us recall the mentioned recent extraor-
dinary interest offered by the huge diversity of 2D layered
materials.
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Prof. Eckehard Schöll for hospitality and financial support.

References

1. M. Toda, Theory of Nonlinear Lattices, 2nd edn. (Springer-
Verlag, New York, 1989)

2. A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde,
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