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Abstract The pairing of electrons in harmonic and anharmonic one-dimensional
lattices is studied with account of the electron-lattice interaction. It is shown that
in harmonic lattices binding of electrons in a bound localized state called bisoliton,
takes place. It is also shown that bisolitons in harmonic lattices can propagate with
velocity below the velocity of the sound. Similarly, binding of electrons in singlet
spin state, called bisolectron, takes place in anharmonic lattices. It is shown that
the account of the lattice anharmonicity leads to the stabilization of bisolectron
dynamics: bisolectrons are dynamically stable up to the sound velocity in lattices
with cubic or quartic anharmonicities and can also be supersonic. They have finite
values of energy and momentum in the whole interval of bisolectron velocities. The
bisolectron binding energy and critical value of the Coulomb repulsion at which
the bisolectron becomes unstable and decays into two independent solectrons, are
calculated. The analytical results are in a good agreementwith the results of numerical
simulations in a broad interval of the parameter values.
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12.1 Introduction

In this chapter we will study the possibility of binding of two extra electrons or holes
in a singlet localized bound state in a one-dimensional lattice with account of the
electron-lattice interaction. For simplicity we will consider a chain with one ‘atom’
per unit cell, and, respectively, one phonon mode, which describes longitudinal dis-
placements of atoms from their equilibrium states and is called ‘acousticmode’: there
is electron-lattice interaction with acoustical phonons, only. For more realistic low-
dimensional molecular systems such a model corresponds to the case of very strong
anisotropy when the parameters of the system in one direction are much bigger than
in two other directions, so that one can identify in the system one-dimensional chains
in which the acoustical mode is the most active. The interaction between the chains
can be considered as weak and taken into account using perturbation method. In the
general case the electron-lattice systems can be described by the Fröhlich Hamil-
tonian, which includes three terms, the first two of which describe, respectively, a
quasiparticle (electron, hole, exciton, etc.) and undisturbed lattice, and the third term
describes the interaction between the quasiparticle and lattice displacements from
their equilibrium positions.

It is well established that the electron-lattice interaction plays a significant role
in low-dimensional molecular systems and can result in their essentially genuine
properties. Thus, electron-lattice interaction (it is called also electron-phonon inter-
action) leads to the lowering of the energy of quasiparticles [1, 2, 19, 31, 34, 35].
Such phenomenon is known as polaron effect. Unfortunately, even in the simplest
case of a one-dimensional system with one phonon mode (one atom in a unit cell)
and one extra quasiparticle in the chain the corresponding Hamiltonian can not be
diagonalized exactly and there is no exact solution of such a problem. One possi-
bility is a numerical solution of the problem, which depends on the choice of the
parameter values of the considered chain and can not give a complete description of
the problem. Variational methods can be also useful, but it is well known, that the
results of such methods depend essentially on the choice of the variational function.
Another possibility is to study the problem within the perturbation method. Respec-
tively, different perturbation schemes can be used depending which parameter of the
system can be considered as a small parameter.

Thus, it has been shown that depending on the strength of the coupling and the
lattice nonadiabaticity parameter, the lowest energy state of a quasiparticle is one
of the three possible states: (i) an almost free band state, (ii) a large polaron, (iii) a
small polaron [10]. In an almost free band state a quasiparticle is delocalized over the
whole length of the system, while the latter two states correspond to a quasiparticle
localized state of large radius as comparing with the lattice spacing, or trapped
within one lattice site, respectively. We remind here, that the lattice nonadiabaticity
parameter is determined as the ratio between the Debye energy of phonons and the
resonant (exchange) energy in the lattice. In particular, at moderate values of the
electron-lattice interaction constant and not too strong lattice nonadiabaticity the
adiabatic approximation is valid.
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In such a case a large polaron corresponds to the lowest energy of the system [10].
In particular, within this approximation, Davydov has shown that the Hamiltonian of
a one-dimensional molecular lattice can be diagonalized in such away that the lowest
order of the electron-lattice interaction is taken into account in the zero-order term of
the Hamiltonian [19, 39]. In other words, in the zero order adiabatic approximation
the lowest order of the electron-lattice interaction is taken into account exactly. In
this case the ‘zero order’ term of the Hamiltonian leads to the system of coupled non-
linear discrete equations for the wave-function of a quasiparticle and displacements
of atoms from their equilibrium positions [19, 38, 39].

In the continuum approximation this system of equations can be reduced to the
Davydov system of equations [19]. This system coincides formally with Zakharov
systemof equationswhich describes the propagation ofLangmuirwaves in an ionized
plasma. Davydov system of equations, for the case of functions of a quasiparticle
and phonons that depend on the running wave coordinate x − V t , can be reduced to
the nonlinear Schrödinger equation. This equation admits the soliton solution [19]
of a finite radius of a localization. Here x = na is a lattice coordinate, a is the
constant of lattice spacing, t is time, V is the velocity of the running wave. Then
the lattice deformation, which is proportional to the probability of a quasiparticle
presence in the given place of the lattice, is also a localized function. In this respect
Davydov’s soliton describes a particular type of a large polaron, inwhich the electron-
lattice interaction is taken into account exactly, without linearization of the system.
Davydov’s soliton, therefore, describes a bound state of a quasiparticle with the self-
induced localized lattice distortion. Such a soliton can propagate along the molecular
chain with constant velocity V , neglecting effects of the lattice discreteness, and
describes a coherent propagation of a quasiparticle, so that the quasiparticle will
reach a certain position in the chain, as an example, the opposite end of the chain, with
the probability, equal to 1, at some time instant. Thus, Davydov’s soliton describes
a large polaron with the lowest energy as compared with other solutions of a large
polaron type. The width of the Davydov’s soliton, ls , is inversely proportional to the
non-linear parameter of the nonlinear Schrödinger equation, which is proportional
to the dimensionless electron-lattice coupling, g, namely, ls = πa/g. For the values
of the chain parameters, that satisfy the condition of adiabatic approximation, this
radius of soliton localization is equal to several lattice sites.

Worth mentioning here also is that Davydov’s solitons are essentially nonlinear
two-component (sometimes called ‘two-field’) entities, one component of which is
a quasiparticle, and another component is a lattice distortion, determined by the dis-
placements of atoms from their equilibrium positions, induced by the presence of
the quasiparticle. In the case of self-trapping of a charged particle (electron or hole)
Davydov’s soliton is called ‘electrosoliton’ [19, 38, 39]. From the point of view of
conducting properties, namely systems which support formation of large polarons in
general, and of solitons in particular, are the most important for their technical appli-
cations in modern devices. Indeed, there is a wide class of quasi-one-dimensional
crystals in which large polarons exist. This include DNA and α-helical polypeptides
[18, 19, 30, 38], polydiacetylene [24, 27, 48], conducting platinum chains and con-
ducting polymers [11], salts of transition metals [3, 16, 40, 49], superconducting
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cuprates [4, 13, 23, 26, 32], etc. These compounds find numerous applications in
microelectronics and nanotechnologies, or play important role in living systems. This
explains our interest in studying nonlinear effects in such systems.

In this respect the question arises if the electron-lattice interaction in low-
dimensional systems can result in binding two extra electrons in a localized state. This
can be compared with the formation of Cooper pairs due to the exchange with virtual
phonons. Indeed, it has been shown that in harmonic lattices pairing of two charged
quasiparticles (below we call them ‘electrons’) with opposite spins in a bisoliton
state takes place [8, 9]. The difference between bisolitons and Cooper pairs is the
space where the localization of electrons takes place, and the size of the localization:
while Cooper pairing takes place in the momentum space and the size of Cooper
pairs in a real space is very large, bisolitons are localized in the coordinate space and
are extended over a few lattice units.

Generally, in the studies of the properties of Davydov solitons and bisolitons the
lattices are usuallymodeledwithin the harmonic approximation.Goingbeyond this, it
is nowfirmly established that solitons are formed in rather generic anharmonic lattices
[12, 18, 19, 29, 33, 36, 41, 42]. In this case solitons are one-component entities,
sometimes called also ‘lattice solitons’, to be distinguished from two-component
Davydov’s solitons. In view of the above here we explicitly analyze how the lattice
anharmonicity added to the electron-phonon interaction facilitates electron pairing
in a one-dimensional lattice and also helps overcoming Coulomb repulsion. It has
been shown that anharmonic lattices also favor pairing of electrons (holes) in a
singlet localized state [5, 44, 45]. While in harmonic lattices the nonlinearity in the
system is due to the electron-lattice interaction, in anharmonic lattices there are two
nonlinearities: the nonlinearity of the lattice itself, and the electron-lattice interaction.
It is well known that in nonlinear systems the standard principle of superposition does
not take place. As a result, the spectrum of the localized solutions in such systems is
bigger than in harmonic lattices. We call these localized solutions “bisolectrons” to
indicate the difference with bisolitons in harmonic lattices.

The properties of bisolectrons depend on which nonlinearity is dominating in
their formation. It appears that the presence of the lattice anharmonicity results in
the stabilization of the dynamics of bisolectrons. Theyhavefinite values of energy and
momentum in the whole interval of bisolectron velocities which can be subsonic and
supersonic. Here we consider first the general case of anharmonic lattices, and then
to obtain explicit expressions for the parameters of bisolectrons, we consider lattices
with cubic anharmonicity and quartic anharmonicity. We also take into account the
Coulomb repulsion between the electrons and show that it can modify the envelope
of bisolitons and bisolectrons: their envelope can have two maxima at strong enough
Coulomb repulsion. We calculate the bisolectron binding energy and critical value
of the Coulomb repulsion at which the bisolectron becomes unstable and decays into
two independent solectrons. The bisolectron binding energy is estimated for values
of chain parameters that are typical for biological macromolecules and some quasi-
one-dimensional conducting systems. We show that the Coulomb repulsion in such
systems is relatively weak relative to the binding energy and, therefore, binding of
two electrons in a singlet localized bisolectron state takes place in such systems.
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Finally, we find another type of localized solutions of the corresponding system
of nonlinear equations, which can be only supersonic. We show that our analytical
results are in a good agreement with the results of numerical simulations in a broad
interval of the parameter values of the system and of the strength of the Coulomb
repulsion between the electrons.

12.2 Hamiltonian of the System and Dynamic Equations

Let us consider two added excess electrons (holes) in an infinitely long one-
dimensional lattice formed by unit cells of mass M placed at equilibrium lattice
spacing a. Such a system can be described by the Fröhlich Hamiltonian in the form:

Ĥ = Ĥel + Ĥlat + Ĥint + ĤCoul. (12.1)

Here the electron Hamiltonian is written as

Ĥel =
∑

n,s

[
E0 B̂†

n,s B̂n,s − J B̂†
n,s

(
B̂n+1,s + B̂n−1,s

)]
, (12.2)

where E0 is the on-site electron energy, J is the electron exchange interaction energy,
B̂†

n,s, B̂n,s are creation and annihilation operators of an electron with spin index
s = 1, 2 at the lattice site n.

We assume that in the lattice only one phonon mode, namely acoustical, is the
most active. The Hamiltonian of such a lattice has the form

Ĥph =
∑

n

[
p̂2n
2M

+ Û
(
β̂n

)]
, (12.3)

where β̂n is the operator of the displacement of the nth unit cell from its equilibrium
position and p̂n is the operator of the canonically conjugated momentum, and Û is
the operator of the potential energy of the lattice, whose properties will be defined
below.

The Hamiltonian of electron-lattice interaction for the case, when the on-site elec-
tron energy dependence on the longitudinal displacements of unit cells (acoustical
mode) dominates the inter-site dependence, is given by the expression

Ĥint = χ
∑

n,s=1,2

(
β̂n+1 − β̂n−1

)
B̂†

n,s B̂n,s, (12.4)

where χ is the electron-lattice coupling constant.
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The Coulomb repulsion between the electrons is given by the Hubbard-type
Hamiltonian

ĤCoul =
∑

n,m,s=1,2

Vnm B̂†
n,s B̂n,s B̂†

m,s B̂m,s, (12.5)

where Vnm is the corresponding matrix element of the Coulomb interaction.
In the adiabatic approximation we can set

|Ψ (t)〉 = |Ψel(t)〉|Ψph(t)〉. (12.6)

Here the vector state of the lattice has the form of the product of the operator of
coherent displacements of unit cells and vacuum state of the lattice, |0〉ph,

|Ψph(t)〉 = exp

{
− i

�

∑

n

[
βn(t) p̂n − pn(t)β̂n

]}
|0〉ph, (12.7)

where βn(t), pn(t) are, respectively, the mean values of the displacements of unit
cells from their equilibrium positions and their canonically conjugated momenta in
the state (12.6).

The electron state vector for two excess electrons has the form

|Ψel(t)〉 =
∑

n1,n2,s1,s2

Ψ (n1, n2, s1, s2; t)B̂†
n1,s1 B̂†

n2,s2 |0〉el. (12.8)

In the absence of the magnetic field, we can represent the two-electron function
of two electrons with anti-parallel spins as the product of the symmetric coordinate
function and antisymmetric spin function

Ψ (n1, n2, s1, s2; t) = Ψ (n1, n2, t)χ(s1, s2),

Ψ (n1, n2, t) = 1√
2
[Ψ1(n1, t)Ψ2(n2, t) + Ψ2(n1, t)Ψ1(n2, t)] ,

χ(s1, s2) = 1√
2
[χ1(s1, t)χ2(s2, t) − χ2(s1, t)χ1(s2, t)] . (12.9)

Here one-electron wave-functions satisfy the normalization condition

∑

n

|Ψ j (n, t)|2 = 1, j = 1, 2. (12.10)

Using such a state vector, we can calculate the Hamiltonian function H =
〈Ψ (t)|Ĥ |Ψ (t)〉, corresponding to the Hamiltonian operator (12.1). In the absence
of magnetic field we can omit spin functions and spin indexes of the corresponding
operators.
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First we neglect the Coulomb repulsion and will take it into account at later
stage. Electron wave functions and lattice displacements are slowly varying in space
functions at intermediate values of the electron-lattice coupling and not too strong
anharmonicity of the lattice. Therefore, we can use the continuum approximation
n → x ≡ na. From the Hamilton function H we derive a system of coupled equa-
tions for the two-electron wave function Ψ (x1, x2, t) and lattice site displacements
β(x, t):

i�
∂Ψ

∂t
= − �

2

2m

(
∂2Ψ

∂x21
+ ∂2Ψ

∂x22

)
+ χa

(
∂β(x, t)

∂x
|x=x1 + ∂β(x, t)

∂x
|x=x2

)
Ψ,

(12.11)

∂2β

∂t2
− V 2

ac
∂2U

∂ρ2
∂2β

∂x2
− α

∂4β

∂x2∂t2
= a

M
χ

(∫
dx2

∂|Ψ |2
∂x1

|x1=x +
∫

dx1
∂|Ψ |2
∂x2

|x2=x

)
.

(12.12)

Here ρ(x, t) = −∂β(x, t)/∂x is the local deformation of the lattice and Vac is the
linear sound velocity in the chain. In the left hand side of the second equationwe have
included an extra term proportional to the fourth derivative of the lattice displacement
to take into account a nonlinear dispersion of the lattice if any (see, e.g., comments
in [20]). We will ignore this term when considering harmonic lattices and subsonic
solutions.

The potential energy of the latticeU (ρ) has a minimum in the equilibrium lattice.
We assume that it is increasing function of the lattice compression, (ρ > 0), induced
by electrons (see [20–22]):

∂U (ρ)

∂ρ
|ρ=0 = 0,

∂2U (ρ)

∂ρ2 > 0. (12.13)

Below we will consider separately cases of harmonic and anharmonic lattices.

12.3 Bisolitons in Harmonic Lattices

Let us consider first the electron pairing in a harmonic lattice:

U (ρ) = 1

2
wρ2. (12.14)

Substituting this potential into (12.11) and (12.12), we obtain the system of coupled
equations in the form

[
i�

∂

∂t
+ �

2

2m

∂2

∂x2
+ χaρ(x, t)

]
Ψ j (x, t) = E0Ψ j (x, t), j = 1, 2, (12.15)
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(
∂2

∂t2
− V 2

ac
∂2

∂x2

)
ρ(x, t) + χa

M

∂2

∂x2

2∑

j=1

|Ψ j (x, t)|2 = 0. (12.16)

We are interested in the localized solutions of the equations and introduce the
running wave coordinate

ξ = (x − x0 − V t)/a, (12.17)

so that ρ(x, t) = ρ(ξ), Ψ j (x, t) = Φ j (ξ) exp (imV x/� − iφ(t)). For the localized
one-electron functions in the approximation we can setΦ2(ξ) = Φ1(ξ + l), and omit
below index j . From (12.15) we get the expression for the lattice deformation

ρ(ξ) = χ

w(1 − s2)

[
|Φ(ξ)|2 + |Φ(ξ + l)|2

]
, s2 = V 2

V 2
ac

. (12.18)

Substituting this result into (12.16), we obtain the nonlinear Schödinger equation
for the electron wave function

[
d2

dξ2
+ εl + 2g[Φ2(ξ) + Φ2(ξ + l)]

]
Φ(ξ) = 0, (12.19)

where

g = χ2

2Jaw(1 − s2)
, εl = E − E0

J
, (12.20)

and

εl =
∫ [(

dΦ

dξ

)2

− 2gΦ2(ξ)
(
Φ2(ξ) + Φ2(ξ + l)

)]
dξ. (12.21)

At large distances between the center ofmass coordinates, la >> a, two electrons
move independently, so that Φ(ξ + l) = 0 in the region, where Φ(ξ) �= 0. In this
case we have from (12.19)

[
d2

dξ2
+ ε∞ + 2gΦ2∞(ξ)

]
Φ∞(ξ) = 0, (12.22)

from where we find a soliton solution

Φ∞ = Φs = 1

2
√

gsech

(
gξ

2

)
, (12.23)
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which has the eigen-energy

ε∞ = −g2

4
. (12.24)

At l = 0 we get from (12.19) that one-electron functions are the solutions of the
equation:

[
d2

dξ2
+ ε0 + 4gΦ2

0 (ξ)

]
Φ0(ξ) = 0. (12.25)

From above equation we get [8, 9, 19]

Φ0 = Φbs =
√

g

2
sech(gξ). (12.26)

Thus, at l = 0 the electrons form a bound state, according to (12.26), called bisoliton,
with the eigen-energy

ε0 = −g2. (12.27)

Comparing the solutions (12.23) and (12.26), we see, that the amplitude of a
bisoliton is higher, than the amplitude of a soliton, and width of the localization,
lbs = π/g, is twice the width of the soliton localization, ls = π/(2g). The envelopes
of the wave functions of an isolated soliton and of a bisoliton are shown in Fig. 12.1.

The binding energy of a bisoliton, Ebind = E∞(V ) − E0(V ) is [8]

Ebind = Jg2
0

2

1 − 5s2

(1 − s2)3
, g0 = χ2

2Jaw
. (12.28)

Here E∞(V ) and E0(V ) are the total energies of the system with account of the
deformation energy of the lattice with two solitons on a large distance from one

Fig. 12.1 Soliton (thin blue
line) and bisoliton (thick red
line) envelope functions
(12.23) and (12.26)
respectively with the center
of mass position at ξ = 20 at
nonlinearity parameter g = 1
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another (two independent electro-solitons) and with two electrons bound in a bisoli-
ton state, respectively. From (12.28) we conclude, that the bisoliton in harmonic
lattices is stable at small velocities, when the inequality takes place s2 < 1/5. This
restriction is the result of the excess of the effective mass of a bisoliton as comparing
with the sum of the effective masses of two independent solitons.

12.4 Bisolectrons in Anharmonic Lattices

In this section we will consider binding of electrons in a singlet state in anharmonic
lattices. In this case it is convenient to re-write (12.11)–(12.12) in the following form:

d2Φ j

dξ2
+ σρΦ j = λ jΦ j , j = 1, 2, (12.29)

d F

dρ
= D(Φ2

1 + Φ2
2 ), (12.30)

where F is the effective anharmonic part of the lattice potential

F = U (ρ) − 1

2
s2ρ2, s2 = V 2

V 2
ac

, (12.31)

and the dimensionless parameters are introduced:

λ j = − E j

J
, σ = χa

J
, D = χa

MV 2
ac

, (12.32)

with E j being the electron eigen-energy, and Φ j being the envelope function of the
corresponding ‘one-electron’ wave functions Ψ j in the two-electron state.

We can rewrite (12.29) in the following form

(
dΦ j

dξ

)2

= λ jΦ
2
j − σ Q j , (12.33)

where

Q j (ξ) =
∫ ξ

−∞
ρ(x)dΦ2

j (x), j = 1, 2. (12.34)

For localized solutions the corresponding functions attain some maximum values,
which we denote asΦ j,0 and ρ0, respectively. In one-dimensional systems the defor-
mational potential has at least one bound state, which can be occupied by two elec-
trons with opposite spins. When the Coulomb repulsion is very weak, the minimum
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energy state corresponds to the case when the maxima of ‘one-electron’ functions
coincide, as we have seen above for the case of harmonic lattices (see also [8, 9]),
so that

λ1 = λ2, Φ1(ξ) = Φ2(ξ), (12.35)

and we can omit index j .
In the general case the maximum values of the ‘one-electron’ wave functions are

shifted along the lattice at some value l0 due to the Coulomb repulsion, which will
be considered below.

From (12.33) we obtain the expression for the electron eigen-energies:

λ = σ
Q(0)

Φ2
0

. (12.36)

From (12.30) we get the equation which determines the lattice deformation

dρ

dξ
= ±2

√
λ − σ G(ρ)

d F/dρ

d2F/dρ2 , (12.37)

where

G(ρ) = ρ − F(ρ)

d F/dρ
, (12.38)

and

λ = σ G(ρ0). (12.39)

Integrating (12.37), we get the implicit expression for the dependence of the lattice
deformation on the running wave coordinate:

ξ(ρ) = ± 1

2
√

σ

∫ ρ0

ρ(ξ)

d2F/dρ2

d F/dρ

1√
G(ρ0) − G(ρ)

dρ. (12.40)

Using the normalization condition for “one-electron” wave function, we find the
expression for the maximum value

Φ0 =
√

1

2D

(
d F

dρ

) ∣∣∣
ρ=ρ0

G(ρ0). (12.41)

To get the explicit solutions we have to specify the lattice potential. Below we
will consider cubic and quartic anharmonic potentials, and we will assign subscript
c or q to the functions:
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Uc(ρ) = 1

2
ρ2 + α

3
ρ3, Uq(ρ) = 1

2
ρ2 + β

4
ρ4, (12.42)

respectively.
Substituting these expressions into (12.31), we get

Fc(ρ) = α

2
ρ2

(
2

3
ρ + δc

)
, Fq(ρ) = β

4
ρ2

(
ρ2 + 2δq

)
, (12.43)

and from (12.38) we find

Gc = ρ

6

4ρ + 3δc

ρ + δc
, Gq = ρ

4

3ρ2 + 2δq

ρ2 + δq
, (12.44)

where the dynamicallymodulated inverse anharmonic stiffness coefficients are intro-
duced:

δc = 1 − s2

α
, δq = 1 − s2

β
. (12.45)

Substituting the explicit form of function Gv into (12.40), we can rewrite the
expression in the following form

ξv(ρ) = ± 1

2
√

σ

∫ ρ0(v)

ρ(ξ)

Kv(ρ, ρ0(v))

ρ
√

ρ0(v) − ρ
dρ, v = c, q (12.46)

where the kernel of the integral for both types of anharmonic potentials Kv in view
of the explicit form of Gv is very close to unity (see numerical solution in [44, 45]).
From (12.46) after integration we find that the deformation of the lattice is given by
the soliton solutions of the B-KdV equation [12, 18, 19, 29, 33, 36, 41, 42] which
coincides with the solution of the Davydov system of nonlinear equations [19, 38]:

ρv(ξ) = ρ0(v)sech
2(κvξ), (12.47)

the width of which, κ , is determined by the maximum value of the deformation

κc =
√

σρ0(c)

2

√
4ρ0(c)

(
ρ0(c) + 2δc

)
/3 + δ2c

2ρ0(c) + δc
, (12.48)
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for the lattice with cubic anharmonic potential, and

κq = 1

2

√√√√√
σρ0(q)

(
3ρ2

0(q) + 2δq

)

ρ2
0(q) + 2δq

(12.49)

for the lattice with quartic anharmonic potential.
These expressions can be approximated by the following one:

κv ≈
√

σρ0(v)

2
. (12.50)

In its turn, ρ0(v) is determined by the corresponding equation:

ρ0(c)

(
4

3
ρ0(c) + δc

)2

= g2
c θc(ρ0(c)) (12.51)

for the lattice with cubic anharmonic potential, and

ρ0(q)

(
8

5
ρ2
0(q) + δq

)2

= g2
qθq(ρ0(q)) (12.52)

for the lattice with quartic anharmonic potential.
Here gv is a constant, determined below:

g2
c = D2σ

α2 , g2
q = D2σ

β2 , (12.53)

with

θc(ρ0(c)) = 4ρ0(c)(ρ0(c) + 2δc) + 3δ2c
6(ρ0(c) + δc)2

, (12.54)

θq(ρ0(q)) = 3ρ4
0(q) + 7δqρ2

0(q) + 2δ2q

4
(
ρ2
0(q) + δq

)2 , (12.55)

for the latticeswith cubic and quartic anharmonic potentials, respectively. The numer-
ical solutions of (12.51) and (12.52) are shown in Fig. 12.2 for two different values
of the coupling constant gv = 0.05 and gv = 0.2, respectively.

It follows from Fig. 12.2, that (i) the maximum lattice deformation depends on
the soliton velocity; (ii) the soliton amplitude increases and its width decreases with
the velocity increasing, attaining some finite values at the sound velocity, V = Vac

(i.e., δ = 0); (iii) the soliton amplitude increases with the electron-lattice coupling
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(a) (b)

Fig. 12.2 Maximum value of the lattice deformation as a function of the dynamically modulated
inverse anharmonic stiffness coefficient δ, in lattices with cubic (thin line) and quartic (thick line)
anharmonicity for the value gv = 0.05 a and b gv = 0.2

increasing; (iv) the quartic anharmonicity is dominant at small values of δ (large
velocities), while cubic anharmonicity is dominant at larger values of δ (small veloc-
ities).

From (12.30) we obtain

Φ2(ξ) = 1

2D

d F(ρ)

dρ
. (12.56)

Using explicit expression for F from (12.43), we find the bisolectron wave function

Φc(ξ) =
√

ρ0(c)

2D
sech(κcξ)

√
1 − s2 + αρ0(c)sech2(κcξ), (12.57)

for the lattice with cubic anharmonic potential, and

Φq(ξ) =
√

ρ0(q)

2D
sech(κcξ)

√
1 − s2 + βρ2

0(q)sech
4(κqξ), (12.58)

for the lattice with quartic anharmonic potential, respectively.
Finally, we write down the energy and the momentum of the system, described

by the Hamiltonian in (12.1)–(12.4), in the bisolectron state (12.6)-(12.8):

E (bs)
tot (V ) = mV 2 + E (bs)(V ) + W (V ), (12.59)

P(bs)(V ) =
[
2m + M

√
2

σ

∫ ρ0

0
K (ρ, ρo)

ρ√
ρ0 − ρ

dρ

]
V ≈ (12.60)

≈
[
2m + 4

3
M

√
2

σ
ρ
3/2
0

]
V .
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Here we count the energy from the electron energy E0, m = �
2/2Ja2 is the effective

band mass of an electron, E (bs)(V ) = −2λJ is the bisoliton energy, and W is the
energy of the lattice deformation:

W (V ) = 2MV 2
ac

∫ 0

−∞

(
F(ρ) + s2ρ2

)
dξ, (12.61)

or, in terms of the F and G functions given by expressions (12.31), (12.38), respec-
tively:

E (bs)(V ) = −2DG(ρ0)MV 2
ac, (12.62)

W (V ) = MV 2
ac√
σ

∫ ρ0

0

d2F/dρ2

d F/dρ

F(ρ) + s2ρ2

√
G(ρ0) − G(ρ)

dρ. (12.63)

Using now the bisolectron solutions (12.47), (12.57) for the cubic anharmonicity,
we obtain

E (bs)
c (V ) = −DMV 2

acρ0(c)
4ρ0(c) + 3δc

3(ρ0(c) + δc)
, (12.64)

Wc(V ) ≈ MV 2
ac

3
√
2σ

ρ
3/2
0(c)

(
8

15
αρ0(c) + 1 + s2

)
. (12.65)

For the solutions (12.47), (12.58) in the quartic anharmonic lattice we have

E (bs)
q (V ) = −1

2
DMV 2

acρ0(q)

3ρ3
0(q) + 2δq

ρ2
0(q) + δq

, (12.66)

Wq(V ) ≈ 8
MV 2

ac√
2σ

ρ
3/2
0(q)

[
1

3

(
s2 + 1

2
δβ

)
+ 2

35
βρ2

0(q)

]
. (12.67)

Two important conclusions follow from the above expressions. First of all, com-
paring the bisolectron energies with the energies of solectrons (see [20–22]), we
conclude, that there is positive binding energy of the bisolectron in the whole inter-
val of velocities V 2 ≤ V 2

ac

E (bs)
bind(v)(V ) = 2E (s)

tot(v)(V ) − E (bs)
tot(v)(V ), v = c, q, (12.68)

which means that an anharmonic lattice soliton can capture two electrons with oppo-
site spins and that such a bisolectron state is energetically favorable relative to two
independent solectrons (lattice soliton bound with one electron). Here E (bs)

tot(v)(V ) is
the total energy of the system in the bisolectron state with account of the energy of
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the lattice deformation, and E (s)
tot(v)(V ) is the energy of the system with one electron

in a soliton state with account of the energy of the lattice deformation.
Secondly, we see, that the bisolectron energy and the energy of the lattice defor-

mation take finite values at the velocity of the bisolectron equal to the velocity of the
sound in the chain, namely:

E (bs)
tot(c)(Vac) = mV 2

ac − 2

3
χaρ0(c) + 16

45
χaαρ2

0(c), (12.69)

E (bs)
tot(q)(Vac) = mV 2

ac − 3

2
χaρ2

0(q) + 8

35
χaβρ3

0(q), (12.70)

where the values ρ0(v) are calculated at V = Vac.
At small velocities the bisolectron energy increases with the velocity increasing,

according to the law:

E (bs)
tot(c)(V ) = mV 2 − 1

3
χaρ0(c)

(
1 − 2s2 − 1

15
αρ0(c) + 7αρ0(c)s

2
)

, (12.71)

for the lattice with cubic anharmonic potential, and

E (bs)
tot(q)(Vac) = mV 2 − 1

3
χaρ0(q)

(
1 − 2s2 + 3βρ2

0(q)s
2 − 129

35
βρ2

0(q)

)
(12.72)

for the latticewith quartic anharmonic potential. Recall, in these expressions the value
of the maximum lattice deformation is function of the velocity, ρ0(v) = ρ0(v) (V),
according to (12.51) and (12.52), respectively

From the above two equations we can calculate the bisolectron band bottom
energy level and bisolectron effective mass in the effective mass approximation for
the lattice with cubic anharmonic potential

E (bs)
0(c) = −2

3
Jg2

(
1 − 1

15
α
2Jg2

χa

)
, (12.73)

M (bs)
c = 2m + 4

3

Jg2

V 2
ac

(
1 − 7α

Jg2

χa

)
, (12.74)

and for the lattice with quartic anharmonic potential

E (bs)
0(q) = −2

3
Jg2

(
1 − 129

35
β4g2 J 2

χ2a2

)
, (12.75)

M (bs)
q = 2m + 4

3

Jg2

V 2
ac

(
1 − 6β

J 2g4

χ2a2

)
. (12.76)
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Here g is the dimensionless electron-lattice coupling constant

g ≡ χ2

2Jw
. (12.77)

12.5 Bisolectrons with Account of the Coulomb Repulsion

Let us now take into account the Coulomb repulsion between the electrons. The total
energy of the system (12.59) in the bisolectron state with account of the Coulomb
repulsion is

E (bs)
tot(v)(V ) = E (bs)

tot(v)(V ) + ECoul. (12.78)

In the systems, whose parameters satisfy the condition of the adiabatic approxi-
mation (intermediate value of the electron-lattice coupling and relatively small non-
adiabaticity parameter) the bisolectron is extended over a few lattice sites. Therefore,
the energy of the Coulomb repulsion can be written as

ECoul ≈ e2

4πεla
, (12.79)

where e is the effective electron charge with account of its screening in the lattice due
to the surrounding and complex structure of a unit site, and ε = εmε0 is the dielectric
constant of the lattice, which contains the dielectric constant εm of the medium.

Above we have obtained the soliton solutions for two electrons with anti-parallel
spins, bound with the lattice soliton, in the approximation of a very weak Coulomb
repulsion. In such a case both “one-electron” wave-functions have maximum values
at the same position in the lattice. In the general case the corresponding maximum
values are shifted along the lattice at some value l0, which is determined by the
balance between the Coulomb repulsion between the electrons and their attraction
due to the interaction with the lattice:

Φ j (ξ) = Φ j (ξ ± l0/2) f j (l0), (12.80)

where f j (l0) takes into account the change of “one-electron” wave functions due
to the Coulomb repulsion. For localized states extended over few lattice sites the
repulsion is expected to be weak: f j (l0) ≈ 1 + ε(l0), where here ε � 1 is a
smallness parameter. Therefore, in the lowest order approximation with respect to ε

the maxima of ‘one-electron’ functions coincide at ξ = 0, as was considered in the
previous section.

According to (12.80), in the presence of the Coulomb repulsion we have the fol-
lowing expressions for the wave-functions for the cubic anharmonicity (see (12.57))
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Φ j (c)(ξ) =
√

ρ0(c)

2D
sech

(
κc(ξ ± l

2
)

)
(12.81)

×
√

1 − s2 + αρ0(c)sech2
(

κc(ξ ± l

2
)

)
,

and for a lattice with quartic anharmonicity (see (12.58))

Φ j (q)(ξ) =
√

ρ0(q)

2D
sech

(
κq(ξ ± l

2
)

)
(12.82)

×
√

1 − s2 + βρ2
0(q)sech

4
(

κq(ξ ± l

2
)

)
.

The distance between the maxima of the ‘one-electron’ wave-functions, l, can be
determined from the condition of the minimum of the total energy of the system with
account of the Coulomb repulsion. To calculate it, let us consider for simplicity the
case of a bisolectron at rest, V = 0. Substituting function (12.81) (or (12.82)) and
corresponding lattice deformation (12.47) into the Hamiltonian H and expanding
the result with respect to l in the assumption l < μ = 2π/κv, we obtain after the
integration the total energy of the system including the Coulomb repulsion (12.79):

E (bs)
tot(v)(0) = 2

3
J

κv

D
ρ0(v) − 4

3

χa

κv D
ρ2
0(v)

(
1 − l2κ2

v

)
(12.83)

+wa2ρ2
0(v)

[
2

3
+ 1

2
ςvρ

2
0(v) − l2κ2

v

(
1

3
+ 1

2
ςvρ

2
0(v)

)]
+ e2

4πεla
,

where ςc ≡ α, and ςq ≡ β, and the energies are counted from the energy of the
electron band bottom E0. Expression (12.62) can be represented in the general form

E (bs)
tot(v)(0) = E (bs)

tot(v)(0) + 1

2
ζvl2 + e2

4πεla
, (12.84)

where the first term is the bisolectron energy in the absence of theCoulomb repulsion,
the second term is due to modification of the wave functions, and the last term is the
Coulomb repulsion.

Minimizing this expression with respect to l, we get the equilibrium distance
between the maxima of one-electron functions:

l0 =
(

e2

4πεaζv

)1/3

, (12.85)
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where we used the notation

ζq =
[
4

3

χaρ2
0(q)κq

D
− wa2ρ2

0(q)κ
2
q

(
1

3
+ 1

2
βρ2

0(q)

)]
. (12.86)

Expression (12.85) can be approximated as

l0(v) =
(

3De2

4πεχa2ρ2
0(v)κv

)1/3

. (12.87)

Substituting these results into (12.78), we obtain the final expression for the total
energy of the system at V = 0

E (bs)
tot(v)(0) = E (bs)

tot(v)(0) + 3

2

(
e2

4πεa

)2/3

ζ 1/3
v + e2

4πεl0a
. (12.88)

Here l0 is given by (12.87).
Such a state is stable with respect to the decay of the bisolectron into two solec-

trons, if the bisolectron binding energy E (bs)
bind(v)(0) is positive

E (bs)
bind(v)(0) ≡ 2E (s)

tot(v)(0) − E (bs)
tot(ν)(0) > 0, (12.89)

therefore, when the inequality is valid

2E (s)
tot(v)(0) − E (bs)

tot(ν)(0) + 3

2

(
e2

4πεa

)2/3

ζ 1/3
v > 0. (12.90)

12.6 Comparison with Numerical Simulations

In this section we compare the above obtained analytical results with the results
obtained numerically in [25, 46] for a discrete lattice with Morse interaction with
two added excess electrons, described by the Hubbard Hamiltonian. The Morse
potential

UMorse(r) = D

[(
1 − e−B(r−a)

)2 − 1

]
, (12.91)

can be approximated near the minimum with high degree of precision by the anhar-
monic potential Uc (see (12.42)) (for more details see [5]).

The parameter values used in the simulations were: η = 2.5a, J0 = 0.02 (2D),
τ = J0/(� ΩMorse) = 20, for different values of the Hubbard parameter Ū =
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(a) (b)

Fig. 12.3 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 4.
b Results of the numerical simulations for the electron density Pn at Ū = 20

(a)
(b)

Fig. 12.4 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 8.
b Results of the numerical simulations for the electron density Pn at Ū = 60

U/�ΩMorse, namely Ū = 20, 60, 70, 100, the lowest of which, Ū = 20, for the
parameters of alpha-proteins corresponds to U = 0.004 − 0.02eV, and the upper
value Ū = 100, respectively, correspond to U = 0.02 − 0.1eV.

In left panels of Figs. 12.3 and 12.6a we show the charge density function within
our analytical model for various values of the Coulomb repulsion, which determines
the distance between the maxima of one-electron functions. We define the charge
density function in elementary charge units in the usual way as q(ξ) = Φ2

1 (ξ) +
Φ2

1 (ξ), where Φi (ξ) are functions determined by expressions (12.81) and l = l0 as
given by the relation (12.87). The results of the numerical simulations for the electron
density and the velocity distribution of solectron pairs with Hubbard repulsion on
the Morse lattice are shown in right panels (b) of Figs. 12.3, 12.4, 12.5 and 12.6
(a previous version of these figures was published in [5]).

Although the numerical and analytical results are obtained in slightly differ-
ent models of the anharmonic lattice and the Coulomb repulsion, there is a good
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(a)
(b)

Fig. 12.5 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 14.
b Results of the numerical simulations for the electron density pn at Ū = 70

(a) (b)

Fig. 12.6 a Bisolectron density profile q(x = na) according to the analytical results (12.81) at
l = l0 = 20. b Results of the numerical simulations for the electron density pn at Ū = 100

qualitative agreement in both approaches. In particular, we see that electrons are
localized in the bisolectron state, the profile of which depends on the strength of the
Coulomb repulsion with the tendency of splitting one maximum into two maxima
with increasing the Coulomb repulsion.

Notice that the parameter values used in the numerical simulations, correspond
to relatively high non-adiabaticity of the system and strong anharmonicity. Nev-
ertheless, comparison of the figures corresponding to four different values of the
Hubbard term in numerical simulations and, respectively, Coulomb term in the ana-
lytical model shows that our analytical model gives rather good results even for quite
a strong electron repulsion. In the lowest order of the continuum approximation used
in our model, the functions are smooth with one or two maxima depending on the
strength of the Coulomb repulsion. The dynamics of the bisolectron and account of
the lattice discretness manifested in the presence of the Peierls-Nabarro potential [6,
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7] will modify the functions profile, and will lead to some radiation of sound waves,
which we can see in the results of the numerical modeling in Figs. 12.4, 12.5 and
12.6.

12.7 Supersonic Bisolectrons

In this section we look for supersonic bisolectrons. First of all, we notice that accord-
ing to theHamiltonian (12.2), the dispersion lawof the electron bandwith the electron
states Ψ (n, t) = A exp (ikn − iε(k)τ ) is given by the equation

ε(k) = 4 j sin2
k

2
, j = J

MV 2
ac

, (12.92)

where k is the dimensionless wave-vector (quasi-momentum), k ∈ [−π, π ] . Here
and below we will use the dimensionless time τ = Vact/a and measure energies in
units of MV 2

ac.
The dimensionless electron group velocity is

v ≡ Vg

Vac
= dε(k)

dk
= 2 j sin k, (12.93)

from where we see that it attains the maximum value vmax = 2 j at k = π/2.
Therefore, the supersonic regime of the electron motion can take place in systems
with large enough electron band width j > 1/2.

Let us represent the electron wave function in the form of the modulated envelope
Ψ (x, τ ) = Φ(x, τ ) exp [ikx − i (ε(k) + εb(k)) τ ] where εb(k) is the corresponding
eigen-energy of the state. Now the equations of motion become

∂Φ(x, τ )

∂τ
+ 2 j sin k

∂Φ(x, τ )

∂x
= 0, (12.94)

j cos(k)
∂2Φ(x, τ )

∂x2
+ 2χ0ρ(x, τ )Φ(x, τ ) + εb(k)Φ(x, τ ) = 0, (12.95)

∂2ρ(x, τ )

∂τ 2
− ∂2u′(ρ)

∂x2
− 1

12

∂4ρ(x, τ )

∂x2∂τ 2
+ 2χ0

∂2Φ2(x, τ )

∂x2
= 0, (12.96)

where

u = U

MV 2
ac

, χ0 = χa

�Vac
, (12.97)

and the prime denotes a derivative of the function with respect to the argument.
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We have included into (12.96) the additional term with the fourth order derivative
in order to take into account the lattice discreteness within the same approxima-
tion as the lattice anharmonicity at supersonic velocities (comp. (12.12) and see the
discussion there). This equation is known as the improved Boussinesq equation.

It is easy to see that, for the stationary wave functions, (12.94) defines the electron
band energy dispersion law,while the potential of the stationarySchrödinger equation
(12.95) is the self-consistent deformational potential to be found from (12.96). We
are interested in the bound electron states, therefore, the electron eigen energy εb(k)

has to be negative, which is possible only if cos(k) is positive, according to (12.95).
Therefore, such states are possible for the corresponding quasi-momentum values in
the interval 0 ≤ k < π/2. The quasi-momentum is determined by the dimensionless
soliton velocity according to the relation

k = Arc cos

√

1 − v2

4 j2
, (12.98)

which follows from (12.92).
Another way to take into account the lattice discreteness is to generalize the

equation (12.96) to the ill-posed Boussinesq equation (see comments in [12]):

∂2ρ(x, τ )

∂τ 2
− ∂2u′(ρ)

∂x2
− 1

12

∂4ρ(x, τ )

∂x4
+ 2χ0

∂2Φ2(x, τ )

∂x2
= 0. (12.99)

Improved and ill-posed Boussinesq equations (12.96) and (12.99) correspond to
lattices with nonlinear dispersions

ω2
1(k) = k2

1 + k2/12
, ω2

2(k) = k2(1 − k2/12), (12.100)

respectively. The two dispersions in the admissible interval of quasi-momentum
[0, π/2] are very close, as we can see from Fig. 12.7.

Fig. 12.7 Phonon energy
dispersions for the improved
(thick line) and ill-posed
(thin line) Boussinesq
equations in the interval
[0, π/2]. Red line (the top
curve) shows linear
dispersion
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For the class of functions, depending on the running wave coordinate ζ = x −
x0 − vτ , (12.94)–(12.99) take the form

λ
d2Φ(ζ)

dζ 2 + 2χ0ρ(ζ )Φ(ζ ) + εb(k)Φ(ζ ) = 0, (12.101)

μ
d2ρ(ζ )

dζ 2 + (1 − v2)ρ(ζ ) + duanh

dρ
= 2χ0Φ

2(ζ ), (12.102)

where uanh is the anharmonic part of the lattice potential, u = uh +uanh , uh ≡ ρ2/2.
Here

λ = j cos(k), μ = μ1,2, μ1 = v2

12
, μ2 = 1

12
. (12.103)

Indexes 1 and 2 refer to the improved and ill-posed Boussinesq equations, respec-
tively.

From the system of (12.101) and (12.102) we find, as in Sect. 12.4,

ζ = ±
√

μ

2

∫ ρ0

ρ

dr

r
√

Q(r)
, (12.104)

where the function Q is defined in the interval 0 ≤ ρ ≤ ρ0 by the relation:

Q(r) = 2
χ0

ρ2

∫ ρ

0
Φ2(r)dr + v2 − 1

2
− 1

ρ2 uanh(ρ). (12.105)

It follows from (12.104) that the kernel function Q has to bepositive and convex for
all values of ζ . This requirement determines several types of solutions, as described
below.

1. Supersonic lattice solitons v2 > 1 in an un-doped chain (i.e., in the absence of an
extra electron), which corresponds to Φ = 0, χ0 = 0.

2. Subsonic and weakly supersonic self-trapped electrons in the bisolectron state in
the chain. In this case the first term in the r.h.s. of the function (12.105) is the
leading one, and the type of the solution is determined by the asymptotics of the
electron wave function depending on ρ. Let us consider the parameter L which
is determined as the limit

L ≡ lim
ρ→0

1

ρ2

∫ ρ

0
Φ2(r)dr. (12.106)

If Φ2(ρ) ∝ ρ at ρ → 0, then the value L is finite, and, therefore, the first term
in (12.105) is important. In this case the solution can be subsonic if uanh = 0.
The value Q can be positive also at v2 = 1 if uanh �= 0. In this case the solution
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has finite values of energy and momentum for the positive lattice anharmonicity
(see [44, 45]). This solution can be supersonic for strong lattice anharmonicity
uanh .

3. Supersonic bisolectron state. It is valid at a sufficiently fast decay of the electron
wave functions in the limit (faster, than the linear decay, considered above), such
that the following inequality is fulfilled:

2χ0

∫ ρ

0
Φ2(r)dr < uanh(ρ). (12.107)

In this case the lattice anharmonicity uanh is responsible for the soliton formation.
The envelope of such a soliton is modified by the presence of two electrons due to the
integral term in expression (12.105). The presence of this integral term increases the
maximum value of the chain deformation. Such a lattice soliton creates the potential
well for the excess electrons and results in their binding and trapping. Namely this
case corresponds to the capture of electrons by the anharmonic lattice soliton and
formation of a bisolectron (lattice-polaron l-p mode in [50]).

The wave functions in the class of localized functions with a bell-shaped profile,
can be chosen in the form

Φ2(ζ ) ∼= C pρ
p(ζ ) (12.108)

with positive constants C p > 0 to be determined from the normalization condition
of the wave-function Φ.

1. At p = 1 we reconstruct analytically the solutions, found in Sect. 12.4 for the
lattices with cubic and quartic anharmonicities at some fixed relation between
the parameter values. Namely, for the case of the cubic lattice anharmonicity this
relation reads as λα = 6μχ0, where α is a anharmonicity coefficient in (12.42).

2. At p > 1 we find

εb(k) = − j p2v2 cos(k), v2 = v2 − 1

4μ
, (12.109)

which takes place only at v2 > 1. Here parameter p has to be found from the
normalization condition of the wave-function.

We can find explicitly analytical solution of the system of equations for the ansatz
(12.108) at p = 2:

Φ
(ss)
bis = 3

χ0
κ2

√

λ

(
α

χ0
− μ

)
sech2(κζ ), (12.110)

ρ
(ss)
bis = 3λ

χ0
κ2sech2(κζ ). (12.111)
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From the normalization condition we obtain the relation between the width of the
bisolectron and its velocity

κ2 = v2 − 1

4μ
[
1 − 3(γ − 1)

] , (12.112)

or, equivalently,

v2 = 1 + 4μκ2 [
1 − 3(γ − 1)

]
, (12.113)

where

γ = αλ

2μχ0
. (12.114)

In the case of the arbitrary bisolectron velocity it is difficult to find analytical
solutions explicitly. They can be found numerically by solving (12.101) and (12.102)
or their equivalent discrete equations. Although the system of equations does not
belong to the class of complete integrable equations, it is still very close to a such
one, and the corresponding soliton ansatz is a good approximation for its solution.
Therefore, we expect, that numerically found solutions are close to the solutions
found above for the particular velocity (12.113). To a large extent this conclusion
is supported by the numerical simulations of the dynamics of two electrons in the
anharmonicMorse lattice [14, 15, 25, 28, 46, 47],where the trapping of two electrons
by the supersonic lattice soliton has been observed (see also [14, 15].

12.8 Conclusion

We have shown that in one-dimensional crystal lattices the anharmonicity of the
inter-site interactions favors not only self-trapping of an extra electron, but also
pairing of two electrons with opposite spins in a single lattice soliton deformation
well, resulting in the formation of a stable bisolectron state. Such a bisolectron
is the bound state of the lattice soliton and two self-trapped electrons in a singlet
bisoliton state. This conclusion generalizes the concepts of polarons and bipolarons
[1, 2, 31, 34, 35], and illustrates the existence of bisolitons not only in harmonic one-
dimensional systems [8, 9, 17], but in anharmonic lattices too. Our analytical model
explains the results of the numerical simulations for lattices with anharmonic Morse
potential describing the inter-site interactions, with two extra electrons in it [28, 43,
46, 47]. We have found explicitly the expressions for the lattice deformation and
two-electron wave-functions for lattices with cubic and quartic anharmonicities. We
also calculated the energies of the bisolectrons for these two types of anharmonicities
and shown that bisolectrons can move with the velocities up to the velocity of the
sound in the lattice, and the corresponding energy and momentum are finite in the
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whole interval of bisolectron velocities. We have also found the conditions for the
existence of supersonic bisolectrons for particular values of their velocity.

We have studied the role of the Coulomb repulsion in the formation of bisolectrons
in anharmonic lattices. We have shown that with account of the Coulomb repulsion
between the electrons their envelope function in a bisolectron state can have one
or two maxima, the distance between which is determined by the balance of the
gain of energy due to binding to the lattice deformation and loss of energy due
to the Coulomb repulsion. The results of the analytical study of two electrons in
a lattice with cubic anharmonicity with account of their Coulomb repulsion are in
good agreement with the numerical simulations of two electrons in an anharmonic
Morse lattice with account of Hubbard electron-electron repulsion in a broad range
of parameter values.

The results obtained here are valid for systems, whose parameter values sat-
isfy adiabaticity conditions, i.e., for systems with moderate values of the electron-
lattice coupling and not too large nonadiabaticity parameter (the ratio between char-
acteristic phonon energy and electron band width). This is a large class of low-
dimensional compounds, including biological macromolecules (DNA and α-helical
polypeptides)[18, 19, 30, 38], conducting polymers [11], and low-dimensional crys-
tals, such as polydiacetylene [24, 27, 48], conducting platinum chains [11], salts of
transition metals (PbSe,PbTe,PbS) [3, 16, 40, 49], high-temperature superconduct-
ing cuprates [4, 13, 23, 26, 32], etc. These compounds find numerous applications
in microelectronics and nanotechnologies, or play important role in living systems.
This explains our interest in studying nonlinear effects in such systems. We also
think that our results apply to muscovite mica, and cover some of the properties of
‘quodons’ [37], which are widely discussed in the present book.
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