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Abstract. Collisions of discrete breathers (DB) moving toward each other along neighboring close packed
atomic rows in a 2D crystal lattice are investigated by molecular dynamics computer simulations. It is
shown that a DB can draw energy from the other and emerge from the collision with amplitude much
greater than its initial amplitude.

1 Introduction

There is not doubt that the theoretical discovery [1,2]
and subsequent experimental observation of selftrapped
localized modes or intrinsic localized modes (ILM) aka
discrete breathers (DB) in nonlinear perfect (defect-free)
crystal lattices a few decades ago [3–10] was a milestone
in Physics. This happened two decades after the discov-
ery of the soliton in continuous and anharmonic lattice
systems [11–13]. Although one could provide a mathe-
matical framework where both concepts could be placed
together in a single, common definition, this would hide
significant differences between solitons and DB [14–25].
Firstly, although DB appear as lattice excitations which
are (typically exponentially) localized over a limited range
of lattice sites and decay to zero far from these, and are
temporally periodic, they are not an analog of the solitons
in continuous media nor they are lattice solitons [11–13].
Secondly, solitons originate in the study of integrable
nonlinear partial differential equations like the paradig-
matic Boussinesq-Korteweg-de Vries (BKdV) equation.
They also appear in the study of longitudinal vibrations,
acoustic modes in anharmonic lattices like in the Toda
lattice. In the latter case no on-site potential exists and
only intersite potentials are considered. DB generally come
from non-integrable systems. Solitons may appear either
as localized, single pulse excitations embracing a few lat-
tice sites or as periodic waves like the cnoidal waves of
the BKdV equation. In such paradigmatic cases (BKdV,
Toda) they are the result of, e.g., the dynamic balance be-
tween nonlinearity and dispersion but this need not to be
always the case. DB seem to be a consequence of nonlin-
earity and lattice discretness, with strong enough on-site
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potentials and intersite potentials playing a minor albeit
significant role at least in 1D systems. This need not to be
so in higher dimensions like in a 2D crystal lattice. There
is the argument that localized vibrations in perfectly peri-
odic (defect-free) non-integrable lattices can be “de facto”
stabilized by lattice discretness which provides a natural
habitat for vibrational energy localization. A curious fea-
ture is that lattice sites, call them atoms or particles, in-
side a DB with different amplitudes vibrate all with the
same frequency though separately in nonlinear oscillations
the frequency depends on amplitude. Besides DB seem to
easily occur in any dimension while genuine lattice solitons
may have difficulties to survive with generality.

The coinage of the concept of soliton by Zabusky and
Kruskal [11] comes from the apparent particle-like behav-
ior of colliding solitary waves (in their BKdV case when
overtaking). Solitons offer well-defined signatures when
colliding head-on, overtaking or traveling in oblique di-
rections. Noteworthy is that upon collision solitons be-
have kinematically very much like shocks which exist due
to the dynamic balance between nonlinearity and dissipa-
tion. Finally, lattice solitons like in the Toda case are al-
ways supersonically moving localized excitations whereas
DB are either pinned or if moving they seem not to be-
come supersonic.

DB do not radiate their energy in the form of small-
amplitude waves because they vibrate at frequencies out-
side the phonon spectrum of the crystal. The DB fre-
quency can leave the phonon spectrum when its amplitude
is sufficiently large because the frequency of a nonlinear
oscillator is amplitude-dependent. For a hard-type anhar-
monicity the frequency increases with amplitude and it
can grow above the phonon spectrum [26,27]. For a soft-
type anharmonicity the frequency of a nonlinear mode
decreases with amplitude and such mode can exist only
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if the phonon spectrum possesses a gap. As in crystals
is far from easy to realize a hard-type anharmonic vi-
brational mode most of the studies were devoted to the
analysis of gap DB exhibiting the soft-type anharmonic-
ity [28–38]. Nevertheless DB with frequencies above the
phonon spectrum have been identified in Si and Ge [26]
and more recently in pure metals such as fcc Ni and bcc
Nb [27].

In the 80s Campbell et al. published results on the res-
onant kink-antikink collisions in the φ4 and double-sine-
Gordon models when they can merge into a breather or es-
cape [39–41]. Collisions between two breathers in a weakly
perturbed sine-Gordon field were analyzed [42]. DB can
emerge as a result of modulational instability in 1D, 2D
and 3D lattices [43–47]. In the far-from-equilibrium condi-
tions, when only one or a few short-wavelength extended
waves are excited, larger DB grow by harvesting energy
from smaller DB. The definition of moving DB has been
given in [15,48]. The possibility of energy exchange be-
tween colliding DB and merger of two colliding DB have
been demonstrated in [49,50].

Well-localized DB, having frequencies well apart the
phonon band edges, must have large enough amplitudes.
It is thus of interest to understand possible mechanisms of
energy gain by DB. In the present study, using a suitable
ansatz to excite moving DB with hard-type anharmonic-
ity in a 2D crystal, collisions of such DB are analyzed nu-
merically. Little is known about head-off collisions of DB
which are possible in 2D, when two DB approach each
other moving along parallel lines.

We would like to see the signatures of head-on
and head-off DB collisions and observe basic similar-
ities and differences with respect to soliton collisions
in order to illuminate experimenters in their search for
applications [51–63].

2 Simulation setup and properties
of discrete breathers

A two-dimensional (2D) close packed lattice with the in-
teratomic distance (lattice constant) equal to a is consid-
ered. Intersite interactions are described by the empirical
Morse potential

U(r) = D(e−2α(r−rm) − 2e−α(r−rm)), (1)

where r is the distance between two atoms, D, α, rm are
the potential parameters. The function U(r) has a mini-
mum at r = rm, the depth of the potential (the binding
energy) is equal to D and α defines the stiffness of the
bond. In the following, we choose scales of time, energy
and distance such that D = 1, rm = 1 and the atom
mass is unity. We take α = 5, for which the equilibrium
interatomic distance is a = 0.98813. The cut-off radius is
chosen to be rc = 5. Due to the long-range interaction
a < rm.

The computational cell, generated by the transla-
tion vectors a1 = a(1, 0), a2 = (a/2)(1,

√
3) consists of

160 × 160 atoms. The cell is subjected to the periodic

Fig. 1. (a) Stroboscopic picture of atomic motion showing
the moving DB excited in the m = 0 atomic row with the
help of (2), (3) for the parameters A = 0.128, B = 0.015,
β = γ = 0.25, x0 = 0, ω = 19.5, ϕ0 = 0.1π, δ = 0.04π. (b) DB
frequency as the function of amplitude. The upper edge of the
phonon band is shown by the horizontal line.

boundary conditions. Discrete breathers are excited in the
middle part of the computational cell. In order to absorb
the small-amplitude waves emitted by the DB, and ad hoc
viscosity term is introduced into the equations of motion
for the atoms close to the borders of the computational
cell. Horizontal close-packed atomic rows are numbered
by the index m, while atoms in the rows by the index n
as shown in Figure 1a.

To excite a moving DB in a close-packed row of atoms
the following ansatz [64] is used

xn(t) = cos[ωt + ϕ0 + δn]X0
n,

yn(0) = 0, ẏn(0) = 0, (2)

where ω is the DB frequency, ϕ0 is the initial phase, δ is the
parameter indicating the phase difference for neighboring
atoms, X0

n are defined as follows

X0
n = (−1)nT 0

n + S0
n, (3)

with

T 0
n =

A

cosh[β(n − x0)]
, S0

n =
−B(n − x0)

cosh[γ(n − x0)]
, (4)

where A is the DB amplitude, B defines the amplitude
of displacements of the vibration centers of the atoms,
β and γ define the degree of spatial localization of DB,
x0 is the DB initial position. For x0 = 0 the DB is cen-
tered on a lattice site, while for x0 = 1/2 midway between
two neighboring lattice sites. Thus the functions T 0

n and
S0

n in equation (4) describe the amplitudes and the dis-
placements of the vibration centers of the atoms at t = 0,
respectively. These quantities will be calculated for each
period of DB oscillation as

Tn =
xn,max − xn,min

2
, Sn =

xn,max + xn,min

2
, (5)

where xn,max and xn,min are the maximal and minimal
values of the (quasi)periodic function xn(t) that describes
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Fig. 2. Head-on collision of DB moving in m = 0 atomic row.
Panels from the top to the bottom are presented with the time
step of 10 time units. As a result of the collision the two DB
merge into one having the amplitude larger than the initial DB.

the motion of nth atom of a close-packed atomic row.
For atoms in the atomic rows where DB is not excited
we set xn(0) = yn(0) = 0 and ẋn(0) = ẏn(0) = 0. The DB
velocity depends on δ, and for δ = 0 it is equal to zero.

It should be noted that the ansatz (2)–(4) is not an ex-
act solution to the equations of motion for the considered
2D crystal. That is why part of the energy given to the
system at t = 0 is radiated in the form of small-amplitude
extended waves and then a stable and robust moving DB
emerges, if the parameters in (2)–(4) are properly chosen.
Even tough the ansatz (2)–(4) is time periodic, the DB is,
generally, speaking not exactly time periodic thus in our
study we deal with quasi-DB [55].

In Figure 1a the moving DB excited in the m = 0
atomic row is depicted by the stroboscopic picture of
atomic motion. The DB is shown at t = 10. The following
parameter values were used for setting the initial condi-
tions A = 0.128, B = 0.015, β = γ = 0.25, x0 = 0,
ω = 19.5, ϕ0 = 0.1π, δ = 0.04π. The frequency used to
excite the DB is above the phonon spectrum of the crystal.
As it can be seen in Figure 1b, the DB frequency, ωDB,
increases with the increase in the DB amplitude A. The
upper edge of the phonon band, ωmax = 18.9, is shown in
(b) by the horizontal line.

3 Interaction of discrete breathers

Here we shall consider a few illustrative cases of head-on
and head-off collisions of two identical DB moving toward
each other with equal velocities along the x axis (Fig. 1a).
For the head-on collision the two DB move in the same
atomic row, while for the head-off collisions they move
along parallel atomic rows. The initial velocity of DB for
the chosen parameter values is 0.35a in one time unit.

Fig. 3. Head-off collision of DB moving in m = 0 (filled dots)
and m = 1 (open dots) atomic rows. Panels from the top to
the bottom are presented with the time step of 10 time units.
As a result of the collision the right DB disappears giving a
part of its energy to the left DB. The remaining DB moves in
the direction opposite to the initial.

Figure 2 shows the outcome of a head-on collision
where two DB merge forming a single DB with amplitude
greater than the initial DB.

For the head-off collisions, the DB moving from the
left to the right is always excited in the row m = 0 and
the DB moving in the opposite direction in a row with
m = 1, 2, . . . The cases m = 1, 2, . . . , 10 and m = 15 have
been considered. The result of collision depends on m in
a non-trivial way. For m = 1 and m = 3 the scenario pre-
sented in Figure 3 is observed. Here one of the breathers
decays significantly after the collision thus giving most
of its energy and momentum to the other DB. Recall that
initially they are identical. Eventually, the dominating sur-
viving DB grows higher in amplitude than its initial value
and it moves in the direction opposite to the initial one.
For all other values of m, except for m = 15, the colliding
DB bounce off each other almost elastically. An example
for the case m = 2 is given in Figure 4. The degree of
elasticity of the collision increases with increase in m. For
m = 15 the DB pass by each other.

4 Conclusions

Several illustrative cases of head-on and head-off collisions
of DB in a 2D crystal lattice with intersite Morse poten-
tials were analyzed. For our first approach here only DB
that are identical mirror images of each other, moving
in the opposite directions with equal velocities have been
considered. It was found that the collisions either result in
formation of a single DB with amplitude greater than the
initial amplitude of the incoming two (m = 0, 1, 3) or in
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Fig. 4. Head-off collision of DB moving in m = 0 (filled dots)
and m = 2 (open dots) atomic rows. Panels from the top to
the bottom are presented with the time step of 10 time units.
As a result of the collision the DB bounce off each other almost
elastically.

an elastic interaction of DB (other values of m). The elas-
tic interaction is either bounce-off or crossing each other
of the two DB. Clearly a mechanism of energy gain by
DB becomes available since two colliding DB can produce
a DB with the amplitude greater than the initial ampli-
tudes of the colliding DB. This is important because the
concept of DB is used to explain various effects observed
in crystalline solids [65–69].

The bounce-off was observed for DB moving in the
atomic rows m = {2, 4, . . . , 10}. It may look strange that
DB interact even in the case when they move in well sep-
arated rows and with mere intersite potentials. It can be
speculated that such a long-range interaction of DB is due
to the elastic distortion of the crystal lattice produced by
the DB.

The 2D crystal model addressed in this study does not
include on-site potential. However, as it can be seen from
Figure 1a, as a DB moves along a particular close-packed
atomic row the rest of the 2D crystal creates an effec-
tive on-site potential. Atoms are not allowed to vibrate
with large amplitudes and hence only the repulsive, hard
component of the Morse potential operates. This justifies
similarities and differences with the genuine (quasi 2D)
soliton collisions studied in references [58–63]. We hope
that our results are useful to experimenters in their search
for applications.

S.V.D. thanks the hospitality at the Instituto Pluridisciplinar,
Madrid. A.A.K. and S.V.D. gratefully acknowledge financial
support from the Russian Science Foundation (Grant No. 14-
13-00982) and Russian Governemnt (Project No. 5-100-2020),
respectively.

References

1. A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986)
2. A.J. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)
3. J.W. Fleischer, M. Segev, N.K. Efremidis, D.N.

Christodoulides, Nature 422, 147 (2003)
4. B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P.

Treutlein, K.-P. Marzlin, M.K. Oberthaler, Phys. Rev.
Lett. 92, 230401 (2004)

5. J. Wiersig, S. Flach, K.H. Ahn, Appl. Phys. Lett. 93,
222110 (2009)

6. M. Sato, S. Imai, N. Fujita, W. Shi, Y. Takao, Y. Sada,
B.E. Hubbard, B. Ilic, A.J. Sievers, Phys. Rev. E 87,
012920 (2013)

7. L.Q. English, F. Palmero, P. Candiani, J. Cuevas, R.
Carretero-Gonzalez, P.G. Kevrekidis, A.J. Sievers, Phys.
Rev. Lett. 108, 084101 (2012)

8. E.Trias, J.J. Mazo, T.P. Orlando, Phys. Rev. Lett. 84, 741
(2000)

9. U.T. Schwarz, L.Q. English, A.J. Sievers, Phys. Rev. Lett.
83, 223 (1999)

10. W. Liang, G.M. Vanacore, A.H. Zewail, Proc. Natl. Acad.
Sci. USA 111, 5491 (2014)

11. N.J. Zabusky, M. Kruskal, Phys. Rev. Lett. 15, 240 (1965)
12. M. Toda, Theory of Nonlinear Lattices, 2nd edn. (Springer-

Verlag, Berlin, 1989)
13. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear

Evolution Equations and Inverse Scattering (Cambridge
University Press, Cambridge, 1991)

14. S.A. Kiselev, S.R. Bickham, A.J. Sievers, Phys. Rev. B 48,
13508 (1993)

15. G. Iooss, G. James, Chaos 15, 015113 (2005)
16. S. Aubry, Physica D 216, 1 (2006)
17. G.P. Tsironis, Chaos 13, 657 (2003)
18. D.K. Campbell, S. Flach, Y.S. Kivshar, Phys. Today 57,

43 (2004)
19. D. Hennig, G.P. Tsironis, Phys. Rep. 307, 335 (1999)
20. S. Flach, A. Gorbach, Phys. Rep. 467, 1 (2008)
21. M. Sato, B.E. Hubbard, A.J. Sievers, Rev. Mod. Phys. 78,

137 (2006)
22. A.N. Holden, in Physical Metallurgy of Uranium (Addison-

Wesley, Reading, 1958), p. 46, Figure 4.6
23. M.E. Manley, M. Yethiraj, H. Sinn, H.M. Volz, A. Alatas,

J.C. Lashley, W.L. Hults, G.H. Lander, J.L. Smith, Phys.
Rev. Lett. 96, 125501 (2006)

24. M.E. Manley, A. Alatas, F. Trouw, B.M. Leu, J.W. Lynn,
Y. Chen, W.L. Hults, Phys. Rev. B 77, 214305 (2008)

25. I.A. Butt, J.A.D. Wattis, J. Phys. A 39, 4955 (2006)
26. N.K. Voulgarakis, G. Hadjisavvas, P.C. Kelires, G.P.

Tsironis, Phys. Rev. B 69, 113201 (2004)
27. M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, A.J.

Sievers, Phys. Rev. B 84, 144303 (2011)
28. M.E. Manley, A.J. Sievers, J.W. Lynn, S.A. Kiselev, N.I.

Agladze, Y. Chen, A. Llobet, A. Alatas, Phys. Rev. B 79,
134304 (2009)

29. M. Kempa, P. Ondrejkovic, P. Bourges, J. Ollivier, S. Rols,
J. Kulda, S. Margueron, J. Hlinka, J. Phys.: Condens.
Matter 25, 055403 (2013)

30. A.J. Sievers, M. Sato, J.B. Page, T. Rössler, Phys. Rev. B
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