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Abstract. Building upon the findings of Muto et al. [Phys. Lett. A 136, 33 (1989)] and Marchesoni and
Lucheroni [Phys. Rev. E 44, 5303 (1991)] about the growth of the number of (anharmonic) lattice solitons
with increasing temperature and using a recent transport theory developed by the present authors [A.P.
Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Eur. Phys. J. B 87, 153 (2014)] here we provide
the fractional power law of the temperature dependence of resistivity in a rather general model for one-
dimensional crystal lattices as, e.g., conducting polymers. We also show that the determining factor for
the transport is the possibility of forming electron-soliton bound states (in short solectrons) with a most
significant contribution arising from the (bosonic) bound state of two electrons to a soliton (in short
bisolectrons).

1 Introduction

Long ago, Mott [1] considered materials showing a mini-
mum of resistivity as a function of temperature with the
possibility of being metallic and non-metallic, respectively,
above and below the temperature of such a minimum.
Mott also argued that the non-metallic region may ex-
hibit a fractional power law with temperature, a prediction
found correct in quite a number of experiments, in partic-
ular for conducting polymers [2–7]. Mott’s approach builts
upon the thermally-activated or otherwise variable-range
hopping approximation [1]. Then for solid state materials
he proposed that the probability, P , of hopping between
states of spatial separation R and energy separation ΔE,
at temperature T , can be set as:

P (R,ΔE) ≈ exp [−2αR−ΔE/kT ] ,

where the range parameter α accounts for wave function
exponential decay length of an electron placed at a lat-
tice site; k is Boltzmann’s constant. The hopping may
very well be beyond nearest-neighbors. Then from such
an assumption, Mott established that at low enough tem-
peratures the resistivity, ρ, obeys the following fractional
power law

ρ(T ) ≈ ρ0 exp
[
−2 (T0/T )1/(d+1)

]
,

a law, in principle, valid in three-dimensions (d = 3) for
any disordered system at temperatures below the resistiv-
ity minimum and presumably strictly valid at only very
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low temperatures. The quantities ρ0 and T0 are constants
whose value is not needed here. Accordingly, the predicted
exponent is between (1/2) and (1/4) if we allow d to
account for d = 1, 2 or 3 dimensions.

Here we provide a different line of thought by consid-
ering a model based on a quasi one-dimensional system
consisting on a nonlinear/anharmonic lattice with added,
excess, free electrons. Generally, such a dynamical sys-
tem has been shown to offer the possibility of long range,
fast transport in the form of, e.g., soliton-assisted “elec-
tron surfing”. We shall focus on only one of its significant
features, i.e., the above mentioned temperature depen-
dence in the so-called non-metallic regime at low enough
temperatures. Our assumptions are:
– The quasi 1D-lattice consists of N units, called

molecules or atoms, with Morse interactions between
them. Moreover, the lattice, of length L, is able to sus-
tain soliton-like excitations if appropriate momentum
is given to one or a few lattice units. We consider this
a mechanical excitation at say zero K.

– Upon heating the lattice, i.e., thermally activating it
lattice solitons can also be excited. Results are known
about the density of such “thermally excited” lattice
solitons [8–10].

– Both mechanically excited and thermally excited lat-
tice solitons are able to trap added, excess, free elec-
trons thus forming bound states denoted in short
solectrons. If a soliton binds two electrons the com-
pound is denoted bisolectron in short (with due ac-
count done of Coulomb repulsion and Pauli’s exclusion
principle) [11–15].
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– The electron transport can be described using the
lattice Morse Hamiltonian coupled to an electron
Hamiltonian taken in the standard tight binding
approximation (TBA) [16,17].

2 The model and the low temperature
behavior of soliton-assisted conductivity

The model Hamiltonian we shall be using is a direct gen-
eralization of the Hamiltonian earlier used by several au-
thors [16–20] for various crystalline enough albeit origi-
nally non-metallic materials.

Let n,m denote the internal quantum numbers of the
states of electrons bound to the corresponding atoms at
sites rn and rm, respectively. We will assume, for simplic-
ity, that there is only one quantum state per atom with
Gaussian shape, which can be occupied by the added elec-
tron. The internal state that characterizes the orbit as
well as spin, can be included in the quantum number n.
We set the electron wave function and Hamiltonian as
follows [16–20]

ψ(r, t) =
∑

n

cn(t)ψn(r);

He =
∑

n

Enc
+
n cn +

∑
n,m

tm,nc
+
mcn. (1)

The energy levels En will be approximated by constant
values En = E0. The quantities c+n(cn) denote creation
(annihilation) operators in an appropriate Fock space
eventually leading to electron probability density at site n.
The coupling to the lattice is given by the transition ma-
trix elements tn,m, which depend on the atomic distances,
tn,m = t (rn − rm). Following Slater [21], Launay and
Verdaguer [22], we take an exponential dependence

tn,m = V0 exp [−α (rmn − r0)] , (2)

with rmn = |rn − rm|. The characteristic equilibrium in-
terunit distance, r0, is used as unit of length.

As noted above, the range parameter α can be related
to the tunneling probability. For the atomic lattice part,
the Hamiltonian with Morse interactions reads

Ha =
M

2

∑
n

v2
n +

D

2

∑
m,n

exp [−2b (rmn − r0)]

− 2 exp [−b (rmn − r0)] . (3)

The subscripts locate the atoms all with equal mass, M ,
at lattice sites and the summations run from 1 to N . In
the Morse potential the lattice units repel each other with
exponentially repulsive forces of range 1/b (b-stiffness) and
binding energy strength D while attracting each other
with weak dispersion forces. Time is measured in units
of the reciprocal frequency of the linearized Morse spring
(around the minimum of its potential well depth).

Note that the Davydov model [18] is obtained, if
the energies En are considered as linear functions of

the shifts un ∼ rn − rn0 of units from equilibrium po-
sition rn0, with α = 0. On the other hand we get the
simplest SSH-model for undimerized chains, if the En are
constant and if the Morse potential and the Slater expo-
nential in equation (2) are linearized. The key elements
in our model are the lattice anharmonicity and the (ex-
ponential) nonlinearity in the coupling of electrons to the
lattice.

Disregarding unnecessary details we assume that
added, excess or otherwise free electrons are able to form
(localized) bound states with local compressions of the
nonlinear lattice. They may be considered as natural gen-
eralization of the nowadays textbook concept of polaron
quasiparticle/dressed charge carrier of Landau [23] and
Pekar [24]. The transport is based on the hopping of the
charges. According to Muto et al. [8], and Marchesoni and
Lucheroni [9], the density of thermally excited solitons
in an one-dimensional lattice increases with a fractional
power law T 1/3. This result was originally obtained for
a Toda potential with parameter values corresponding to
DNA and related biomolecules. They showed that thermal
solitons may exist in such systems up to physiological or
otherwise room temperature (ca. 300 K). For the Morse
potential, computer simulations exhibit similar soliton-like
excitations with small deviations from the exact, analyt-
ical solutions of the Toda case. Hence we shall consider
this as a negligible error and will use the Morse potential
suitably adapted up to third derivative to the Toda po-
tential. Accordingly, in our Morse lattice the number of
solitons per site increases also like T 1/3. Thus with a well
depth D (0.1−0.3 eV) the fraction of solitons per site, xs,
at low enough T is [25]

xs

(
T̃

)
= 0.75T̃ 1/3, (4)

with T̃ ≡ T/2D (save k, the Boltzmann constant). Start-
ing from zero-K we consider as the first significant value
of the temperature the one corresponding to a level when
about ten percent of all lattice sites are involved in soli-
tons. In view of the above we have

0.75T̃ 1/3
s0 ∼ 0.1 −→ T̃s0 ∼ 10−3. (5)

Assuming that the energy unit, taken as twice the depth
of the Morse well, is about 0.5 eV, the soliton tempera-
ture Ts0 will be in the range of 5 K or more generally in
the bracket (1−10 K). This is indeed the range where the
fractional power law is observed. Besides the soliton tem-
perature, there are several other significant albeit higher
temperatures which are connected with the formation of
solectrons, s + e → (se), with binding energy Ese (s, e
and se denote, respectively, lattice soliton/deformation,
electron and solectron). We assume that at low enough T
each of the existing solitons binds an electron, and hence
some of the added, excess electrons are left free, i.e., un-
bound. Then the fraction of solectrons per site at low
enough temperature is approximately

xse(T̃ ) ≈ xs(T̃ ) = 0.75T̃ 1/3,

log ρ(T̃ ) ≈ (1/xse) = C − (1/3) log(T̃ ). (6)
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Fig. 1. Lattice solitons and solectrons vs. temperature. The
upper/red curve shows the density of thermal solitons, i.e., the
fraction of lattice sites occupied by solitons. The bottom/blue
and the middle/light greeen curves show the corresponding
fraction of electron-soliton bound states (solectrons) for dop-
ing fraction 0.3 and for two binding energies D (blue) and 2D
(green). The larger the binding energy is, the larger is the range
of validity of the 1/3 power law (upper/red curve).

This straightforwardly provides a fractional power (1/3)
as a direct consequence of the soliton-assisted binding
process. As upon increasing T not all solitons would be
able to catch an electron, the solectron “chemical reac-
tion” s+ e→ (se) demands careful consideration.

3 Why a minimum in the resistivity vs.
temperature is expected?

Let us consider the mass action law for the formation of
bound states (solectrons) s + e → (se) according to the
statistical theory for transport developed in reference [25].
At chemical equilibrium we have

xse

xsxe
=

(
Tde

T

)1/2

exp
(
−Ese

kT

)
, (7)

where Tde is a kind of “degeneration” temperature of the
free electrons as it appears in the standard mass action
laws, at least in one-dimensional systems, those of our
interest here.

Assuming as binding energies either Ese ∼ −D or
Ese ∼ −2D we get for the solectron density dependence
on T curves like those presented in Figure 1. We see that
at low enough temperatures, T̃ < 0.1, nearly all soli-
tons are charged, i.e., the number of solectrons follows
the T 1/3 law. Thus the maximum in the (se)-formation
can be estimated as:

kTse ∼ 0.1 |Ese| . (8)

This leads to kTse ∼ 0.1D, i.e., around 200 K or, in
dimensionless units, T̃se ∼ 0.05.

Above the expected maximum determined by the
solectron binding energy, the T 1/3 power law ought to
cease being valid. We may guess that a maximum of

solectron density is related to a minimum of resistivity.
Thus assuming that the conductivity is proportional to
the density of solectrons which have the mobility μse this
means that the conductivity will show a maximum and
the resistivity a corresponding minimum. This provides a
first qualitative explanation of such a minimum. A bet-
ter description has been offered by the transport the-
ory of solectron-assisted conductivity, developed in refer-
ence [25]. The solectron contributes to the current and
hence to the conductivity as a most significant factor. In
the presence of an electric field, E, the solectron current,
jse, and conductivity, σse, are

jse(T ) = nseeμseE,

σse ≈ nxse(T )eμse = 0.75T̃ 1/3neμse, (9)

with e denoting electron charge. This gives for low enough
temperatures, where all solitons bind electrons, thus all
forming solectrons, the fractional power laws for the con-
tribution of solectrons to conductivity/resistivity

log σse(T̃ ) ≈ 1
3

log(T̃ ) + const. (10)

So far we have followed the simple Drude theory. More
complete results follow from the computation of the solec-
tron contribution to the Kubo formula expressed using
mean square displacements. Indeed we have

σse(T ) = nse
e2

kTqνse

〈
v2

〉
T
, (11)

where nse = xseN/L and νse is a collision frequency. In
the basis of bistable distributions for the solectrons [25,26]
we found that

〈
v2

〉
T

=
kTq

mse
+ v2

se(T ),

kTq =
�ω

2
coth

�ω

2kT
,

v2
se(T ) = v2

s(T ) − 1.8αV0v
2
0 . (12)

Tq is a quantum temperature associated to the oscilla-
tions of the electron in the soliton well. The second ex-
pression provides the decrease of the solectron velocity
relative to the (initial) soliton velocity, vs(T ), as function
of α and V , equation (2), as shown in reference [25]. There
we also studied the enhancement factor and found a rel-
atively sharp maximum in T . The electron bound to a
moving soliton is not just carried by the soliton but os-
cillates around the minimum of a quantum well with a
frequency ωse. The depth of the well is of the order of the
depth of the Morse well D. This leads to the quantum
temperature of the solectron oscillator Tq = �ωse/2k and,
in dimensionless units, T̃q ∼ �ωse/4D ∼ 10−2.

Let us only sketch the idea how to derive the full cur-
rent and the total conductivity according to the theory
in reference [25] which was developed in the spirit of the

http://www.epj.org


Page 4 of 7 Eur. Phys. J. B (2015) 88: 202

−3. −2.

lg(ρ/ρ0)

−2.4

−2.2

−2.0

−1.8

lg(T/2D)
Fig. 2. Log-log plot of resistivity ρ/ρ0 vs. temperature T̃ (T in
units 2D) incorporating contributions from solectrons for two
values of the set of free parameters estimated in [25]: a = 10−1,
a = 10−2 and b = 103 (lower/red and upper/light green curves,
respectively). The former corresponds to a too low temperature
whereas the latter corresponds to a too wide potential well with
a too low oscillation frequency of electron motions.

Drude relaxation time heuristic approach. The conduc-
tivity demands the contribution of both free and bound
electrons (solectrons)

σ(T ) =
nee

2

ρe(T )
+

nsee
2

ρse(T )
rse(T ),

rse(T ) = 1 +
msev

2
se(T )

kTq
coth

(
Tq

T

)
, (13)

where ρe = meνe(T ) and ρse(T ) = mseνse(T ) correspond
to free electrons and solectrons, respectively. Further we
introduced a temperature-dependent enhancement fac-
tor rse(T ) through internal parameters of the solectron a
and b (here a is proportional to the frequency of oscil-
lations in the soliton well and b is proportional to the
solectron velocity [25]). Figure 2 offers a log-log plot of
resistivity ρ = 1/σ vs. T̃ using values for two sets of the
parameters a = kTq[2D] and b = mseν

2
se(T )/kTq. We see

clearly the universality of the T 1/3 fractional power law
followed by a minimum, whose actual location depends
indeed on the parameter values chosen, an arbitrariness
yet to be discussed. The minimum appears to be at too
low temperatures, here about 10−2[2D], i.e., around 50 K
except for choices of the values of the parameters which
are unrealistic. This is the case of the lower/red curve
in Figure 2, corresponding to an unrealistic value of pa-
rameter a which is proportional to the internal oscillation
frequency of the solectron.

To summarize the significant results so far obtained we
can safely say that the fractional power law rests on the
validity of following assumptions:

– The main contribution to conductivity is given by
solectrons.

– At low enough temperature the solectron density is
determined by the thermal soliton density.

– At some higher enough temperature a minimum is
reached which is due to a maximum of solectron

density and to quantum effects due to solectron os-
cillations around the minimum of the binding energy
between the electron and the soliton.

In order to go a step forward in our theory, in the next
section we shall consider the contribution to conductivity
of bisolectrons. We expect that bisolectrons will lead to
higher values of the temperature where the minimum of
resistivity appears. In order to do this we shall study the
chemical equilibrium of the triplet electrons-solectrons-
bisolectrons [3,4,13–15].

4 Going beyond solectrons. Contribution
of bisolectrons to conductivity (a first
chemical approach)

The “chemical reactions” leading to solectrons and
bisolectrons hence binding one or two electrons are

e+ s→ es, e+ es→ ese, e+ s+ e→ ese,

e+ s+ s+ e→ esse.

To simplify we shall restrict our study to the case when
only the bound species “se” and “esse” are present. In-
deed, the bisolectron “ese” can be disregarded due to
its lower binding energy in comparison to that of the
“esse” and that there is full chemical equilibrium. The
“esse” bisolectrons were numerically found by Zolotaryuk
et al. [27]. We set

xesse

x2
se

=
(
Tdse

T

)1/2

exp
(
−Eesse

kT

)
. (14)

For the first reaction we assume, as above, the binding
energy D whereas we take 3D for the second (the last)
reaction. Recall that D is around 0.1−0.3 eV, and we use,
for illustration, 2D ∼ 0.5 eV. In the case that the prevail-
ing bound species are those with the highest energy, the
bisolectrons “esse” containing two solitons, the tempera-
ture dependence can be approximated as:

xesse ≈ [xs(T )]2 = 0.563T̃ 2/3,

log (1/xesse) = const.− (2/3) log T̃ . (15)

It seems reasonable to expect that including bisolec-
trons, and hence the additional equilibrium solectrons-
bisolectrons, to the earlier given theory with only solec-
trons the latter would end up by providing a change in the
slope thus deviating the behavior from the already estab-
lished T 1/3 law. Bisolectrons of type “esse” (two solitons
binding two electrons like H2 molecules) have a rather high
binding energy, up to 3D, and a strongly temperature-
dependent abundance in the system as depicted in Fig-
ure 3. We can see that blue curve (fraction of solectrons)
starts only at higher T , since the binding energy is 3 times
lower. To complete the picture the green curve depicts the
fraction of free electrons (hence unbound to solitons). At
T ∼ 0.1 (in units 2D) there is a minimum of free electrons
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Fig. 3. Fraction of solectrons “se” (binding energy D, mid-
dle/blue curve) and bisolectrons “esse” (binding energy “3D”,
upper/magenta curve) for a doping fraction d = 0.2. The
lower/light green and the extreme left/red curves account, re-
spectively, for the fraction of free, unbound, electrons and the
soliton density (as shown in Fig. 1).

corresponding to a maximum of the bound species “se”
and “esse” (recall that “ese” has been discarded). We see
that around T̃ ∼ 0.1 nearly all electrons are bound and
most of them are in the bisolectron state.

To a first approximation the “esse” bisolectrons con-
tribute to the current density (μ denote mobilities)

jesse(T ) = nesse(2e)μesseE,

σesse ≈ nxesse(T )(2e)μesse

≈ 0.563(T̃)2/3n(2e)μesse. (16)

The mass action law analysis yields the range where
the T 1/3 power law works which is small and the
T -dependence is influenced by the chemical composition.
We expect the slope of α(T ) changing with temperature
so that:

log ρesse(T̃ ) ≈ const.− α(T̃ )
3

log T̃ . (17)

Including bisolectrons leads to the following general ex-
pressions for the conductivity, assuming that the contri-
butions of solectrons and bisolectrons are additive and do
not interfere with each other:

σ(T ) =
nee

2

ρe(T )
+

nsee
2

ρse(T )
rse(T ) +

nesse(2e)2

ρesse(T )
resse(T ),

rse = 1 +
msev

2
se

kTq
,

resse = 1 +
messev

2
esse

kTq
. (18)

Thus, relative to the case of solely having solectrons, the
formation of bisolectrons not only shifts the location of
the minimum to higher temperatures but also influences
the power law, as depicted in Figure 4. For illustration
we have used the parameter values a1 = 0.02, a2 = 1,
b1 = 1000, b2 = 2000, and two doping fractions d = 0.2

lg(ρ/ρ0)

-3 -2 -1

-2.6

-2.2

lg(T/2D)
Fig. 4. Log-log plot of resistivity ρ/ρ0 versus temperature (in
2D units) when both (se) solectrons and (esse) bisolectrons are
simultaneously contributing, and assuming as binding energies
E = −D and E = −3D, respectively. Two doping fractions
have been considered (d = 0.3, lower/red curve, blue slope:
0.33; d = 0.2, upper/light green curve, magenta slope/red
curve, blue slope: 0.26). It appears a weak dependence of the
power law with the increase in the value of the doping fraction.

(green) and d = 0.3 (red). Needless to say our theory in-
volves several “free” parameters whose values are not well
known and which we had to fix based on plausibility, e.g.,
we assumed binding energies E = −D and E = −3D, and
for the frictions ρesse(T ) ∼ ρse(T ) ∼ ρe(T ). The resistivity
was given in the units for free electrons ρ0 = ρe(T )/e2. Yet
it appears clear that the inclusion of the “chemical equilib-
rium” solectrons-bisolectrons significantly shifts the max-
imum as well as it produces a change in the shape of the
curves including slowly varying slopes at high enough tem-
peratures, with a small increase of the slope in the range
T̃ ∼ 0.01−0.05. According to Figure 4, this is the region
where bisolectrons are replaced by solectrons in the range
of T̃ ∼ 0.05.

5 Comparison with some experimental
findings

Without pretending to offer a clear-cut explanation of ex-
periments where a fractional power law and a minimum
of resistivity exist in the so-called non-metallic regime of
a material, we would like to point out that our predictions
may underlie significant features of some experimental re-
sults. For instance, one of the experimental facts about
dopable conducting polymers is the fractional dependence
of their resistivity on temperature at “low enough” tem-
peratures that may reach the range 1−102 K [4,5]:

ρ(T ) = const.T−γ; ln[ρ(T )] = const.− γ ln(T ).

The fractional dependence with γ in the range 1/4 − 2/3
is most often explained using Mott’s variable-range hop-
ping theory which leads in d = 2 to γ ∼ 1/3 and in
d = 3 to γ ∼ 1/4. However, the data do not really per-
mit to distinguish between 1/3 and 1/4. This led Roth
and Bleier [4] to propose the choice 1/3 as a compromise
(see Fig. 5). In all cases the value 1/3 seems to be near-
est to the data. The minimum is usually between 100 and
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Fig. 5. Log-log plot of resistivity vs. temperature of conduct-
ing polymers in the non-metallic regime. Typically there is
a range with a fractional power law in the temperature de-
pendence and there is also a clear minimum of resistivity in
a temperature range around 100 K. Upper panel is adapted
from Figure 7 of Kaneko and Ishiguro (1994) for fully − FeCl3
− dopped polyacetylene fresh samples [4,7]. Lower panel is
adapted from Menon et al. ([5], Fig. 2.6) for two polyaniline
(PANI-CSA) samples.

200 K. A close inspection shows two types of experimen-
tal situations indicated by the change of slope tending
finally to the resistivity minimum. There is also the ar-
gument about a percolation phase transition of a conduc-
tive phase in an insulating matrix [28] and the idea that
the electrons are transferred by crosslinks between metal-
lic fibrils [29]. Curiously enough, data on Bechgaard salts
also exhibit fractional power law with T and the existence
of a minimum [30–32].

6 Concluding remarks

Our soliton-assisted transport theory which in its most
complete version corresponds to transport via bisolectrons
(bosons) may be useful to explain some experimental data
in, e.g., conducting polymers [3–7]. We assume a stan-
dard Hamiltonian albeit including non-standard nonlin-
ear/anharmonic lattice dynamics using the experimentally
based Morse potential rather than a harmonic potential.
Further we assume that conduction is based on hopping
and that an essential part of the current is driven by

charged thermal solitons which may carry with the lat-
tice deformation one (solectrons) or two electrons (bisolec-
trons) the latter being bosons. Our theory predicts both
a fractional power law T 1/3 at low enough temperatures
and the existence of a minimum of resistivity upon increas-
ing temperature. Further we predict a weak dependence
of the scaling exponent on the doping fraction. We also
predict curves with slowly changing slope which seem to
be more realistic, in particular, with respect to the po-
sition of the minimum. The formation of the minimum
follows from several effects such as, e.g., the chemical
equilibria between solitons, free electrons, solectrons and
bisolectrons and the oscillations in the soliton wells lead-
ing to bound states. In future work on two-dimensional
lattices we plan to discuss percolation-type transitions as
described in references [28,29,33,34].

The authors wish to express their gratitude to Harald Böttger,
Leonor Cruzeiro, Jean-Pierre Launay, Bernhard Wessling and
E. Guy Wilson for enlightning discussions and valuable advice.
This research was supported by the Ministry of Education and
Science of the Russian Federation under Grant number 1008.
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