
Chapter 1
Two-Dimensional Anharmonic Crystal Lattices:
Solitons, Solectrons, and Electric Conduction

Manuel G. Velarde, Werner Ebeling and Alexander P. Chetverikov

Abstract Reported here are salient features of soliton-mediated electron transport
in anharmonic crystal lattices. After recalling how an electron-soliton bound state
(solectron) can be formed we comment on consequences like electron surfing on a
sound wave and ballistic transport, possible percolation in 2d lattices, and a novel
form of electron pairing with strongly correlated electrons both in real space and
momentum space.

1.1 Introduction

Electrons, holes, or their dressed forms as “quasiparticles”, in the approach intro-
duced by Landau [28, 29], play a key role in transferring charge, energy, information
or signals in technological and biological systems [38]. Engineers have invented
ingenious methods for, e.g., long range electron transfer (ET) such that an electron
and its “carrier”, forming a quasiparticle, go together all along the path hence with
space and time synchrony. Figure1.1 illustrates the simplest geometry between a
donor (D) and an acceptor (A). Velocities reported are in the range of sound velocity
which in bio-systems or inGaAs layers are aboutAngstrom/picosecond (Km/s). Such
values are indeed much lower than the velocity of light propagation in the medium.
Thus at first sight, leaving aside a deeper discussion concerning specific purposes
[12, 35], controlling electrons seems to be more feasible with sound (or even super-
sonic) waves than with photons. Electron surfing on an appropriate highly mono-
chromatic, quite strong albeit linear/harmonic wave has recently being observed [27,
32]. Earlier the present authors have proposed the solectron concept as a new “qua-
siparticle” [3, 4, 6–9, 17, 25, 40–43, 45, 46] encompassing lattice anharmonicity
(hence invoking nonlinear elasticity beyond Hooke’s law) and (Holstein-Fröhlich)
electron-lattice interactions thus generalizing the polaron concept and quasiparticle
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Fig. 1.1 Electron transfer from a donor (D) to an acceptor (A) along a 1d crystal lattice. The
springs mimic either harmonic interactions or otherwise. In this text they are assumed to corre-
spond to (anharmonic) Morse potentials. The figure also illustrates the electron-soliton bound state
(solectron) formation. Depending on the material ways other than photoexcitation at the donor site
could lead to the same consequences

introduced by Landau and Pekar [16, 29, 34]. Anharmonic, generally supersonic
waves are naturally robust due to, e.g., a balance between nonlinearity and disper-
sion (or dissipation). In the following Sections we succinctly describe some of our
findings and predictions for one-dimensional (1d) crystal lattices forwhich exact ana-
lytical and numerical results exist (Sect. 1.2) and, subsequently, for two-dimensional
(2d) lattices for which only numerical results are available (Sects. 1.3, 1.4 and 1.5).
Comments about theory and experiments are provided in Sect. 1.6 of this text.

1.2 Soliton Assisted Electron Transfer in 1d Lattices

Although the basic phenomenological theory exists [31] yet long range ET (beyond
20Å) in biomolecules is an outstanding problem [23, 24]. Recent experiments by
Barton and collaborators [38] with synthetic DNA show an apparent ballistic trans-
port over 34nm for which no theory exists. Let us see how we can address this
question building upon our solectron concept (Fig. 1.1).

We consider the 1d-crystal lattice with anharmonic forces described by the fol-
lowing Hamiltonian

Hlattice =
∑

n

{
Mν2n

2
+ D

(
1 − exp

[−B (xn − xn−1 − σ)
])2

}
, (1.1)

where xn , νn , M, D, B and σ denote, respectively, space lattice coordinates/sites,
lattice particle/unit velocities, unit masses (all taken equal), the potential depth or
dissociation energy of the Morse potential (akin to the 12–6 Lennard-Jones poten-
tial), lattice stiffness constant and interparticle equilibrium distance or initial lattice
spacing. For our purpose here we introduce suitably rescaled relative lattice displace-
ments, qn = B (xn − nσ). Around the minimum of the potential well we can define
ω0 = (

2DB2/M
)1/2

as the linear (harmonic) vibration frequency. For biomolecules
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like azurin ω0 = 1013 s−1, M ≈ 100 amu. Then for D = 0.1 eV (D = 1.0 eV ) we
can set B = 2.3Å−1 (B = 0.72Å−1) [46].

If an excess electron is added to the lattice we can take it in the tight binding
approximation (TBA) and hence

Helectron =
∑

n

EnC∗
n Cn −

∑

n

Vn,n−1 (qk)
(
C∗

n Cn−1 + CnC∗
n−1

)
, (1.2)

with n denoting the lattice site where the electron is placed (in probability density,
wn = |Cn|2 ,

∑
n wn = 1). We want to emphasize the significance of hopping in the

transport process relative to effects due to onsite energy shifts and hence we assume
En = E0 for all n save those referring to D and A. The quantities Vn,n−1 belong to
the transfer matrix or overlapping integrals. They depend on actual relative lattice
displacements, and we can set [37]

Vn,n−1 = V0 exp
[−α (qn − qn−1)

]
, (1.3)

where V0 and α account for the electron-lattice coupling strength. Accordingly,
τ = V0/�ω0 provides the ratio of the two dynamical time scales (electronic over
mechanical/sound).

From (1.1)–(1.3) follow the equations of motion in suitable dimensionless form:

d2qn
dt2

= [
1 − e(qn−qn+1)

]
e(qn−qn+1) − [

1 − e(qn−1−qn)
]

e(qn−1−qn)+
+2αV

[
Re

(
Cn+1C∗

n

)
eα(qn−qn+1) − Re

(
CnC∗

n−1

)
eα(qn−1−qn)

] (1.4)

dCn

dt
= iτ

[
Cn+1eα(qn−qn+1) + Cn−1eα(qn−1−qn)

]
. (1.5)

It is worth recalling that if rather than the Morse potential (1) we use a simi-
lar potential introduced by Toda the lattice dynamic problem defined by Eq. (1.4)
in the absence of the added electron (α = 0) is exactly solvable [5, 39]. Thus we
know analytical expressions for latticemotions and, moreover, for the thermodynam-
ics/statistical mechanics (including specific heats, dynamic structure factor, etc.) of
such 1d many-body problem. For the Morse potential (1) it has been numerically
shown that no significant differences exist for lattice motions and other physical
quantities [15, 36]. Temperature can be incorporated in the dynamics by adding
to Eq. (1.4) Langevin sources by using an appropriate heat bath (delta-correlated
Gaussian white noise) and using Einstein’s relation between noise strength and tem-
perature. To avoid redundancy we illustrate this point in Sect. 1.3.

The implementation of the scheme shown in Fig. 1.1 is one prediction with veloc-
ities in the sonic and supersonic range. Figure1.2 illustrates the possibility using
Eqs. (1.4)– (1.5) of extracting an electron placed in a potential well in the 1d Morse
lattice by a generally supersonic soliton. For the geometry of Fig. 1.1 we can use it to
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Fig. 1.2 Extraction of an electron from a potential well (a donor) and ballistic transport to an
acceptor observed using the electron probability density|Cn |2. Left panel: shallow well|E | = 10,
extraction 100%. Right panel: deep well|E | = 18, no extraction. Parameter values: α = 1.75,
V0 = 0.35 and τ = 10

Fig. 1.3 Logarithm of reciprocal time lapse (in seconds) which an electron bound to a soliton
needs to travel a distancel (in Angstrom) for the geometry of Fig. 1.1. The upper dotted (blue)
curve corresponds to a sound velocity of 17 Angstrom/ps, illustrating a ballistic transport. The
second dotted (green) curve from above shows the reciprocal time needed if the electron hops
stochastically between thermally excited solitons. The bottom solid line embraces data illustrating
a tunneling process. The dots are reciprocal times measured for natural bio-molecules [23], [24].
The transfer times found for synthetic DNA are much shorter [38] bearing similarity to our model
findings—upper dotted (blue) line—for solectron transfer

estimate the ballistic process time lapse to go from the donor to the acceptor. For the
computation with a lattice of N = 100 units the well is assumed Gaussian of depth
|E | (in units of �ω0) with E < O localized at site 50. The soliton initially spans a
few lattice sites (two or three) excited at site 40. If the well depth is shallow enough
the extraction is ensured up to 100% whereas if the well is too deep no extraction
occurs. Needless to say extraction is possible with probability varying from zero to
unity as the well depth is decreased. Time lapse from D to A is obtained by simply
dividing length over soliton speed. Illustration is provided in Fig. 1.3 where “�” (see
Fig. 1.1) accounts for the distance travelled (in principle from D to an appropriately
placed acceptor A). Comparison is provided between the ballistic case and other
possibilities like diffusion-like transport with thermally (hence randomly) excited
solitons [7] and tunneling transport [13].
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1.3 Two-Dimensional Crystal Lattices

Recently, two groups of experimentalists have observed how an electron can “surf”
on a suitably strong albeit linear, highly monochromatic sound wave (in GaAs layers
at 300 mK). Sound demands lattice compressions and hence is accompanied by
electric/polarization fields which for piezoelectric crystals integrate to macroscopic
level. Our theoretical solectron approach targets sound-wave electron surfing due to
nonlinear soliton excitations in 2d-anharmonic crystal lattice layers, with velocities
ranging from supersonic to sub-sonic [5, 25, 30]. We do not pretend here to explain
the GaAs experimental results. We simply wish to point out that appropriate sound
waves in suitable nonlinear crystalline materials, could provide long range ET in 2d,
with sonic or supersonic velocities for temperatures much higher than that so far
achieved in experiments.

In 2d theMorse potential needs to be truncated to avoid overcounting lattice sites.
Then using complex coordinatesZ = x +iy, where x and y are Cartesian coordinates,
the equations of motion replacing Eq. (1.4) are

d2Zn

dt2
=

∑

k

Fnk (|Znk |)znk +
[
−γ

d Zn

dt
+ √

2Dv

(
ξnx + iξny

)]
, (1.6)

withFnk (|Znk |) = − (dV /dr)r=|Znk |, znk = (Zn − Zk)/|Zn − Zk |. In Eq. (1.6)
we have incorporated thermal effects. The quantities γ (friction coefficient), Dν

(diffusion coefficient) and the ξs (noise generators) characterize the Gaussian noise.
Dv = kB T γ /M is Einstein’s relation with kB , Boltzmann constant.

To illustrate lattice motions we consider each lattice unit as a sphere represent-
ing the core electron Gaussian distribution at the corresponding site: ρ (Z , t) =
∑

|Z−Zi (t)|<1.5 exp
(
− ∣∣Z − Z j (t)

∣∣2/2λ2
)
with λ a parameter. Thus overlapping of

two such Gaussians permit to “detect” the expected “mechanical” compression of
two lattice units as Fig. 1.4 illustrates [10, 11]. The evolution of the electron follows
Eq. (1.5) for the 2d lattice geometry.

Fig. 1.4 Cumulative
sequence of snapshots using
ρ (Z , t) to track a soliton
running along the x-axis
of a triangular lattice using
Eqs. (1.4), (1.6). Parameter
values: B σ = 4, T = 0.001
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1.4 Two-Dimensional Crystal Lattices. Pauli’s Master
Equation Approach

Continuing with the 2d case, we now consider an alternative approach to using the
Schrödinger Eq. (1.5). We shall consider how transport is achieved following Pauli’s
master equation approach [17]. Equation (1.2) is now considered withVn n′

(
Zn,n′

)
.

The energy levels are taken in the polarization approximation En = E0 − ∑
n{

Ueh4/
[∣∣Zn,n′

∣∣2 + h2
]2}

, where Ue is the electric potential strength and h defines

the range of the electric field polarization interaction. Rather than relying on the
Schrödinger description of the TBA we follow Pauli’s master equation approach
with transition probabilities

Wn,n′ =
(

t20 /�

)
exp

[−2α
∣∣Zn,n′

∣∣] E
(
n, n′;β

)
, (1.7)

dwn

dt
=

∑
[Wn n′wn′ − Wn′ nwn] , (1.8)

where E
(
n, n′;β

) = 1 if En < En′ and E
(
n, n′;β

) = exp [−β (En − En′)] if
En > En′ , β = 1/kB T . Equations. (1.7)– (1.8) are solved with Eq. (1.6) to obtain
the electron probability density wn (t) neglecting the feedback of the electron on the
lattice dynamics.

Figures1.5 and 1.6 illustrate electron and solectron evolution along a 2d lattice.
Figure1.5 refers to electron taken alonewhile Fig. 1.6 illustrates how, after switching-
on the electron-lattice interaction, the soliton from Fig. 1.4 is able to trap the electron
from Fig. 1.5 and after forming the solectron transports charge along the lattice (see
also [42]).

Fig. 1.5 An electron alone placed at a given lattice site (left panel). The quantity w here accounts
for the probability density (otherwise |Cn |2 in Fig. (1.3). As time progresses the electron spreads
over the slightly heated lattice (T = 0.002D) following Pauli’s equation from the initial condition
(left panel) to a subsequent time instant (right panel)
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Fig. 1.6 Solectron formation and eventual evolution when the electron-phonon (here electron-
soliton) interaction is switched-on (α �= 0 in the corresponding to Eq. (1.4) for the 2d case). We
see that the electron is trapped by a soliton (like that of Fig. 1.4) thus forming the solectron which
transfers the electron probability density without spreading at variance with the result illustrated in
Fig. 1.5 (right panel)

1.5 Percolation and Other Features in 2d-Lattices

Solitons can be excited in a crystal lattice by several actions. One is to add finite
momentum to a group of nearby lattice units, another is by heating the crystal all-
together. Then one expects quite many excitations including phonons and solitons
randomly appearing along the 2d lattice and havingfinite life times thus leavingfinite-
length traces. Figure1.7 illustrates thermal excitations leading to spots of instant
electron density ne (x, y; t) due to higher than equilibrium electric/polarization field
maxima. Here in the simplest Boltzmann approximation

nel (Z/x, y; t) =
{
exp− [U (Z , t)/kB T ]/n0

el

}
, (1.9)

Fig. 1.7 Towards percolation. Instantaneous space distribution of electron probability density
n (x, y) associated to lattice solitons (sound) in a triangular Morse lattice (N = 100) at, respectively,
low (T = 0.02 D) (left panel) and high (T = 0.4 D) (right panel) temperatures. The latter exhibits
an almost percolating path. Parameter values: B σ = 3, Ue = 0.4D, h = 0.7 σ
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With n0
el the normalizing factor, n0

el = ∫
exp [−U (Z , t)/kB T ]d Z .

Only at temperatures high enough one expects a distribution of “local” spots
permitting in kindof zig-zag the occurrence of an “infinite” path thus percolating from
side to side of the 2d lattice [6, 8]. Indeed by increasing temperature one increases the
significance as well as the “density” of soliton excitations/traces. If percolation does
occur by adding an excess electron and playing with an external field we have a novel
way of one-sided electric conductionmediated by the solitons.We have just explored
this possibility but have not yet been able to draw conclusions about the scaling laws
of the process.On the other hand since percolation is expected as a second-order phase
transition it seems worth investigating the possible connection with the pseudo-gap
transition observed in such superconducting materials as cuprates.

1.6 Concluding Remarks

We have illustrated how lattice solitons arising from finite amplitude compression-
expansion longitudinal motions bring sound and also create electric polarization
fields [29]. The latter are able to trap charges and provide long-range ET in a wide
range of temperatures (up to e.g., 300K for bio-molecules). Such “sound” waves
could exhibit subsonic, sonic or supersonic velocity, whose actual value depends
on the strength of the electron-phonon/soliton interaction. Noteworthy is that such
interaction and subsequent electric transport, in the most general case, embraces a
genuine polaron effect [16, 34] and also a genuine soliton/solectron effect [3]. For
piezoelectric materials like GaAs that sound waves can transport electrons there is
now experimental evidence [27, 32]. This was achieved by means of strong albeit
linear/infinitesimal, highly monochromatic waves appropriately creating the elec-
tric/polarization field that due to the specificity of the crystal symmetry and other
features integrate to macroscopic level. These experiments done at 300 mK due to
quantum limitations imposed to the set-up provide hope for similar long-range ET
at “high” temperatures. Indeed the limitations are only due to the electron entry and
exit/detector gates. The solectron theory predicts such a possibility in appropriate
non-linearly elastic crystal materials capable of sustaining lattice solitons. Recent
experiments using synthetic DNA [38] show a kind of ballistic ET over 34 nmwhich
as Fig. 1.3 illustrates bears similarity with a prediction of our solectron theory [42].
In 2d crystal lattices the solectron theory predicts the possibility of percolation as
a way of long range charge transport when the material is heated up to the range
of robustness/stability of lattice solitons, as Fig. 1.7 illustrates. Work remains to be
carried out to assess the corresponding percolation scaling laws.

Finally, we have recently shown that the solectron theory offers a new way of
electron pairing by having two electrons strongly correlated (both in real space and
in momentum space with due account of Pauli’s exclusion principle and Coulomb
repulsion using Hubbard’s local approximation) due to their trapping by lattice soli-
tons [2, 26, 41, 44, 47–49]. This feature shows the quite significant role played by
the lattice dynamics well beyond the role played in the formation of Cooper pairs
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(in momentum space) underlying the BCS theory [14] or in the bipolaron theory [1]
and much in the spirit of Fröhlich approach to the problem unfortunately using a
harmonic lattice Hamiltonian at a time before (lattice) solitons were known [19–22,
33, 39, 50]; see also[51]. Incidentally, Einstein [18] was the first who used the con-
cept of molecular conduction chains trying to understand superconduction. Thus it is
reasonable to expect that a soliton-mediated Bose-Einstein condensation could take
place in appropriate 2d anharmonic crystal lattices well above absolute zero. This is
yet to be shown.
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