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Abstract Electron trapping by soliton-like (traveling) localized excitations in one-
dimensional anharmonic lattices is discussed with particular emphasis on the case
of an initially completely delocalized electron.

1 Introduction

Let us consider a one-dimensional (1d) lattice with units interacting with anhar-
monic interactions. Then for appropriate anharmonic interactions it can be shown
that the lattice can exhibit traveling solitary waves or periodic nonlinear waves,
with soliton features as defined by Zabusky and Kruskal [1]. One particular such
lattice is the Toda lattice where interactions are of exponential form for the repulsive
component [2]. Its soliton solutions are known exactly as the system is integrable.

For our purpose here we shall consider Morse interactions [3] which are not
significantly different from Toda’s in their repulsive component while offering a
physically justified attractive component. The latter is physically meaningless in
the Toda case. Moreover, though the Morse lattice is non-integrable its computer
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solutions differ little from the solutions of the Toda lattice [4–6] and hence we shall
benefit from such significantly useful approximation. Little has been established
about the quantization of the Toda or other anharmonic lattices and, moreover, for
the purpose of our present communication it is not needed here.

The next item to be introduced in our mathematical model is an electron. As a
quantum mechanical object, its (space and time) evolution obeys the corresponding
(linear) Schrödinger equation. We shall consider the electron evolution on a lattice
using the tight binding approximation (TBA) . If we disregard the lattice dynamics
and hence consider a free evolving electron on the discrete lattice space, if we
place it at a given site with maximum probability density, then as time proceeds
the electron probability density spreads “uniformly” all over the lattice sites though
the probability remains normalized to unity. Such delocalization of the electron can
be considered as a form of “dust”, tiny spots on the lattice sites.

The electron-phonon interaction or, in more general terms the electron-lattice
dynamics interaction, is nonlinear and eventually is an exponential nonlinearity
[7,8]. Having in mind electron (charge) transfer processes in biomolecules, Davydov
[9] was able, using suitable approximations, to reduce the electron-lattice phonon
dynamics to soliton-bearing evolution equations. Then he was able to show that the
real electric carrier was the compound he called electrosoliton . Unfortunately there
is numerical evidence that such electrosolitons do not survive beyond 10 K. This
temperature is far from physiological temperatures ca. 300 K [10–13].

Recently, the electron-lattice dynamics was considered for anharmonic (Toda,
Morse, etc.) lattices [14–16]. Then the mixed quantum-classical (electron-lattice)
evolution problem possesses two distinct nonlinearities. On the one hand, there is
the electron-lattice interaction and, on the other hand, we have the lattice intrinsic
anharmonicity . The latter already offers a soliton carrier and hence the compound
electrosoliton (Davydov concept generalized to anharmonic lattices) together with
the lattice soliton defines a dynamic (space and time evolving) bound state of
an electron to a lattice soliton which is a new electron (charge) carrier that has
been denoted solectron [17]. Thus the latter concept (and quasiparticle) appears
as a natural generalization of the original (Landau-Pekar) polaron (for harmonic
lattices) and the (Davydov) electrosoliton (also for harmonic lattices) to the case of
initially anharmonic lattices, with, let us emphasize it, the genuinely new ingredient
of offering a possible charge carrier before injecting, e.g., the electron. Davydov
and Zolotaryuk and colleagues also elaborated some results about the same concept
including supersonic motions [9, 18–20].

One interesting feature and the motivation for this communication is the fol-
lowing. It has been shown that placing an electron, using TBA, at any lattice site,
and a soliton at the same or at another lattice site, as time proceeds the electron
is eventually trapped and transported (electron surfing) by the lattice soliton.
Moreover, if as noted above the electron is completely delocalized in the lattice
as probability density “dust” spots, following Schrödinger equation alone, then
as soon as the electron-lattice soliton is switched-on the latter is able to gather
the electron probability density thus “reconstruding” the electron (or better said,
its maximum probability density) around the soliton itself and trapping it with
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subsequent transport, as the soliton is a (generally) supersonic, always moving
localized excitation. This phenomenon has been denoted as the “vacuum cleaner
effect” [14, 15]. The above phenomena have been shown to occur for temperatures
from zero K up to the physiological range (ca. 300 K; for materials other than
biomolecules the actual temperature range may be different) [21].

In the present communication we take up the problem from a variational
perspective starting with the Lagrangian embracing coupled together the lattice
classical dynamics and the quantum (discrete) Schrödinger electron dynamics in
the tight binding approximation.

2 Formulation of the Problem and Numerical Results

Let us consider a 1d lattice of N units all with equal mass, M , and interacting
with a Morse potential [3] (like equal massless springs operating beyond Hooke’s
linear elasticity), to which an excess electron is added as a Gaussian probability
density centered at site n. Having in mind the TBA the function cn .t/ (or better
said jcnj2) gives the probability of finding the electron at site n, while the function
�n .t/ gives the distortion of the lattice caused by the polarization of lattice atom-
units. The model assumes a hopping probability from site n to site nC1 of the form
e˛.�nC1��n/ [7,8]. The coupling parameter ˛ is determined by a quantum mechanical
calculation and can in principle be modified by the further electron doping of the
material. In this case we will have ˛ to be a given function of site the n, that is
˛ D ˛ .n/, which describes the doping. Clearly, such n-dependent coupling between
the lattice and the electron changes the probability of hopping. In its absence this
probability does not depend on the lattice deformation and the deformation just acts
as a trapping potential. The model Lagrangian is given in the form:

L D P1
nD�1 1

2

p

V0
Pq2
n C i

2

� Pcnc�
n � Pc�

n cn

�

Cpe˛.qn�1�qn/
�
cn�1c

�
n C c�

n�1cn

� � p

2V0
.1 � eqn�1�qn /2 ;

(1)

where we set

�n D 1
ˇ

qn; � D !M t D t

q
2Dˇ2

M
;

Q̨ D ˛
ˇ

; QV0 D V0

2D
:

The quantities ˇ and D parameterize the Morse lattice. V0 and ˛ account for
electron-lattice coupling strength and their tilde has been removed from (1) in the
new variables for practical purposes. According to the physical values [9–11,22,23]
the non dimensional parameter p D 2D QV0= .„!M / D V0= .„!M / � 10 is the ratio
between the electronic and mechanical time scales.
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Fig. 1 Numerical evolution of system (2) and (3) for w D 4, v D 0, � D 0, �0 D 0 and
k D 1:35, A D 0:29, �1 D �30, � D 1:5. Parameter values: V0 D 0:5, p D 10 ˛ D 0 for t � 20

and ˛ D 1:75 for t > 20 in (a) t D 0, (b) t D 20, (c) t D 21 and (d) t D 40 (red lines: soliton;
black lines: electron)

We thus obtain from (1), and its associated Euler-Lagrange equations , the
corresponding non dimensional equations of motion in the form:

dcn

d�
D ip

�
e˛.qn�1�qn/cn�1 C e˛.qn�qnC1/cnC1

�
; (2)

d2qn

d�2 D .1 � eqn�qnC1 / eqn�qnC1 � .1 � eqn�1�qn/ eqn�1�qn

C˛V0

h�
cnC1c

�
n C c�

nC1cn

�
e˛.qn�qnC1/

� �cn�1c
�
n C c�

n�1cn

�
e˛.qn�1�qn/

�
:

(3)

In Refs. [14, 15] the authors considered as initial condition both a localized and
a delocalized electron separated from a (supersonic) compression wave (a localized
soliton-like excitation) which was allowed to travel along the lattice. The computer
experiment starts with ˛ set to zero, hence no interaction between electron and
lattice dynamics. By the time the compression wave reaches the center of the
lattice the original electron Gaussian distribution has decreased to 25 % of the
original amplitude before ˛ is switched to a nonzero value. Very rapidly a coherent
compound localized structure is formed from the small amplitude delocalized
electron wave function, which is swept away by the compression wave (Fig. 1).
This is the above mentioned “vacuum cleaner effect”. In Fig. 1 we reproduce this
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process which was obtained integrating numerically Eqs. (2) and (3) with initial
conditions:

cn .0/ D Asech

�
n � �

w

�

exp Œi� C iv .n � �0/� ; (4)

qn .0/ D ln
1 C e2k.n�1��1/

1 C e2k.n��1/
; (5)

thus confirming the results of [14, 15]. Note the solectron detaching from the
background in Fig. 1c.

It was shown in [16] that the equations

i
dcn

d�
D � .qnC1 � qn/ cn � p .cnC1 C cn�1/ ; (6)

K
d 2qn

d�2
D .qn�1 � 2qn C qnC1/ .1 � ˇ .qnC1 � qn�1// C �

�
jcnj2 � jcn�1j2

�
;

(7)

which are the Davydov analog to (2) and (3) with cubic anharmonicity in the lattice
[9], have supersonic (generalized) polaron solutions similar in shape to the ones
of (2) and (3) shown in Fig. 1. A similar “vacuum cleaner effect” was observed
integrating (6) and (7) using same initial condition as (4) and a similar condition as
(5) in the form:

qn .0/ D B

2

"

1 � tanh

 
n � 1

2
� �

w

!#

:

Typical results found for a wide range of parameter values and initial conditions
(4) and (5) are displayed in Figs. 2–5. We first consider the possibility of vacuum
cleaning for the (linear) Davydov model (ˇ D 0). In Fig. 2 we observe the
formation of a right-to-left moving polaron due to the large Peierls-Nabarro (PN)
potential (a signature of the lattice discreteness) which stops the left-to-right going
waves. The PN potential is obtained at second order approximation in the Poisson
summation formula. It is proportional to sinh�1.�2=k/ for Morse interactions
and sinh�1.�2=w/ for cubic anharmonicities, according to the wave profile initial
conditions (i.c.). PN terms raise due to the discreteness and non-integrability of
a problem. In Fig. 3 we show the evolution of the initial conditions and we see
no polaron formation but rather a bouncing back of the electron wave function
caused by the peaks in the potential. In Fig. 4, very weak vacuum cleaning occurs
as compared to the TBA. In Fig. 5 we see new phenomena where the interaction
produces a left-to-right traveling compression and a right-to-left moving localized
structure. This is due to the fact that for p D 1 there is a stronger PN potential which
prevents the compression wave trapping process. In the supersonic case solectron
formation is found.
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Fig. 2 Numerical evolution of system (6) and (7) for the harmonic (linear) lattice ˇ D 0 and
p D 1. The coupling parameter � is switched on at t D 14 from 0 to 1.75. Wave parameter
values: B D 2, w D 1:56, v D 0 and P� D 1. (a) t D 0, (b) t D 15, (c) t D 40 and (d) t D 70

(red lines: soliton; black lines: electron)
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Fig. 3 Numerical evolution of system (6) and (7) for the harmonic (linear) lattice ˇ D 0 and
p D 10. The coupling parameter � is switched on at t D 14 from 0 to 1. Wave parameter values
as in Fig. 2: (a) t D 0, (b) t D 15, (c) t D 25 and (d) t D 35 (red lines: soliton; black lines:
electron)
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Fig. 4 Numerical evolution of system (6) and (7) for the anharmonic lattice ˇ D 0:5 with p D 10.
The coupling parameter � is switched on at t D 10 from 0 to 1:75. Wave parameter values:
B D 6:407, w D 0:8385, � D 4, v D 0 and P� D 8:48. (a) t D 0, (b) t D 11, (c) t D 20 and (d)
t D 30 (red lines: soliton; black lines: electron)
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Fig. 5 Numerical evolution of system (6) and (7) for the anharmonic lattice ˇ D 0:5 with p D 1.
The coupling parameter � is switched on at t D 15 from 0 to 1:75. Wave parameter values as in
Fig. 4: (a) t D 0, (b) t D 16, (c) t D 21 and (d) t D 100 (red lines: soliton; black lines: electron)
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3 Traveling Polaron/Solectron Solutions

Static polaron solutions were found numerically in [23]. To find traveling
polarons/solectrons we proceed as in [16] averaging the Lagrangian in non
dimensional variables (1) for the special case of ˛ D 1 using the trial functions:

cn D Asech

�
n � �

w

�

exp Œi� C iv .n � �/� ; (8)

qn D ln
1 C e2k.n�1��/

1 C e2k.n��/
; (9)

qn � qnC1 D ln
	
1 C sinh2 ksech2 .k .n � �//

�
: (10)

Here we take, unlike in [24], the kink/topological soliton/shock wave in qn .t/ to
satisfy the amplitude width relation for the Toda shock since in the numerics (unlike
in [25]) there is very little change in the compression wave due to the presence of
the electron. The velocity P� of the localized structure and the width of the electron
wave function will be determined as a function of the amplitude of the electron wave
function (which is, in turn, given by the initial normalization to probability unity)
and the compression width.

We now substitute (8)–(10) in the Lagrangian (1) and to leading order in the
Poisson sum we obtain:

L D 2P
V

k .k coth k � 1/ P�2 � 2P
3V

sinh4 k
k

� 2A2w
� P� � v P�

�

C2PA2h .w; k/ cos v;

(11)

where

h .w; k/ D 2

sinh 1
w

C sinh2 k

Z 1

�1
sech2 .k .x � 1// sech

x

w
sech

x � 1

w
dx;

is well approximated, for the range of interest, by the functional fitting:

h .w; k/ D 2

sinh 1
w

 

1 C sinh2 k

1 C kw

!

: (12)

The modulation equations take the form:

ık W 2P
V

�
2k coth k � k2

sinh2 k
� 1

� P�2 � 2P
3V

sinh3 k
k

�
4 cosh k � sinh k

k

�

C2PA2hk cos v D 0;

(13)

which determines the velocity of the compression wave P� as a function of the shock
width and the amplitude of the electron wave function.
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Fig. 6 Dispersion relation w D w .k/ obtained from equation (16). Dotted line: w D 1:3=k

To determine the width of the trapped electron wave function we take the
equations:

ıw W �2A2
� P� � v P�

�
C 2PA2hw cos v D 0; (14)

ıA W �4Aw
� P� � v P�

�
C 4PAh cos v D 0; (15)

and obtain,

hw D h

w
; (16)

an implicit equation which gives w as a function of k as shown in Fig. 6. It is shown
in Fig. 6 that w D 1:3=k is also a good approximation to the solution.

The variation with respect to v gives:

P� D P

w
h sin v: (17)

We take �
2

� v < � which gives P� > 0. Solving for v as a function of P� in (17)

and using this solution into (13) we obtain a quadratic dependence of P� as a function
of k in the form:

sinh3 k
3k

�
4 cosh k � sinh k

k

� �
�
2k coth k � k2

sinh2 k
� 1

� P�2

CVA2hk

r

1 �
�

wP�
P h

�2 D 0:

(18)



234 L.A. Cisneros-Ake et al.

k

dξ
/d

t

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Fig. 7 Zero level curve for velocity P� obtained from (18) for A D 0:25 and V0 D 0:5 with
p D 10.

Notice that for each given pair, A2 and k, there is only one branch of solutions
which represents a polaron, as illustrated in Fig. 7. Unlike the anharmonic one
there are no multiple solutions and no sonic solution. This is due to the very small
feedback of the electron to the distortion since h .w; k/ becomes very small as k is
large compared to the sinh3 k term.

4 Conclusions

When an electron is free to evolve along a lattice, obeying Schrödinger equation,
after sometime it becomes completely deslocalized with its probability density
uniformly distributed as “dust”, tiny spots all over the lattice sites. Needless to
say their integration gives probability one. If, however, the electron is coupled
to lattice excitations in the form of solitons then we have shown that the latter
are able to gather together all probability density spots thus reconstructing to a
significantly large extent a localized electron which is carried with the soliton. This
is the dynamic process we have denoted as “vacuum cleaner effect”. The solution
shown here illustrates the trapping of the electron as the consistent ground state
for the potential. This in turn shows the supersonic compression wave giving the
coherent structure.
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