
Chapter 11
Electron Transfer and Tunneling
from Donor to Acceptor in Anharmonic
Crystal Lattices

Alexander P. Chetverikov, Leonor Cruzeiro, Werner Ebeling
and Manuel G. Velarde

Abstract We model electron transfer from donor to acceptor with a lattice with
non-uniform electron on-site energies. The electron motion is described in a tight
binding approximation and the lattice site dynamics follows the Morse potential.
We focus on the transition time from donor to acceptor which is first determined
analytically for a rigid lattice and then numerically from computer simulations of
the full system at low temperature. For the parameter ranges explored here a very
good agreement is found between the analytical and the numerical transition times.
Furthermore, this nonlinear model can account both for the order of magnitude and
for the variation with distance of the transition times from donor to acceptor that are
measured experimentally, even in the case of long range transitions, i.e., when the
distances are well beyond 20 Å. While for short distances and weakly bound electrons
the transfer is of the non-tunneling type, for larger distances and/or strongly bound
electrons the transfer is tunneling-like, with the transition time varying exponentially.
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11.1 Introduction

We are interested in the effect of anharmonic lattice dynamics on long range electron
transfer (ET), that is, ET over distances that are typically larger than 20 Å. What we
have in mind are applications to ET in biomolecules like azurin [27, 28] and other
proteins and to ET in natural or synthetic DNA [25, 26].

We also aim to describe electron transport in quasi 1d crystals [3–6, 13, 16–
18, 24, 27–30, 33, 34, 36, 37, 40–43, 45, 49, 50, 53–56, 59–61, 67, 68, 70, 71]
with a particular emphasis to the interference of electron states with anharmonic
excitations in high Tc superconducting materials [23, 44, 48, 52]. While many stud-
ies of ET in biomolecules are based on the Landau-Zener treatment (see e.g. [28]),
we resort to a microscopic formalism, based on the Schrödinger equation. However,
in order to find a fruitful approach to such highly complicated problems we need to
make drastic approximations. In previous publications [8, 9, 21, 22, 31, 32, 62–
66] we investigated some consequences of anharmonic lattice excitations on ET. In
particular, it was shown that electron trapping by solitons and a new form of ET and
electric conduction mediated by solitons, which we designate by solectron can take
place in anharmonic 1d lattices [1, 10–12, 47, 51, 58, 69]. The solectron state is
a modification of the polaron concept since, in this case, a pre-existing nonlinear
lattice distortion (the soliton) captures a free electron, which then travels along the
lattice, carried by the soliton. Thus, the speed of the bound electron state, i.e. the
speed of the solectron, is strongly dependent on the speed of the soliton, which is
determined by the lattice characteristics only. The previous studies showed that soli-
tons, in homogeneous lattices, lead to electron transfer times that are too large when
compared with experimental data. In this chapter, we extend the previous studies
and report results for the inhomogeneous system obtained by including an electron
donor and an electron acceptor explicitly in the lattice. The donor and acceptor are
represented by the different electron on-site energies of the corresponding sites, as
shown in Fig. 11.1.

Thus, contrary to other studies in which the on-site electronic energies were uni-
form along the lattice electronic energies are different at the sites where the electron

Fig. 11.1 Illustration of the donor-acceptor model investigated here. X is a site in a lattice with N
sites and D and A mark the sites of the electron donor and acceptor. The on-site electron energies
are equal for all sites (and set to zero), except for the donor and electron sites, where their values
are εD and εA, respectively
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Fig. 11.2 Transition times, in seconds, (in log10 scale) versus distance (in Å), measured in the
protein azurin. The parameters for the line in this figure are taken from [28]

donor and acceptor are located. Also, the variable we are mostly interested in is
the transition time from donor to acceptor (or, inversely, the electron transfer rate)
and our ultimate aim is to reproduce the order of magnitude, as well as the depen-
dence on distance, of the electron transition times that are measured experimentally
[27, 28]. Furthermore, we wish to develop a formalism that can treat short distances
between donor and acceptor, i.e. distances ≤20 Å, but also distances well beyond
20 Å, which are referred to as long range electronic transfer between donor and
acceptor. Figure 11.2 summarizes the experimental values of the transfer times that
we aim to explain.

In order to deal with phenomena such as electron tunneling (in and out of the donor
and acceptor) it is important to treat the electron as a quantum particle. To that end,
and as was done in the previous work, the electron motion in the lattice is considered
within the tight binding approximation (TBA) [2, 38, 60, 61]. On the other hand,
the motion of the lattice sites is treated classically, with the nonlinearity of the lattice
interactions being modelled by the Morse potential [46]. The Morse potential (akin to
the Lennard-Jones potential), allows for phonon -and soliton- longitudinal vibrations,
with the compressions being governed by the repulsive part of the potential. Finally,
the interactions between the electron and lattice are modelled by a Su-Schrieffer-
Heeger (SSH)-type Hamiltonian [29], in which the electron transfer term from site
to site is dependent on the distance between the lattice sites. The Morse potential
together with the quantum electron Hamiltonian just described, constitute a mixed
classical-quantum evolution problem [15]. We apply this Hamiltonian to transitions
between local electronic states, such as tunneling processes, under the influence of a
nonlinear coupling to a cold anharmonic lattice. The main aim is to determine how
the transition time for the electron to go from the donor to the acceptor is influenced
by the dynamics of the anharmonic lattice.
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In the next section the general Hamiltonian for the system, the particular scaling we
use to obtain a-dimensionless variables and the derivation of the equations of motion
are explained in details. For a more clear presentation of this subject, in Sects. 11.3
and 11.4 we deal with simplified versions of the original Hamiltonian, namely, with
the cases of an electron donor and acceptor in a rigid lattice, with periodic boundary
conditions (Sect. 11.3), and with fixed boundary conditions (Sect. 11.4), which allow
for the derivation of analytical expressions for the transition times between donors
and acceptors. In Sect. 11.5 we compare the analytical results for the rigid lattice with
the numerical results obtained in computer simulations for the full system, i.e., when
the lattice can also move, and in Sect. 11.6 we make a preliminary investigation of the
influence of a stronger electron-lattice interaction on the electron transition times. We
find that this microscopic model of ET can explain the exponential variation of the
transition times with distance that is portrayed in Fig. 11.2 and that, for certain values
of the parameters, the rigid lattice provides a sufficiently accurate approximation to
the full system. In Sect. 11.7 we discuss the results obtained within the context of
long distance ET.

11.2 Hamiltonian and Equations of Motion
of the Electron-Lattice Dynamics

The model Hamiltonian for charge transport that we consider here consists of the
following two terms

H = Hel + Hlattice, (11.1)

where Hel provides a quantum mechanical description of ET along the 1d lattice and
Hlattice represents the classical dynamics of longitudinal vibrations of the units, viz.
the deformations of the corresponding bonds between them. In the TBA we have

Hel = −
∑

n

[
εn c∗

ncn + Vnn−1
(

c∗
ncn−1 + cnc∗

n−1

)]
. (11.2)

The index n denotes the site of the nth unit on the lattice and |cn|2 determines
the probability to find the electron (charge) residing at such site. εn is the electron
on-site energy at site n. In absence of donor and acceptor εn is equal for all sites
(and set to zero). On the other hand, donor and acceptor sites are identified by
finite values of the on-site energies which represent their electronic energies with
respect to energy of the bridge sites. The quantities Vn n−1 are the transfer matrix
elements whose values are determined by an overlap integral. They account for the
nearest-neighbor hopping of the electron along the chain. The interaction between
the quantum electron dynamics and the classical vibrational degrees of freedom
yields modifications of the electron parameters Vn n−1 due to the displacements of
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the units from their equilibrium positions. To be specific, following Slater [57] and
other authors who have shown that this distance dependence should be exponential
[35] we set

Vn n−1 = V0 exp
[−α (qn − qn−1)

]
. (11.3)

The quantity α regulates how strongly Vn n−1 is influenced by the relative distance,
rn = qn − qn−1, between neighbouring lattice sites. The coordinates qn quantify
the displacements of the sites from their equilibrium positions along the lattice axis.
On the other hand, the actual charge occupation has its (local) impact on the lon-
gitudinal distortion of the chain (polaron-like effect) [7, 60, 61]. Note that here the
exponential form of the electron-lattice interaction accounts for both small and large
displacements of the lattice sites thus going beyond the range of linear interaction
considered in most earlier studies.

For the lattice part of the Hamiltonian (11.1) we set

Hlattice =
∑

n

{
p 2

n

2M
+ D ( 1 − exp[−B (qn − qn−1)] )2

}
. (11.4)

D is the break-up energy of a bond, B is the stiffness of the Morse potential, and
M denotes the mass of a lattice unit (all units are taken with equal mass). The
Morse potential exhibits an exponential-repulsive part preventing the cross-over of
neighboring lattice particles (molecules) for large displacements. Needless to say,
with a Taylor expansion of the exponential function one recovers in lowest order
the harmonic limit, and taking into account higher-order terms one recovers the
anharmonic potentials, like the cubic power or go to the quartic power, of standard
use in condensed matter physics [2, 10, 38].

For universality in our arguments it is convenient to suitably re-scale quantities.
Thus, time is scaled as: t̃ = �Morse t , with �Morse = √

2D B2/M being the fre-
quency of the harmonic oscillations that take place around the minimum of the Morse
potential, and the energy of the system is measured in units of two times the depth
of the Morse potential, i.e. H → H/(2D). Note that D ≈ 0.1 eV for physically
interesting cases. The dimensionless representation of the remaining variables and
parameters of the system follows from the relations:

q̃n = B qn, p̃n = pn√
2M D

, Ṽ = V0

2D
(11.5)

α̃ = α

B
ε̃n = ε

��Morse
. (11.6)

In what follows we drop the tildes. The equations of motion derived from the Hamil-
tonian (11.1), with (11.2) and (11.4), read as
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i
dcn

dt
= εn cn − τ

{
exp

[−α(qn+1 − qn)
]

cn+1 (11.7)

+ exp
[−α(qn − qn−1)

]
cn−1

}

d2qn

dt2 = [
1 − exp {−(qn+1 − qn) }] exp[−(qn+1 − qn) ]

− [
1 − exp {−(qn − qn−1) }] exp[−(qn − qn−1) ]

+αV
{
(c∗

n+1cn + cn+1c∗
n) exp[−α (qn+1 − qn) ]

− (c∗
ncn−1 + cnc∗

n−1) exp[−α (qn − qn−1) ] }
. (11.8)

The adiabaticity parameter τ = V/(� �Morse), appearing in the r.h.s. of (11.8) is
the ratio of the two time scales involved, i.e., between the (fast) electronic and the
(slow) acoustic phonon processes. For illustration in our computer simulations we
use (unless stated otherwise) the following values: τ = 10, V = 0.1, and α =
1.75 which are relevant for ET in biomolecules [18, 27, 28, 32, 55, 63]. We also
consider the behaviour at low temperature and to mimic thermal agitation (11.8)
are augmented with Langevin terms (delta correlated Gaussian noise forces and
damping, obeying Einstein’s relation between the noise strength and temperature),
representing an appropriate heat bath [19, 20, 39].

11.3 Free Electron Dynamics with One Bound State
in a Lattice with Periodic Boundary Conditions

Let us first consider the electron dynamics in the case of no coupling to the lattice
dynamics (α = 0) and equal on-site energies (no donors or acceptors , εD = εA = 0).
In this regime, which is valid when the oscillations of lattice sites are negligibly
small (rigid lattice), the electrons hop from site to site, according to the quantum-
mechanical TBA dynamics. Then the Schrödinger equation corresponding to (11.2)
reduces to:

i
dcn

dt
= τ (cn+1 + cn−1) . (11.9)

The eigen energies E j and the eigenfunctions with periodic boundary conditions
read [14]:

E j = 2 τ cos

[
2π( j − 1)

N

]
(11.10)

c jn =
√

1

N
exp

[
2π i jn

N

]
(11.11)
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where N is the number of sites, j = 1, . . . , N and c jn is for the probability amplitude
for an electron to be in the nth-site in the jth eigenstate. Using the eigenstates above
as a basis set, the general wavefunction for an electron in a uniform lattice can be
written as follows:

|ψ(t)〉 =
∑

j=1,N

d j exp
(
− ı

�
E j t

)
|ψ j 〉 (11.12)

where |ψ j 〉 = ∑
n=1,N c jn|n〉 is the eigenfunction for the state with energy E j , |n〉

is the state in which there is an electron in site n and d j is the probability amplitude
for the occupation of eigenstate j . Substituting expression (11.11) in (11.12) and
setting t = 0 we get:

|ψ(t = 0)〉 = 1√
N

∑

n, j=1,N

d j exp

(
2π i jn

N

)
|n〉 (11.13)

For an electron to be initially in site r , we must have:

〈r |ψ(t = 0)〉 = 1√
N

∑

j=1,N

d j exp

(
2π i jr

N

)
= δnr (11.14)

which is valid if the complex coefficients d j obey the following equality:

d j = 1√
N

exp

(
−2π i jr

N

)
(11.15)

Thus, the wavefunction for an electron that starts at site r , taken to be the donor site,
is:

|ψ(t)〉 = 1

N

∑

j,n=1,N

exp
(
− ı

�
E j t

)
exp

[
2π i j (n − r)

N

]
|n〉 (11.16)

and the probability amplitude that the electron, after a time interval t , is at site m,
taken to be the acceptor site, is:

<m|ψ(t)〉 = 1

N

∑

j=1,N

exp
(
− ı

�
E j t

)
exp

[
2π i j (m − r)

N

]
(11.17)

where E j is given by (11.10). We note that the wavefunction (11.16) is a peri-
odic function and so all electronic processes in a homogeneous lattice with periodic
boundary conditions are periodic.

In order to study ET from a donor to an acceptor we need an inhomogeneous
lattice, i.e. the on-site energies of the electron cannot be equal for all sites. Let us
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start by the smallest inhomogeneous lattice possible, i.e. when N = 2, with a donor
with energy εD = ε1 = ε in site 1 and an acceptor with energy εA = ε2 = 0 in site
2. This leads to a simple system which, in the site representation, |n〉, used above, is
characterized by the energy matrix:

[
ε −1

−1 0

]

where we have considered the energies in units of τ . We are interested in describing
the transfer of one electron from the donor in site 1 to the acceptor in site 2.

As before, we calculate the eigen energies of the system:

E1 = ε − √
ε2 + 4

2
(11.18)

E2 = ε + √
ε2 + 4

2
(11.19)

and the corresponding normalized eigenvectors:

|ϕ1〉 =
[

ϕ11
ϕ12

]
=

⎡

⎢⎣

1√
E2

2+1
E2√

E2
2+1

⎤

⎥⎦ (11.20)

|ϕ2〉 =
[

ϕ21
ϕ22

]
=

⎡

⎢⎣
− 1√

E2
1+1

|E1|√
E2

1+1

⎤

⎥⎦ (11.21)

from which we can determine a general expression for the wave function as a super-
position of the two eigenstates (see (11.12)); then we calculate the coefficients d1 and
d2 so that the probability for the electron to be at the donor in site 1 initially is unity
(i.e., pD(t = 0) = p1(t = 0) = 1); once we have these new coefficients d1 and d2,
we can determine the probability, pA = p2, that the electron is at the acceptor in site
2 at time t , given that it started at the donor. The result is:

p2(ε, t) = 2

ε2 + 4

[
1 − cos

(√
ε2 + 4 t

)]
. (11.22)

As expected, this probability is periodic, but notice that it does not necessarily oscil-
late between 0 and 1! Indeed, the probability, p2, for the electron to be at the acceptor
when it starts at the donor only reaches its maximum value of unity when ε = 0, i.e.
when the electronic energies of the donor and acceptor are equal (something that in
solid state physics is known as the resonance condition). When the electron energies
of the donor and acceptor are different, p2 < 1 at all times and its maximum value,

4
ε2+4

, decreases as the energy difference between donor and acceptor, ε, increases
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(in absolute value). Unless otherwise is stated we define the transition time for an
electron to go from donor to acceptor as the smallest time in which this maximum
probability is reached. Equation (11.22) shows that for arbitrary ε the transition time
for an electron to go from the donor to the acceptor is given by:

ttr = π√
ε2 + 4

= π

E2 − E1
. (11.23)

Thus, we conclude that, for a two-site system, the first passage time is inversely
proportional to the difference between the two lowest eigenvalues, or, in other words,
that the difference between the two lowest eigenvalues is proportional to the rate of
the first transition from the donor to the acceptor. In the next section, we will see
that although this expression, well known from the quantum theory of atoms and
molecules, is exactly valid for a two-site system, it is also approximately true for
larger lattices.

11.4 Free Electron Dynamics in a Lattice with Fixed
Boundary Conditions

In this section we consider a 1d lattice of N sites with fixed b.c. In the absence of
donor and acceptor, i.e., when the on-site energies are equal for all N sites, we find
the following eigenvalues and eigenstates [14]:

E j = 2 τ cos

(
π j

N + 1

)
, (11.24)

c jn =
√

2

N + 1
sin

(
π jn

N + 1

)
, (11.25)

where j = 1, . . . , N . Following the same reasoning as in Sect. 11.3 we find that the
probability amplitude for an electron to be in site m after a time t when it starts from
site r is:

<m|ψ(t)〉 = 2

N + 1

∑

j=1,N

exp
(
− ı

�
E j t

)
(11.26)

sin

(
π jr

N + 1

)
sin

(
π jm

N + 1

)
.

Also in this case the eigenfunctions are periodic functions and, consequently, in the
absence of thermal baths, the probability for an electron to be in site m when it was
initially in site r is periodic.
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Let us now consider the second smallest lattice with a donor and acceptor, namely,
when N = 3 and in which the energy of the donor is equal to that of the acceptor
(εD = εA = ε), with both of them being different from the electron energies in the
bridging site, which is set to zero. With fixed b.c. and also in the site basis |n〉, the
corresponding energy matrix is the following:

⎡

⎣
ε −1 0

−1 0 −1
0 −1 ε

⎤

⎦ (11.27)

where again the energies are given in units of τ . The eigenvalues for this matrix are:

E1 = ε − √
ε2 + 8

2
(11.28)

E2 = ε (11.29)

E3 = ε + √
ε2 + 8

2
(11.30)

and the corresponding normalized eigenvectors are:

|ϕ1〉 =
⎡

⎣
ϕ11
ϕ12
ϕ13

⎤

⎦ =

⎡

⎢⎢⎢⎣

−
√

1
E3

√
ε2+8

−
√

E3√
ε2+8

−
√

1
E3

√
ε2+8

⎤

⎥⎥⎥⎦ (11.31)

|ϕ2〉 =
⎡

⎣
ϕ21
ϕ22
ϕ23

⎤

⎦ =
⎡

⎢⎣
−

√
2

2
0√

2
2

⎤

⎥⎦ (11.32)

|ϕ3〉 =
⎡

⎣
ϕ31
ϕ32
ϕ33

⎤

⎦ =

⎡

⎢⎢⎢⎣

−
√

1
E1

√
ε2+8√

E1√
ε2+8

−
√

1
E1

√
ε2+8

⎤

⎥⎥⎥⎦ (11.33)

Using the same reasoning as before we can find the probability, pA = p3, as a
function of ε and time, for an electron to be at the acceptor (in site 3), given that it
started at the donor (in site 1). The result is:

p3(ε, t) = ε2 + 6

2
(
ε2 + 8

) − E3

2
√

ε2 + 8
cos (E1 t) (11.34)

+ 1

ε2 + 8
cos

(√
ε2 + 8 t

)
+ E1

2
√

ε2 + 8
cos (E3 t)
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Fig. 11.3 Analytical results
for transition processes
between a donor and an
acceptor separated by one
lattice site in a
1d-TBA-lattice with fixed
boundary conditions (T = 0,
α = 0). We show the time
evolution for the probability
of an electron to be at the
acceptor (site 3), given that it
is at the donor (site 1) to start
with, calculated with (11.35)
for ε = 0 (red curve) and
with the simplified equation

1/2
[
1 − cos(

√
2 t)

]
(green

curve)

30200

1

0
10

0,4

40

0,6

0,8

50

t

0,2

This probability oscillates, as expected, but the oscillations now involve the interfer-
ence of three different frequencies, which makes it less straightforward to define a
transition time. But, as we will see, it is still possible to define this value on average,
with the same expression as before (11.23). To show that, let us consider different
values of ε. For ε = 0, (11.34) becomes:

p3(ε = 0, t) = 3/8 − 1/2 cos
(√

2t
)

+ 1/8 cos
(

2
√

2t
)

(11.35)

Figure 11.3 shows that, for ε = 0, the oscillations have a period that is related
essentially with the lowest frequency, that is, that is related to the energy difference
between the two lowest states, ttr ≈ π

E2−E1
= π√

2
.

If we now consider ε = −1, the probability for the electron to be in site 3 becomes:

p3(ε = −1, t) = 7

18
− 1/3 cos (t) + 1/9 cos (3 t) − 1/6 cos (2 t) . (11.36)

Figure 11.4 shows that the interference between the three frequencies results in
that, for ε = −1, the probability for the electron to be in the second well never
reaches a value of unity as happened for the two-site system. On the other hand, the
residence time for the electron in the second well is effectively increased because of
the interference. Also in this case, the lowest frequency provides an average estimate
for the transition time which is related to the energy difference between the two lowest
energy states.
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Fig. 11.4 Analytical results
for transition processes
between a donor and an
acceptor separated by one
lattice site in a
1d-TBA-lattice with fixed
boundary conditions (T = 0,
α = 0). We show the time
evolution for the probability
of an electron to be at the
acceptor (site 3), given that it
is at the donor (site 1) to start
with, calculated with (11.36)
for ε = −1 (red curve) and
with the simplified equation
1/2 [1 − cos(t)] (green
curve)
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For ε = −2, the probability for the electron to be in site 3 becomes:

p3(ε = −2, t) = 5

12
+ 1

12
cos

(
2

√
3t

)
+

√
3 − 3

12
cos

[(√
3 + 1

)
t
]

(11.37)

−
√

3 + 3

12
cos

[(√
3 − 1

)
t
]

and the time evolution is displayed in Fig. 11.5. It appears that, for ε = −2, although
the interference between the three frequencies leads to a variety of oscillatory pat-
terns, the overall transition time is still related to the energy difference between the
two lowest energy states, as given by (11.23). Thus we conclude that, although the
expression (11.23) widely used for the first passage time is only strictly valid for a
lattice with two sites, it does provide a good approximation in a lattice with three sites
in which the donor is at site 1 and the acceptor is at site 3. Notice that also in this case
the interference between the three frequencies results in that, for certain values of ε,
the probability for the electron to be at the donor may never reach unity, as happened
for the two-site system. However, the time to reach a maximum probability can still
be related to the energy difference between the two lowest energy states.

Since the analytical expressions for lattices with more than three sites are not
illuminating, we will use (11.23) to determine numerically the dependence of the
transition time for an electron to go from the donor to the acceptor, as a function
of the electronic energy of the donor (assumed equal to that of the acceptor) and
of the distance between the donor and acceptor. In Fig. 11.6 a donor and acceptor
with electronic energies ε = −5,−2,−1 (blue, green and red, respectively) and
separated by N − 2 sites have been considered and the two lowest eigenvalues have
been determined numerically. Given the average separation between sites in azurin
[63] N = 5 in the figure is close to 20 Å. This figure shows that for the larger elec-
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Fig. 11.5 Analytical results for transition processes between a donor and an acceptor separated by
one lattice site in a 1d-TBA-lattice with fixed boundary conditions (T = 0, α = 0). We show the
time evolution for the probability of an electron to be at the acceptor (site 3), given that it is at the
donor (site 1) to start with, calculated with (11.38) for ε = −2 (red curve) and with the simplified

equation 1/2
[
1 − cos((

√
3 − 1) t)

]
(green curve)

0
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4

 3  4  5  6  7

t
t
r

N

Fig. 11.6 Transition time (in log10 scale and in units of �−1
Morse) versus the number of lattice sites

N for an electron to go from a donor to an acceptor in 1d-TBA-lattice (3 ≤ N ≤ 7), with the donor
and acceptor at the ends (T = 0, α = 0). The electronic energies of the donor and acceptor are
ε = −5 (upper dotted line, blue), ε = −2 (center dashed line, green) and ε = −1 (lower solid line,
red), in units of τ
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Fig. 11.7 Transition time (in log10 scale and in units of �−1
Morse) versus ε (in units of τ ) for an

electron to go from a donor and to an acceptor separated by a 3 site bridge. (N = 5, T = 0, α = 0).
ε is the energy of the electron at the donor and at the acceptor

tronic energies (in absolute terms), the transition time from donor to acceptor varies
exponentially with the distance which is usually identified with the tunneling regime.
On the other hand, when the electronic energies of donor and acceptor are compa-
rable to the hopping term τ , the transition time does not vary exponentially with the
distance, that is, non-tunneling quantum interference processes become important.
This is particularly visible the shorter the bridge between donor and acceptor is, as
shown in Fig. 11.7. Indeed, this figure shows the transition time as function of donor
and acceptor energies, for a lattice with seven sites (a 5 site bridge between the donor
and acceptor). While in the tunneling regime the dependence of the transition time
is exponential in the electronic energy ε, for this small number of bridge sites this
is not the case for the smaller values of the on-site electronic energies (in absolute
terms). On the other hand, for the larger values of ε the transition times do scale
exponentially with the on-site energies of donor and acceptor which suggests that,
for these values, the electronic transfer is in the tunneling regime.

11.5 Computer Simulations of ET from Donor
to Acceptor in a Lattice at Low Temperature

In this section we consider a long lattice ring with N = 100 sites on which the donor
and the acceptor are separated by a distance of 
n sites. Furthermore, we include
explicitly the interaction of the electron with the motions of the lattice sites, by solving
numerically equations (11.7) and (11.8), augmented with the appropriate Langevin
terms to account for heating, as explained at the end of Sect. 11.2. Figures 11.8 and
11.9 show the electron transitions as a function of the distance 
n between donor and
acceptor (Fig. 11.8) and as a function of the electronic energy of the donor (assumed
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Fig. 11.8 Computer
simulations of electronic
transition processes in a
1d-TBA-lattice with periodic
boundary conditions, for
different distances 
n
between donor and acceptor.

n = 1, 2, 3 and 5, from top
to bottom, respectively. For
all trajectories: ε = −5 (in
units of τ ), (N = 100),
T = 0.002D, α = 0.1,
V = 0.1 and τ = 10
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Fig. 11.9 Computer
simulations of electronic
transition processes in a
1d-TBA-lattice with periodic
boundary conditions, for
different donor and acceptor
energies ε. ε = −1,−2,−3
and −4 (in units of τ ), from
top to bottom, respectively.
For all trajectories: 
n = 5,
(N = 100), T = 0.002D,
α = 0.1, V = 0.1, and
τ = 10
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Fig. 11.10 Transition time between two wells as a function of the distance between donor and
acceptor, 
n (N = 100). Comparison between analytical calculations for a lattice with fixed ends
(red solid line above) and computer simulations (green dotted line below). The depth of the wells
is ε = −5 (in units of τ ). Temperature, T = 0.002D. Parameter values: α = 0.1, V = 0.1 and
τ = 10

to be equal to that of the acceptor) (Fig. 11.9). In all cases displayed the electron
moves between donor and acceptor in an oscillatory manner, as predicted by the
analytical results obtained in previous sections (cf. 11.22 and 11.34). Moreover, this
agreement between the numerical results for the full system and the analytical results
for a rigid lattice (cf. 11.23) is not merely qualitative, as demonstrated in Fig. 11.10.
Indeed, in Fig. 11.10, a comparison of the transition time as a function of the distance
between acceptor and donor, 
n, is made between the analytical and the numerical
results, namely, the solid line (red, above) corresponds to the analytical transition
times, while the dashed line (green, below) corresponds to the numerical transition
times obtained from trajectories such as those displayed in Fig. 11.8. Figure 11.10
shows that, for very low temperatures, and weak electron-lattice interactions, the
transition times are approximately the same as for a rigid lattice and, for the values
of the parameters used, both lead to the exponential dependence on distance that
characterizes tunneling.

Finally, we should note that Figs. 11.8 and 11.9 also provide an insight into the
localization of the electron states. From inspection of the scales for |cn|2, at the top
right end corner of each plot in Fig. 11.9, we find that the electron states at the donor
and acceptor become more localized as the binding energy of the electron to the donor
(and acceptor) increases. A careful inspection of the top three plots of Fig. 11.8 and
of the top two plots of Fig. 11.9 reveals that, on top of the oscillatory motion from
donor to acceptor, some radiation leaks into the lattice and is observed to go around
the ring a few times, before it disperses, when either the distance between donor and
acceptor is very short or their on-site energies are approximately equal to the electron
coupling term τ .
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11.6 Dependence of Transition Time on α

α represents the strength of electron lattice interaction (see (11.3)). The higher the
α the stronger this interaction is. Until now we have reported results for α ≤ 0.1.
However, the values of this parameter relevant for ET in biomolecules are likely to
be higher [18, 27, 28, 32, 55, 63]. Thus, in this section, we investigate the effect on
the transition time of increasing values of α.

Figure 11.11 shows that, initially, the change with α of the transition time for the
electron to go from the donor to acceptor is slow. Indeed, judging from the number
of cycles after 180 time units, the transition time only decreases from 4 to 3 when
α increases from 0.1 to 0.9. However, above this value, the effect of increasing α

becomes very marked indeed, first leading to an effective decrease in the probability
of finding the electron at the acceptor site (as has been found before for specific values
of the on-site energies in small lattices) and finally resulting in an inhibition of the
transition altogether when α ≥ 1.5. These results are more clearly seen in Fig. 11.12
in which the dependence of the transition time on the electron-lattice interaction is
displayed.

11.7 Discussion and Conclusions

Our ultimate aim is to model the influence of the environment on long range ET,
such as that observed in proteins [27, 28] and in synthetic DNA [25, 26]. While
Marcus theory [27, 28, 43] can explain ET up to 20 Å, our ultimate aim is to develop
a theoretical explanation capable of including ET for larger distances as well, by
exploring the hypothesis that solitons in the media between donors and acceptors can
constitute carriers for the electron. In this study we have considered a one dimensional
lattice in which the electron on-site energies were all equal except at the donor and
acceptor sites (see Fig. 11.1). The variable we are interested in is the transition time
for the electron to move from the donor to the acceptor. We should note, however,
that, our results were obtained in a finite lattice and in a finite size system all the
trajectories are necessarily periodic so that the electron keeps moving from donor
to acceptor and vice-versa. Therefore, in Sects. 11.3 and 11.4 we have defined the
transition time as the first time passage, i.e. the instant in which the probability for the
electron to be at the acceptor is maximum for the first time (given that the probability
for the electron to be at the donor was 1 initially). We have verified that, to a good
approximation, this defined rate of transfer from donor to acceptor in a rigid lattice
can be predicted from the energy difference between the two lower energy states
of the electron. Furthermore, in Sect. 11.5 we showed that, at low temperature, this
rigid lattice rate is very similar to that obtained from the numerical simulations of
an electron coupled to a flexible lattice, for an electron-lattice coupling constant
α = 0.1. Indeed, comparison of Figs. 11.2 and 11.10 shows that the nonlinear model
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Fig. 11.11 Computer simulations of electronic transition processes in a 1d-TBA-lattice with peri-
odic boundary conditions, for different values of α. For all trajectories: ε = −5 (in units of τ ),
(N = 100), T = 0.002D, V = 0.1, 
n = 5 and τ = 10. From top to bottom, respectively,
α = 0, 0.5, 0.8, 0.9 (left column) and α = 0.97, 1, 1.5, 1.75 (right column)

used here (cf. 11.1–11.4) can not only reproduce the exponential distance dependence
of the experimentally measured transition times for electron transfer from donors to
acceptors but also leads to the right order of magnitude of these transition times. For
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Fig. 11.12 Transition time
from donor to acceptor as a
function of the
electron-lattice interaction,
α, using the data in
Fig. 11.11. The depth of the
wells is ε = −5 (in units of
τ ). Temperature,
T = 0.002D. Parameter
values: α = 0.1, V = 0.1,

n = 5 and τ = 10.
(N = 100)
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example, it is approximately 3800 time units for 
n = 7 when εdonor = εacceptor =
−5 (in units of τ ) (see Fig. 11.10). In Sect. 11.6 we show that the transition times
depends weakly on α between 0 and 0.9. On the other hand, above 0.9, the probability
for an electron to go from the donor to the acceptor decreases markedly and for
α ≥ 1.5 the transition time becomes virtually infinite.

Regarding the mechanism that underlies the electronic transfer from donor to
acceptor, our simulations also demonstrate that, at low temperatures, there is a whole
spectrum of possibilities from non-tunneling to tunneling-like donor to acceptor tran-
sitions. E.g., in a lattice chain with weakly bound donor and acceptor electrons the
electronic transition time is not exponential with distance (see solid bottom curve
in Fig. 11.6 and Fig. 11.7). On the other hand, for strongly bound donor (and accep-
tor) electrons, the electronic transitions from donor to acceptor are of tunneling-type,
even when 
n = 1, with the transition time growing very fast, i.e. following an expo-
nential law with 
n. Future work will explore in greater detail the effect of stronger
couplings between the electron and the lattice and also of higher temperatures on the
electron transfer from donor to acceptor and on the corresponding transition times.
It is worth mentioning that other studies with homogeneous lattices [8, 9, 21, 22,
31, 32, 62–66] have already pointed at the potential of this theory to explain faster
electron transport as well.
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