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h i g h l i g h t s

• An electron interacts both with on-site and with longitudinal phonons.
• We provide existence conditions for mobile localized electron excitations.
• We discuss discrete and continuum approaches to lattice dynamics.
• Localized states can be stable if they have a non-zero velocity.
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a b s t r a c t

We consider a one dimensional lattice in which an electron can interact both with on-site non-dispersive
(Einstein) phonons and with longitudinal dispersive acoustic (Debye) phonons. We provide existence
conditions formobile localized electron excitations in the longwave limit. The role of both types of phonon
modes on localization is also assessed, together with a discussion of differences existing between the
discrete and the continuum approaches. A striking result is that, under certain conditions, localized states
can only be stable if they have a non-zero velocity.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In a crystal-lattice with harmonic interactions both dispersive
(Debye) and non-dispersive (Einstein) phonons are expected to
play a significant role in the material properties. The former
(acoustic phonons) originates in the relative displacements of
atoms while the latter demands consideration of just absolute
atomic motions (so-called Einstein oscillators). The interaction
of an electron with Debye and Einstein modes, separately, has
been considered by Davydov [1] and Holstein [2,3]. Other studies
have focused on the ground states of electrons in chains with the
two types of phonon modes [4,5] and recently such chains have
also been used to model thermal conductance in linear [6,7] and
nonlinear [8] systems.
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The systemwe are thinking about is that of a quasi-one dimen-
sional chain embedded in a three dimensional structure. In this sys-
tem, the dispersive (Debye) phonons describe the (longitudinal)
interaction of the lattice sites within the one-dimensional struc-
ture and the non-dispersive (Einstein) phonons describe the inter-
action of each site in the one dimensional chain with the atoms or
groups of atoms that surround the onedimensional chain. In a strict
sense, the motion of the site in this one dimensional chain should
be represented by a nonlinear potential, as the deviations from
equilibrium positions, particularly in localized states, can be large
when compared with the distance between sites. In fact, in pre-
vious studies, two of us have considered such cases [9–11]. How-
ever, a nonlinear lattice introduces the possibility of lattice solitons
which, in turn, will tend to localize the electron states andmakes it
difficult to investigate the transition from localized to delocalized
electron states. Furthermore, examples of systems whose bond vi-
brations are usually represented by harmonic potentials are pro-
teins and DNA and other organic molecules for which the linear
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frequencies used in potentials like GROMOS [12], or AMBER [13]
or CHARMM [14] are those measured experimentally.

In [4] the best conditions for the existence of localized elec-
tron ground (i.e. stationary, non-moving) states were established.
In particular, for discrete systems, it was found that these con-
ditions were obtained when the electron–phonon interaction is
dominated by non-dispersive phonons while the lattice energy is
dominated by dispersive phonons. In such a case, the transition to
a delocalized state, which in most cases always takes place above
a threshold value of the electron exchange integral, can be com-
pletely suppressed. Herewe extend the study tomobile, longwave
limit solutions in a rather general framework embracing all possi-
ble excited states of the electron–phonon system.

In Section 2 we introduce the model Hamiltonian system we
shall be considering, together with the corresponding evolution
equations in a mixed quantum–classical approach. These equa-
tions contain four significant parameters that under appropri-
ate approximations embrace the evolutionary problem treated in
Ref. [4] as well as the so-called Davydov [1] and Holstein models
[2,3]. Thus our model involves four significant tunable nonlinear-
ities that can be reduced to just two by suitable change of scales.
In order to proceed with as much as possible an analytical study,
the discrete lattice problem is transformed into its natural long
wave limit approximation in the continuum. We then obtain mo-
bile solutions, that is, traveling wave solutions, and analyze their
stability. In Section 3wedevelop a variational Lagrangian approach
to further characterize all possible solutions, mobile and other-
wise, and discuss some significant limit cases. Section 4 deals with
full numerical solutions specifying, for illustration purposes, par-
ticular albeit significant values of the parameters involved in the
complete dynamics. Finally, we discuss how the mobile solutions
anchor with the stationary results of Ref. [4] and what the differ-
ences are between the discrete and the continuum limit evolution-
ary problems. In Section 5 we provide some concluding remarks.

2. Model equations

We consider the Hamiltonian Ĥ = Ĥqp + Hph + Ĥqp−ph, where
the first term describes the electron, the second term describes the
lattice (with all sites being identical, with equalmasses,M) and the
third term describes the electron–lattice interactions. We take the
lattice dynamics in the harmonic approximation and include both
dispersive, Debye (D) phonons, and non-dispersive, Einstein (E)
phonons. As usual a dot denotes time derivative. The three terms
are thus as follows:

Ĥqp =

∞
n=−∞


ε0ÂĎnÂn − J


ÂĎnÂn+1 + ÂĎn+1Ân


, (1)

Hph =

∞
n=−∞


M
2
q̇2n +

κD

2
(qn+1 − qn)2 +

κE

2
q2n


, (2)

and

Ĥqp−ph =

∞
n=−∞


χDÂĎnÂn (qn − qn−1)+ χE ÂĎnÂnqn


, (3)

where ÂĎn (Ân) is the Fermi creation (annihilation) operator for an
electron in site n, ε0 is the energy of the electron, J is the transfer
term for the electron tomove from one site to its nearest neighbor,
κD (κE) is the elasticity constant for Debye (Einstein) oscillators, qn
is the displacement from equilibrium positions of the lattice sites
and χD (χE) is the strength of the electron interaction with the
Debye (Einstein) phonons.

The general solution of Ĥ , written in terms of a site basis set is
ψ =


∞

n=−∞
ψnÂ

Ď
n|0⟩, where |0⟩ is the vacuum state and ψn de-

pends on the lattice variables qn, q̇n and on the time t in a manner
that is not specified a priori. From the appropriate variational prin-
ciple, after a gauge transformation of the probability density func-
tionψn to eliminate the on-site energy ε0, we obtain the following
equations of motion:

ih̄ψ̇n = −J (ψn−1 + ψn+1)+ χD (qn − qn−1) ψn + χEqnψn, (4)

and

Mq̈n = κD (qn−1 − 2qn + qn+1)− κEqn

+χD

|ψn+1|

2
− |ψn|

2
− χE |ψn|

2 . (5)

Re-scaling the variables in the form: ρn =
κD
χD

qn and τ =
J
h̄ t we get

dimensionless equations of motion:

iV ψ̇n = −V (ψn−1 + ψn+1)+ ψn (ρn − ρn−1)+ χρnψn, (6)

mρ̈n = ρn−1 − 2ρn + ρn+1 − κρn + |ψn+1|
2

− |ψn|
2
− χ |ψn|

2 , (7)

where the time derivatives are now with respect to τ and

m =
MJ2

κD h̄2 , κ =
κE

κD
, χ =

χE

χD
, V =

κDJ
χ2
D
. (8)

Eqs. (6) and (7) interpolate between the Davydov [1] and
Holstein [2,3] models, i.e. for κ = 0 and χ = 0 we recover the
Davydov model, whereas for κ = ∞ and χ = ∞ the Holstein
model is obtained. Setting κD = κE = κ and χD = χE = χ leads to
the regimes whose stationary states were investigated in [4].

In the continuum limit, at first order, Eqs. (6) and (7) reduce to

iVψt = −Vψxx + ρxψ + χρψ, (9)

mρtt = ρxx − κρ +

|ψ |

2
x − χ |ψ |

2 . (10)

Our aim is to investigate the relative influence that dispersive
(D) and non-dispersive (E) phonons have on the electron states and
to determine the values of the parameters V , κ and χ that lead to
the existence of localized mobile solutions. But to start with, we
first explore, in a general way, the kind of traveling solutions that
can be expected from Eqs. (9)–(10).

2.1. Traveling wave solutions

We look for traveling wave solutions of the coupled system
(9)–(10) in the standard form:

ψ (x, t) = ei(rx−st)f (x − ct) , (11)
ρ (x, t) = g (x − ct) . (12)

For the wave functionψ to be localized, f must decay to zero as
|z| = |x − ct| → ∞. We make no assumptions, at this moment,
about the profile for the lattice distortion ρ, which, for some values
of the parameters κ and χ is a pulse but for other values, locally,
can even be a kink.

In the traveling reference frame for the system of Eqs. (9)–(10),
we have

Vf ′′
+ iV (2r − c) f ′

+ V

s − r2


f = fg ′

+ χ fg, (13)
mc2 − 1


g ′′

= −κg +

f 2

′
− χ f 2, (14)

where the prime denotes differentiation with respect to the
traveling coordinate z = x−ct .We now take the values c = 2r and
β = r2 − s =

c2
4 − s and define the parameters κ2

= κ/

1 − mc2


and γ = 1/


1 − mc2


thus leading to

Vf ′′
= f


Vβ + g ′

+ χg

, (15)

0 = g ′′
− κ2g + γ


f 2

′
− χ f 2


. (16)
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Fig. 1. Typical profiles of the lattice distortion, ρ. (a) Solid line: β = 0, C = 0, γ = 1, B = 1 (dashed line: B = −1). (b) Solid line: β = 2, C = 0, γ = 1, B = −1 (dashed
line: B = −2, C = −1). (c) Solid line: β = 2, C = −1, γ = 1, B = 1 (dashed line: B = 1, C = 1).
Fig. 2. Dispersion relation: (a) α = α(ξ̇ ) for two values of κ , and (b) α = α(κ) for three values of ξ̇ . All curves are obtained from (29) and (31) with V = 0.5 andm = 1.
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Fig. 3. Numerically energy minimized states for an electron in a lattice with 100
sites. Top plot is the electron probability in site n, |ψn|

2 , middle plot is the lattice
displacements, ρn and bottom plot is relative lattice displacements, ρn − ρn−1 .
V = 0.5, χ = 0 (electron–lattice interaction dominated by dispersive Debye
modes) and κ varies (right to left) from 0 (Davydov case) to 0.1 thus accounting
for the role of on-site Einstein modes.

Then Eq. (16) can be solved for g by means of the Fourier
Transform in the traveling coordinate z. Doing this, in the Fourier
space we obtain:

0 = −w2ĝ − κ̄2ĝ − iwγ ˆf 2 − γχ ˆf 2, (17)

where ĝ = F {g} is the Fourier Transform of g . Let F (w) = ˆf 2 =

F

f 2


, then Eq. (17) simplifies to

ĝ = −iγ
w

w2 + κ̄2
F (w)− γχ

1
w2 + κ̄2

F (w) . (18)

We finally use the convolution property of the Fourier Trans-
form and the Heaviside function to solve for g in the form:

g (z) =
γ

2


∞

0
e−κ̄ξ


f 2 (z + ξ)− f 2 (z − ξ)


dξ

−
γχ

2κ̄


∞

0
e−κ̄ξ


f 2 (z + ξ)+ f 2 (z − ξ)


dξ . (19)

Since f = |ψ | is the probability density wave function for an
electron, it has to be bell shape type. On the other hand, it is easy
to see that the integral expression for g in Eq. (19), in general, is
not simplified in terms of elementary functions, for all decaying
function f . In order to obtain analytical expressions, we set f =

Ae−α|x−ξ(t)| and find, after a straightforward integration, that the
profile for g can be described by the following combination of
exponentials:

ρ (x, t) =


B

e−γ (x−ξ(t))

− e−β(x−ξ(t))
+ Ce−γ (x−ξ(t)), x > ξ (t)

B

eβ(x−ξ(t)) − eγ (x−ξ(t))


+ Ceγ (x−ξ(t)), x ≤ ξ (t)


(20)

where the wave parameters B, C , γ and β clearly depend on the
model parameters V , κ and χ and the parameters describing the
electron wave function A and α. Varying the wave parameters we
find that, according to (20), the lattice distortion ρ can only assume
one of the three shapes displayed in Fig. 1, i.e. the exponentialwave
profiles given by (20) can be either a pulse with one hump, a flip-
flop or a kink. In particular, the kink profile of Fig. 1(a) is obtained
for β = 0 and C = 0 and corresponds to the lattice solution in
the Davydov limit (κ = χ = 0) [15]. The expressions for the
wave parameters in (20) will be derived in the next section using
a variational approach.

3. Variational approach

The variational approach developed in this section is standard
and based on the modulation theory of Whitham [16] according
to which the Lagrangian associated with the equations of motion
is averaged over an appropriate family of trial functions. The
equations of motion (9)–(10) can be derived from the Lagrangian:

L =


∞

−∞


m
2
ρ2
t −

1
2
ρ2
x −

κ

2
ρ2

+
iV
2


ψtψ

∗
− ψ∗

t ψ


− V |ψx|
2
− ρx |ψ |

2
− χρ |ψ |

2

dx. (21)

In order to select appropriate trial functions we use the results
of the previous section according to which an exponential decay
in the probability density wave function |ψ(x, t)| implies either
an exponential decay or a constant value at the tails of the lattice
distortion ρ(x, t), depending on the values of the parameters V , κ
andχ . Furthermore, to obtain analyticallymanageable expressions
for the integrals of interaction, when averaging the Lagrangian
(21), we set:

ψ (x, t) = Ae−α|x−ξ(t)|ei[φ(t)+v(t)(x−ξ(t))], (22)

and, for the lattice profile ρ(x, t), the combination of exponentials
expressed in Eq. (20).

Averaging the Lagrangian (21) on the family of profiles (20) and
(22) we obtain:

L =
mξ̇ 2 − 1

2
B2 (β − γ )2 + C2γ (β + γ )

β + γ

−
κ

2
B2 (β − γ )2 + C2β (β + γ )

βγ (β + γ )
−

4A2Bα (β − γ )

(2α + β) (2α + γ )

−
2χA2C
2α + γ

− A2 
φ̇ − vξ̇

 V
α

− A2 
α2

+ v2
 V
α
, (23)

where ξ̇ = constant and φ̇ = constant provide stationary
traveling waves. The variational principle permits to obtain
relationships between the variational parameters α, β , γ , B, C , A
and the physical parameters of the original system m, κ , χ and V
as it is shown below.

Variation of the averaged Lagrangian (23) in the wave
parameters B and C gives,

B =
4A2αβγ (β + γ )

(2α + β) (β − γ ) (2α + γ )


−1 + mξ̇ 2

βγ − κ

 , (24)
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Fig. 4. Lattice distortion, ρx(x, t), pointing downwards and electron probability density, |ψ(x, t)|2 , pointing upwards. Full numerical solution of the continuum system
(9)–(10) for V = 0.5, κ = 0.06, χ = 0, m = 1, with a stationary profile given by (20) and (22), with ξ̇ = 0, α = 0.132, at (a) t = 0, (b) t = 12.26, (c) t = 24.47 and (d)
t = 36.68.
and

C =
2A2γχ

(2α + γ )


−1 + mξ̇ 2

γ 2 − κ

 , (25)

respectively. These two expressions provide the dependence of
the amplitude of the lattice distortion ρ(x, t) as a function of
κ and χ . We should also note that both B (24) and C (25) are
proportional to the amplitude A of |ψ |, as expected in the polaron
theory where the electron creates a lattice deformation which
traps the electron itself [1,15]. As a side remark it is noteworthy
that in some anharmonic lattices, longitudinal distortions in the
formof acoustic solitons, traveling supersonically, not only trap the
electron but also are able to drag it, thus generalizing the polaron
concept [9–11].

Taking the variation in the wave parameter β and using
expression (24) for B we find a relation for the parameter γ in the
form:

γ =
(2α − β)


β2


1 − mξ̇ 2


+ κ


+

√
∆

4β2

1 − mξ̇ 2

 , (26)

where the positive root yields positive values of γ and

∆ = (2α − β)2

β2 

1 − mξ̇ 2

+ κ

2
+ 32β3ακ


1 − mξ̇ 2


.

On the other hand, taking the variation in γ and using Eqs.
(24)–(25) for B and C we get the dispersion relation:

χ2
=

4α2β

1 − mξ̇ 2


γ 2

+ κ
2

h1

(2α + β)2

βγ


1 − mξ̇ 2


+ κ

2 , (27)
where

h1 =


1 − mξ̇ 2


βγ 2 (2β + γ − 2α)+ βγ κ − 2ακ (2γ + β)

γ 2 (3γ + 2α)

−1 + mξ̇ 2


− γ κ + 2ακ

.

Combining the variations in A and α and using again the
expressions for B and C we get another dispersion relation in the
form:

χ2
=
α (2α + γ )


−1 + mξ̇ 2


γ 2

− κ

h2

2A2 (2α + β)3 γ 2
, (28)

where

h2 =
16A2αβγ (β + γ ) (βγ + α (β + γ ))

(2α + γ )

1 − mξ̇ 2


βγ + κ


− V (2α + β)3 (2α + γ )2 .

Finally, variation in v gives ξ̇ = 2v while the normalization
condition


∞

−∞
|ψ (x, t)|2 dx = 1 for the probability density |ψ |

2

leads to A2
= α.

We thus conclude that the trial functions (20) and (22), together
with the wave parameters obtained from the dispersion relations
(24)–(28) for arbitrary velocity v and normalized amplitude A, lead
to a two-parameter family of approximate solutions to the full
continuum system (9)–(10) for any values of themodel parameters
m, V , χ and κ . Conversely, the values of A and v for the electron
probability density |ψ |

2 (22) in the moving frame determine the
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Fig. 5. Lattice distortion, ρn − ρn−1 , pointing downwards and electron probability density, |ψn|
2 , pointing upwards. Full numerical solution of discrete system (6)–(7) at (a)

t = 0, (b) t = 80, (c) t = 160 and (d) t = 240. The parameters for the system and the initial condition are the same as for the continuummodel in Fig. 4.
wave parameters for the lattice distortion ρ(x, t) in agreement
with polaron theory.

As a starting point of the analysis of the dispersion relations
(24)–(28) we first notice that (26)–(28) only involve the wave pa-
rameters γ , β , α, ξ̇ and A in terms of the model lattice parame-
ters in Eqs. (6)–(7) as expected. Setting v = ξ̇ /2 and A =

√
α

into expressions (26)–(28) and substituting (26) in (27) and (28)
we get two independent nonlinear implicit algebraic equations in-
volving the wave parameter β and the lattice parameters m, V , κ
and χ . Furthermore, we can eliminate χ from those two implicit
relations which leads to a single implicit algebraic equation that
only depends on β , κ , V and m. We then obtain β in terms of κ , V
andm for given wave parameters ξ̇ and α and the rest of the wave
parameters are obtained in this manner: first, γ is derived from
Eq. (26) and, secondly, B and C are deduced from Eqs. (24) and (25).

In order to gain further insight into the transition from localized
to delocalized states we will consider two limit cases in the next
subsections.

3.1. Case study: χ = 0

The first limit case we consider is that in which the lattice
dynamics includes both dispersive (κD ≠ 0) and non-dispersive
(κE ≠ 0) phonons while the electron–lattice interactions are
dominated by Debye dispersive modes (χD ≫ χE). From Eqs. (27)
and (28) it follows that χ = 0 if γ = 2α. Thus Eq. (25) reduces to
C = 0 and Eq. (26) to:

ξ̇ =
1

√
m


1 −

κ

β2
. (29)

Since κ and β are both positive Eq. (29) limits solutions to
subsonicwaves (sound velocity is 1

√
m ). Introducing expression (29)

for ξ̇ into Eq. (24) yields:

B =
2α2β2

κ

4α2 − β2

 . (30)

Also, combining (27) and (28) leads to:

κ =
αβ2 (2α + 3β)
2V (2α + β)3

, (31)

thus providing an implicit (nonlinear) dispersion relation between
the wave parameters α and β for given κ . The dispersion relation
α = α(ξ̇ ) obtained from the combination of (29) and (31) for
V = 0.5 and m = 1 is displayed in Fig. 2(a) for two fixed values of
κ . We should note that α close to 1 corresponds to strong localized
solutions, while α close to zero corresponds to delocalized
solutions. Fig. 2 illustrates a very striking result, namely, that above
a critical value of κ , localized solutions exist only if the velocity
ξ̇ is finite. As κ increases, the lower velocity, corresponding to
the turning point in the branch of solutions, tends to the sound
velocity, 1/

√
m. It is also apparent from Fig. 2(a) that for a given
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Fig. 6. Lattice distortion, ρx(x, t), pointing downwards and electron probability density, |ψ(x, t)|2 , pointing upwards. Full numerical solution of the continuum system
(9)–(10) with moving profile given by (20) and (22), with ξ̇ = 0.8, α = 0.41, at (a) t = 0, (b) t = 7.56, (c) t = 14.89 and (d) t = 24.65. The parameters for the system are
the same as in Fig. 4, except that κ = 0.15.
κ , say κ = 0.07, thin or strongly localized (α close to 1) mobile
polarons travel faster than wide or strongly delocalized (α close to
0) mobile polarons, as it is generally found in soliton theory.

Let us determine the critical value κ∗ above which only mobile
localized solutions exist by considering the stationary state, ξ̇ = 0,
together with Eq. (29), which leads to β =

√
κ which, in turn,

reduces (31) to:

α (2α + 3β)
2V (2α + β)3

= 1. (32)

The latter equation providesα as a function of κ forV = 0.5 and
is depicted in the curve ξ̇ = 0 of Fig. 2(b). This curve shows that
there is a turning point at approximately κ∗

= 0.0698, forV = 0.5.
It also shows that, for κ = 0, there are two possible values of α:
α = 0, which corresponds to a completely delocalized electron
state and α =

1
8V = 0.25, which corresponds to a localized state.

χ = 0, κ = 0 correspond to the cases studied by Davydov [1]
who showed that any finite electron–lattice interaction leads to
a localized, soliton solution. Thus, α =

1
8V = 0.25 corresponds

exactly to Davydov’s solution. Indeed, for the set of Eqs. (29)–(31)
the trial function (20) for ρ (x, t) reduces to the solid curve shown
in Fig. 1(b) and, in particular, to the solid curve of Fig. 1(a) for κ = 0.
We then recover the kink profile of Fig. 1(a) from Fig. 1(b) whenwe
satisfy (31) for κ = 0, that is, when β = 0. In this case:

lim
(κ,β)→(0,0)

κ

β2
=

1
8Vα

, (33)
and hence Eq. (29) becomes

ξ̇ =
1

√
m


1 −

1
8Vα

, (34)

where, to have real values for the velocities, we must impose
8Vα ≥ 1. We also get B = 4Vα which recovers Davydov’s kink
profile for the lattice function ρ (x, t) in the continuum limit [1].

Since we recover the Davydov limit for κ = 0 and α =
1
8V , then

the upper branch of the ξ̇ = 0 curve in Fig. 2(b) is the continuation
in κ of the stationary normalized Davydov soliton. On the other
hand, the connecting lower branch, which leads to the completely
delocalized solution forκ = 0 corresponds to a higher energy state.
We must emphasize that Fig. 2(b) is not a bifurcation diagram but
a picture of how a normalized Davydov soliton can evolve, in the
presence of non-dispersive phonons, to a completely delocalized
solution.

The curves in Fig. 2(b) provide even more clear evidence for
the fact that, when κ increases above κ∗ the polaron must move
in order to exist, i.e., above κ∗ only traveling polarons are stable.
Moreover, as ξ̇ increases from zero, the corresponding critical value
κ∗, at the turning point, also increases. While for small values of κ
there are localized traveling solutions with any velocity, for larger
values of κ beyond κ∗ traveling solutions with lower velocities
cannot exist. For example, for κ > 0.1 a localized traveling solution
is not stable if the velocity ξ̇ is equal to 0.5 but it becomes stable if
the velocity is 0.8.
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Fig. 7. Lattice displacement, ρ(x, t), pointing downwards and absolute electron probability amplitude, |ψ(x, t)|, pointing upwards. Full numerical solution of the continuum
system (9)–(10) for V = 1, κ = 0, χ = 0.1,m = 1, and initial profile given by (20) and (22), with α = 0.5, γ = 0.4, β = 2(α−γ ), at (a) t = 0, (b) t = 4.3945, (c) t = 8.667
and (d) t = 13.5498.
On the other hand, we observe from Eq. (29) that in the sonic
limit, ξ̇ =

1
√
m , β tends to infinity which in turn gives the asymp-

totic limit of (31) as α =
2Vκ
3 . Since the normalization condition

has to be satisfied, we may also conclude that for any finite veloc-
ity 0 ≤ κ ≤

3
2V . Thus for V = 0.5 the maximum allowed value of

κ , in principle, is κ = 3, for almost sonic velocities. However, this is
actually not the case since near the sonic limit the branches shown
in Fig. 2(b) are basically straight lines α =

2Vκ
3 , with no turning

point. Therefore, typical finite velocities and their corresponding
allowed κ ’s are those displayed in Fig. 2(b).

We have confirmed that the analytical results given by
(29)–(32) are also valid for the original full discrete lattice, de-
scribed by Eqs. (6) and (7). Thus, setting χ = 0 (electron–lattice
interaction dominated by dispersive Debye phonons) and V = 0.5
we have determined numerically the minimum energy states, us-
ing periodic boundary conditions, varying from κ = 0 to κ = 0.1.
The results are displayed in Fig. 3. We see that for κ < 0.063
there are localized minimum energy states, but above that value
the ground states of the electron are delocalized and associated
with zero distortions in the lattice. The transition from localized to
delocalized states is abrupt, as found in [4]. The value at which this
transition takes place is very close to that of the analytical solution,
i.e. the continuum limit approach (9)–(10) gives a good approxima-
tion to the original discrete system (6)–(7), at least for the station-
ary state. The continuation here by minimization corresponds to
the upper branch of Fig. 2(b) for ξ̇ = 0.
3.2. Case study: κ = 0

We now consider the situation where the lattice system only
includes dispersive phonons (κE = 0, κD ≠ 0) and the Einstein
modes dominate over the Debye modes in the electron–phonon
interaction (χE ≫ χD). From the combination of Eqs. (27) and (28)
it follows that κ = 0 when β = 2 (α − γ ) for 0 ≤ γ ≤ α which in
turn reduces Eq. (27) to

χ2
= −

α2 (2α − 3γ ) γ 2

(γ − 2α)2 (2α + 3γ )
, (35)

from which we derive the domain condition on γ : 2α
3 ≤ γ ≤ α.

Combining Eqs. (28) and (35) yields

ξ̇ =
1

√
m

1 −
2α2


2α2 + 3αγ − 3γ 2


(2α + 3γ )


γ 2 − 4α2

2 V , (36)

where once again the normalization condition A2
= α has been

used. Also Eqs. (24) and (25) for the amplitude expressions B and C
of the lattice distortion reduce to

B = −
(γ − 2α)2 (γ + 2α) (2α + 3γ ) V

4α3 − 15αγ 2 + 9γ 3
, (37)

C = −


γ 2

− 4α2
 

9γ 2 − 4α2V
2α2 + 3αγ − 3γ 2

. (38)
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Fig. 8. Lattice distortion, ρx(x, t), pointing downwards and electron probability density, |ψ(x, t)|2 , pointing upwards. Full numerical solution of the continuum system
(9)–(10) for V = 0.5, κ = 1, χ = 1, m = 1, with a stationary profile given by (20) and (22), with α = 0.25, ξ̇ = 0, γ = 0.3361, β = 1.4403, C = −0.1878 and
B = −0.0809, at (a) t = 0, (b) t = 18.31, (c) t = 36.62 and (d) t = 48.82.
We thus have again a two parameter family of solutions, which
is further restricted by Eq. (35).

In the next sectionwe check, by numericalmeans, the analytical
predictions obtained in this section.

4. Full numerical solutions

To complete our study and indeed to cross-check the results
obtained so far, in this section we compare them with results
obtained from the numerical integration of the discrete (cf.
Eqs. (6)–(7)) and of the continuum (cf. Eqs. (9)–(10)) systems.
The continuum system is solved by the Pseudo Spectral Method
(PSM) in space [17] and the ordinary differential equations derived
with the PSM are integrated using a fourth-order Runge–Kutta
method. Also, we make use of the wave parameters obtained from
the variational approach developed in the previous section, in the
wave profiles (20)–(22), to set appropriate initial conditions for
the numerical integrations. Finally, the values of the parameters
of the system are selected to test the stability of the corresponding
solutions obtained by the variational approach.

For illustrative purposes, we start our numerical analysis by
considering our findings in the limit case of section 3.1. To this end
we take m = 1, χ = 0, κ = 0.06 and V = 0.5 in the stationary
state of the model equations (9)–(10) with initial conditions taken
from the waves profiles (20)–(22) for ρ(x, t) andψ(x, t), with free
wave parameters α = 0.132 and ξ̇ = 0, corresponding to Davy-
dov’s upper branch of Fig. 2(b). We display in Fig. 4 the numerical
evolution of this stationary solution in the continuum lattice. The
lattice function ρ(x, t) has a flip-flop shape that recovers, in the
Davydov limit of κ = χ = 0, the anti-kink form corresponding
to the Davydov soliton. Furthermore, we notice that for these pa-
rameter values, the widths of both the electron state and the lat-
tice displacement profile are very similar. Fig. 4 also shows that the
compressionρx(x, t)has aminimumwhere the probability density
function |ψ(x, t)|2 attains itsmaximum. In thisway, the lattice dis-
tortion ρx(x, t) acts as a potential well for the electron, as expected
with acoustic phonons. We also note that the initial spiky wave
function for the electron evolves into a more bell- or sech-shaped
form, as a little radiation leaks out, while the lattice profile remains
largely unaltered, thus demonstrating the degree of stability of the
initial condition (the lattice wave that travels in the backwards di-
rection is due to the adjustment of the spiky initial envelope to the
more exact solution and to conservation of global momentum).

To confirm that the stationary soliton is also stable in the
discrete system, we consider the same parameter conditions and
profiles but now as initial conditions for (6)–(7). Fig. 5 shows
that the wave profiles obtained in the variational approach are
indeed stable in the corresponding discrete system. In fact, as
comparison of Figs. 4 and 5 demonstrates, the numerical evolution
of the spiky initial conditions is actually better in the discrete case
than in the continuum case. This is because the PSM is designed
to smooth the solutions, which makes the peak profiles obtained
from our variational approximation, poor initial conditions for the
integration of the continuum system (9)–(10), and leads to the
emission of linear radiation and slight variations in the amplitudes
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Fig. 9. Lattice distortion, ρn − ρn−1 , pointing downwards and electron probability density, |ψn|
2 , pointing upwards. Full numerical solution of discrete system (6)–(7) at (a)

t = 0, (b) t = 100, (c) t = 200 and (d) t = 300. The parameters for the system and the initial condition are the same as for the continuummodel in Fig. 8.
of the waves. Between Fig. 5(a) and (b) there is a transient in the
solutions in the form of emission of linear waves that helps to
adjust the initial conditions to the exact numerical ones.

To further test the stability of our numerical solutions, we
consider also evolutions in the moving frame. We thus picked
parameter values from Fig. 2(b) for the case ξ̇ = 0.8 and α = 0.41.
Fig. 6 shows the corresponding evolution in the continuum model
until t = 24.65. We observe that the waves remain coherent as
they move forward, with only a small change to the core of the
lattice profile ρ, due to the PSM approximation.

Finally, to complete our analysis of the case study 3.1, we have
verified that when initial conditions are taken from the lower
branch of Fig. 2(b), in the stationary state, they evolve to the
corresponding solution in the upper branch, for both the con-
tinuum (9)–(10) and the discrete (6)–(7) model equations (not
shown). This demonstrates the instability of the solutions in the
lower branch as well as the stability of the solutions in the upper
branch.

Let us now consider the situation studied in Section 3.2. Fig. 7
shows the full numerical solutions for the case κ = 0 and χ =

0.1. The wave parameters needed in the wave profiles (20)–(22)
are obtained from the (nonlinear) dispersion relations (35), (36)
and (38). In this case the lattice distortion ρ(x, t) also has a flip-
flop shape in the core region, in agreement with the Davydov
limit for which the anti-kink form has to be recovered. For these
parameter values, thewidth of the lattice distortion profile is larger
than the width of the electron probability distribution |ψ(x, t)|2.
Furthermore, in this case, the time evolution leads to radiation
emitted not only by the phonon system but also by the electron,
showing that the initial condition is not an exact solution of the
continuum system.

We also consider model parameters in themore general setting
provided by Eqs. (24)–(28), which were obtained in the variational
approach, and start by testing our variational approximation in
an extreme case, namely, when both the lattice constant κ and
the electron–lattice interactions are large, i.e. κ = 1 and χ =

1. In Fig. 8 we display the numerical evolution of the coherent
stationary state predicted by the variational approximation for
those values of the parameters. We observe an asymmetry in the
lattice compression ρx, which is in contrast to the case of small
κ . Once again there are small linear dispersed waves due to the
numerical approximation.

To compare with the dynamics in the corresponding full dis-
crete system we inserted the same initial conditions into (6)–(7).
Fig. 9 shows that the initial wider wave profile evolves to a thinner
one (compare the profiles in Fig. 9(a) and (b)). Another characteris-
tic of the final stationary solutions is that they are in fact breather-
like, i.e., the amplitudes of the lattice and electron envelopes
oscillate, as Fig. 10 clearly shows. Thus, for these values of the pa-
rameters, the time evolution in the continuum system is differ-
ent from that of the discrete system. In fact, the dynamics in the
discrete system bears a strong resemblance to the polarobreather
which was found in a slightly different discrete system [18].

5. Concluding remarks

Using a variational approach, we determined the parameter
regimes for which mobile, localized, electron states can exist due
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Fig. 10. Evolution of wave amplitudes in Fig. 9. The solid line is for lattice distortion site 0, ρ0 − ρ−1 , and the dashed line is for the electron probability density at the same
site, |ψ0|

2 .
to the influence of dispersive (Debye, inter-site relative motions)
and non-dispersive (Einstein, on-site possibly transverse oscilla-
tions) phonons. This study complements other reports in which
stationary solutions of electron–lattice systems with two types of
phonons have been determined [4,5] or in which such systems
have been used to describe heat transfer [6–8]. Another related
system of equations is that of Zakharov for the study of waves in
plasmas [19] and which was the object of analytical investigations
in [20–22]. However, while the coupled system of partial differ-
ential equations in [20,22] allows for a variational approach based
on Gaussian Ansätze or sech pulses for the high frequency and low
frequencywaves, Eqs. (9)–(10) require exponential Ansätze for the
electron wavefunction and for the lattice profiles, as explained in
Section 2.1. We have also checked that our variational approach
leads to the correct limits when only one type of phonon is con-
sidered, namely, the long wave limit investigated here recovers
both Davydov’s results [1] when only dispersive (Debye) phonons
are included and Holstein’s [2,3] results when only non-dispersive
(Einstein) phonons are considered. Furthermore, we recover the
results obtained in [4] for the, pinned, stationary case.

Our main finding is that, when the electron–lattice interaction
is dominated by dispersive phonons, localized electron states
may only exist for non-zero velocities. Furthermore, for certain
values of the lattice parameter κ (see Eq. (8)), the velocity of the
traveling electron state must be greater than a given threshold,
for that state to be stable. This threshold velocity increases as κ
increases. Localized electron states are usually associated with a
lowmobility. Our results suggest, however, that the picture is a bit
more complex since traveling localized statesmay still lead to high
electron mobilities if the electron velocity is sufficiently high.

We have also tested our results by solving the model equations
numerically, using as initial conditions the trial functions andwave
parameter values found in the variational approximation. In most
cases studied, we have found a good agreement between the pre-
dictions of the variational approach and the numerical integration
of both the continuumand the discrete system.However,when the
lattice constant κ and the electron–lattice interaction χ are large,
the numerical solutions of the discrete system can be breather-like,
something that was not found either in the variational approach or
in the numerical integration of the continuum system, suggesting
that discreteness is an important factor.
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