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Abstract. The quantum statistics of electrons interacting with nonlinear excitations of a classical heated
nonlinear lattice of atoms is studied. By using tight-binding approximation, Wigner momentum distribu-
tions and computer simulations we show the existence of quite fast and nearly loss-free motions of charges
along crystallographic axes and estimate the range of values of transport coefficients. Using minimization
of free energy we estimate the density of mobile bound states between electrons and lattice solitons (so-
called solectrons). We calculate the momenta of Wigner velocity distributions and from Kubo relations the
diffusivity and the electrical conductivity using the relaxation time approximation. We show that thermally
excited solectrons in nonlinear media may lead to a significant transport enhancement. Our estimates and
computer simulations demonstrate the existence of a temperature window, where solectrons are relatively
stable and contribute strongly to transport. The electrical conductivity may be enhanced up to two orders
of magnitude.

1 Introduction

Examples of nonlinear lattices conducting electricity are,
e.g., doped polymers like trans-polyacetylene (tPA) which
are already used in many present-day technologies [1–3].
Their underlying theory is based upon the so-called SSH
Hamiltonian proposed by Su et al. [4]. Related mod-
els of interest for our purpose in this work, using the
tight-binding approximation (TBA), were provided by
Holstein [5,6], Davydov [7–9] and others [10–16]. Here, we
are dealing with the influence of lattice anharmonicity and
lattice solitons on electric transport having also in mind
conducting polymers, biomolecules, and other materials
like graphene [17] and carbon nanotubes [18]. The high
conductivity of carbon nano-tubes and graphene nano-
ribbons seems to correspond to ballistic conduction [18].
However, further insight seems needed to really assess the
foundations of the process. We also feel that the arguments
we develop in the present work may have also some rele-
vance for the understanding of the conducting stripes in
cuprate materials which are observed in high-temperature-
super-conductors [19,20].

Our basic idea is that thermal solitons may be excited
along atomic lattices and mostly traveling along crystal-
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lographic axes, which would be responsible of high en-
hancement of electron transport. Let us recall that the
electrical current, j, depends on the number density of
the charges, n, the charge itself, e, and the drift velocity,
vd, or mobility, μ,

j = nevd, vd = 〈v〉 = μE.

In the linear (Ohmic) case, the conductivity is given by
σ = neμ. In general, mobilities are given in cm2/V s, with
typical values like μ < 10 for amorphous Si and for stan-
dard organic semiconductors, μ ∼ 103 for silicon at room
temperature, and μ � 2×105 for graphene, at low temper-
ature, and for conducting polymers such as polydiacety-
lene (PDA), etc. at room temperature.

At variance with earlier approaches we here concen-
trate on soliton-assisted transport which goes beyond the
common phonon-assisted transport. We do this by gener-
alizing the earlier mentioned model Hamiltonians [4–16]
taking into account the effect of anharmonic excita-
tions like lattice solitons capable of binding charges. The
Holstein model for a weakly coupled quantum system of
(spinless) electrons and phonons has been studied exten-
sively as paradigmatic quantum-mechanical model for po-
laron formation in systems with dominant short-range
electron-lattice interactions. The closely related Davydov
model [7,8], later extended by Scott [10,11] and others, is a
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mixed classical-quantum model and was originally devel-
oped for applications to proteins and other biopolymers.
The approach in the present work also builds upon some
of our earlier work [21–25], but now focusing on the influ-
ence of temperature on transport properties. A result we
already found is that there is a range of “optimal” temper-
atures where the conductivity may be enhanced by about
two orders of magnitude due to the influence of lattice
solitons. In order to get high conductivities we need ei-
ther high density of charges like in metals, high velocity
of the charges (as in Tokamaks and polymer materials),
or high charge as in dusty plasma. Standard good conduc-
tors like Cu and Ag, have high conductivity due to their
high density of the degenerate electrons in the conduction
band. Standard superconductors have also high electron
density but high-temperature superconductivity appears
not necessarily connected with high densities. High con-
ductivity in materials with low density of itinerant elec-
trons is observed in conducting polymers as in polyens
(polyacetylen, polydiacetylene, etc.). To our knowledge
the values of electrical conductivity of doped polyatcety-
lene are in the range 104−106 S m−1, with the highest
value reported so far, for stretched oriented polyacetylene,
is 8 × 106 S m−1. Some thirty years ago, in PDA crystals
and derivatives, drift velocities, vd, up to 5 km/s were ob-
served experimentally by Donovan and coworkers [26–28]
which could be attributed to the assistance provided by
lattice solitons [29–32].

Solitons are indeed at the core of tPA electric trans-
port [1]. Noteworthy is that lattice solitons and solectrons
(bound states of electrons to solitons) exhibit supersonic
velocity [31], in the range of a few km/s for parameter
values of most of the materials mentioned above. Here we
estimate the number density and the momentum distribu-
tions of thermally excited solectrons in order to show that
they may contribute to reach high values of conductivity
and other related transport properties.

We will consider thermal systems with tempera-
tures in the range T � 101−102 K. We estimate the
density of solectrons by mass-action methods, estimate
Wigner momentum distributions analytically and from
computer simulations to calculate transport properties
from non-Maxwellian bimodal distributions.

2 The tight-binding Hamiltonian
for the electron lattice dynamics

As noted above, the Hamiltonian proposed by
Davydov [7,8] and by Su et al. [4] is of mixed clas-
sical quantum type. For one-dimensional model lattice
crystals with atoms coupled by Morse forces, in which one
excess electron has been added, we use a generalization
of such Hamiltonian. Thus we take

H = Hlat + Hedi + Hend. (1)

Here Hlat accounts for the classical dynamics of longi-
tudinal (acoustic) relative vibrations of the atoms along
the lattice to be specified below. The TBA Hamiltonian

is given by its diagonal, Hedi, and off-diagonal, Hend,
contributions

Hedi =
∑

n

Encnc+
n , (2)

Hend = −
∑

n

Vn,n−1

(
c+
n cn−1 + c+

n−1cn

)
. (3)

The index n denotes the site of the nth atom along the
lattice. In occupation number representation (so miscalled
second quantization) the |cn|2 determine the probability
to find the electron (charge) residing at the site n. We
define the shifts of the site positions from the initial rest
state, z0

n = na, by un = zn − na. Here a denotes the
atomic distance at equilibrium. The energy En and the
transition integrals Vn,n−1 may depend on the position of
the sites to the linear approximation we have:

En(ui) = E0
n + χ [(un+1 − un) + (un − un−1)] .

Davydov called exciton or polaron contribution the part
of the Hamiltonian depending just on En. Here χ accounts
for an interaction term which describes the polarization ef-
fects. Both terms give rise to nonlinearities. For simplicity
here we neglect onsite terms, thus ruling out the Holstein
Hamiltonian [5,6]. For materials mentioned above, the po-
larization constant is of the order χ � 0.1−0.2 eV/Å.
Depending on the strength of these terms we may ob-
serve the formation of Landau-Pekar polarons [33,34] or
excitons or Davydov-Scott solitons. The Landau-Pekar po-
laron is a bound state of an electron to the local electrical
polarization deformation of the lattice, pinned or mobile,
with an effective mass exceeding the mass of the free elec-
tron. Solitary solutions corresponding to stronger interac-
tions than the one considered by Pekar were first stud-
ied by Davydov [8]. A different mechanism for creating
soliton-like phenomena is connected with the off-diagonal
terms Vn n−1. The latter transfer matrix elements, or tran-
sition integrals (otherwise called nearest neighbor electron
interaction energy), have values determined by nearest-
neighbord overlap integrals being responsible for the hop-
pings of the electron along the lattice. Following Slater [35]
we assume an exponential dependence:

Vn,n−1 = V0 exp [−α (un − un−1)] , (4)

where un = zn − na are as before the elongations from
rest positions. The quantity V0 often denoted by letter J
in Davydov’s notation or t0 in conducting polymers the-
ory delineates the hopping strength. As (4) shows that
the Vn,n−1 depend on the relative elongations of two near-
est neighbors along the lattice. The quantity α regulates
how strongly Vn,n−1 is influenced by the distance. When
α = 0, χ = 0, i.e., when the coupling between electrons
and the lattice is absent, the electron dynamics is inde-
pendent from the lattice and is described by a discrete
Schrödinger equation for the electron wave function com-
ponents cn. The effective mass of the free motion is re-
lated to the transfer integral by meff = �

2/2Ja2. We note
that the eigenfunctions are periodic functions and so all
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processes are periodic. The eigen energies have the band
structure typical for lattice systems.

The case α = 0, χ > 0 was analyzed in detail by
Davydov, Scott and others. A rather complete mathe-
matical and numerical analysis of this Hamiltonian was
also given by Zolotaryuk et al. [13]. It has been shown,
that the originally subsonic selftrapping Davydov-Scott
polaron-like mode in a nonlinear lattice with cubic non-
linearity bifurcates beyond the sound velocity in at least
three ways. One of them is supersonic still like the self-
trapping mode of the Davydov-Scott soliton. The other
two are intimately coupled to the anharmonicity of the
lattice and hence bear some similarity with the starting
concept in the present work.

By linearization of the transition integral (Eq. (4)), we
get a contribution V0α(un−1 − un) which constitutes one
of the non-linearities in the SSH-theory [1,4] like originally
in the Landau-Pekar polaron approach. In practice, this
electron-phonon interaction Hamiltonian with a zero po-
larization term χ = 0 is used for modeling the hopping of
the π-electrons in polyens and their interaction with lat-
tice deformations. The SSH-Hamiltonian describes topo-
logical (kink) soliton-like excitations [4]. A detailed anal-
ysis of the different effects due to the terms χ and α [25]
has shown that the strength of the nonlinear effects gener-
ated by the diagonal term χ and those by the off-diagonal
term α are of the same order, provided the values of both
quantities are similar χ ∼ α. Besides, solitons due to off-
diagonal effects appear beyond a certain critical value of
the electron-lattice coupling αV0.

For the lattice part of the Hamiltonian, Hlat, describ-
ing relative longitudinal changes of the equilibrium posi-
tions of the atoms we assume Morse potentials [36]. The
Hamiltonian is then:

Hlat =
∑

n

{
p 2

n

2m0
+ D ( 1 − exp[−b (un − un−1)] )

2

}
.

(5)
Note that in 2d- or 3d-lattices a crystallographic axis per-
mits defining a quasi-one-dimensional sublattice dynam-
ics. D is the break-up energy of a bond, b is the stiffness
parameter of the potential and m0 denotes the mass of
atoms (all having equal mass). The Morse potential ex-
hibits an exponential-repulsive part preventing the cross-
over of neighboring lattice atoms for large displacements.
Note that, with a Taylor expansion of the exponential
function in equation (5) one recovers in lowest order the
harmonic limit and in next order one recovers the cubic
anharmonic potential. With the addition of the anhar-
monic lattice, universality of the description is achieved
by introducing new scales. Time, t, is then made dimen-
sionless as: t̃ = ω0 t, with ω0 =

√
2D b2/m0 being the

frequency of harmonic oscillations around the minimum
of the Morse potential. The energy of the electrons is
measured in units of �ω0. The dimensionless remaining
variables and parameters of the system are

qn = b un, V =
V0

2D
, α̃ =

α

b
, χ̃ =

χ

b
. (6)

The equations of motion derived from the Hamiltonian
given by equations (3)–(5) are, assuming E0

n = 0,

i
dcn

dt̃
= −χ̃(qn+1 − qn−1)cn

− τ
[
exp[− α̃ (qn+1 − qn) ] cn+1

+ exp[− α̃ (qn − qn−1) ] cn−1

]
, (7)

d2qn

dt̃2
= [1 − exp {−(qn+1 − qn) }] exp[−(qn+1 − qn) ]

− [1 − exp {−(qn − qn−1) }] exp[−(qn − qn−1) ]

− α̃V
{

(c∗n+1cn + cn+1c
∗
n) exp[− α̃ (qn+1 − qn) ]

− (c∗ncn−1+cnc∗n−1) exp[− α̃ (qn− qn−1) ]
}

. (8)

The adiabaticity parameter τ = V0/(� ω0), appearing
in the r.h.s. of equation (7) determines the degree of
time scale separation between the (fast, ultraviolet) elec-
tronic and (slow, infrared) acoustic processes. For illus-
tration we use the following values: τ = 10, V = 0.1,
and α̃ = 1.75 which are significant, e.g., for hydrogen
bonded biomolecules [7,8,10,23]. For conducting polymers
the range of α̃ = 0.5−1.75 seems appropriate. Note that in
what follows we may drop the tilde, if misunderstanding
is excluded.

As shown by Su et al. [4] there are kink-like states
states breaking the left-right symmetry of the system. This
leads to a degeneration of the ground state of the system.
As shown in [25], the kinks and corresponding localized
electronic states appear only at supercritical values of the
electron-lattice coupling α > αcr � (1/4

√
V ). Let us dis-

cuss now the continuum approximation of the discrete dy-
namic equations (7) and (8). To simplify we take into ac-
count only weak nonlinearities by including only the first
higher correction to the harmonic case. Linearizing the
Morse interaction potential we find

VM (r) = −D +
k0

2
(r − a)2 +

γ0

3
(r − a)3, (9)

with k0 = 2Db2 denoting the linear (Hooke) elasticity con-
stant and γ0 = 3Db3 accounts for (weak) anharmonicity.
The oscillation time is typically in the picosecond range
ω0 ∼ 1012−1013 s−1. In the dimensionless quantities intro-
duced before typical sets of values are ba ∼ 1−4, γ0 ∼ 3−9,
χ̃ ∼ 0.2, α̃ ∼ 1−2. Needless to say, the systematic lin-
earization of all nonlinearities in our Hamiltonian (3)–(5)
leads to the SSH-Hamiltonian [4], including the cubic term
proportional to γ0 leads to the SSH Hamiltonian [4]. Fur-
ther, the case α = 0 leads to the Davydov Hamiltonian [8].
For not too strong nonlinearities, continuum approxima-
tions allow analytical estimates. We can transform equa-
tions (7) and (8) to partial differential equations for
the envelope of the wave function and the compression
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deformation density, respectively [8,13]:

i�φt +
�

2

2m
φzz + gρφ = 0, (10)

ρtt − k0ρzz + γ0(ρ2)zz − a2

12
ρzzzz + g(φ2)zz = 0. (11)

The compression deformation density ρ(z, t) is the limit of
ρn = zn−zn−1−a and evolves according to the Boussinesq
equation (11) [37]. The wave function amplitude φ(z, t) is
the limit of the amplitude cn(t). Noteworthy is that with
the above given approximations the nonlinearity in the
electron-lattice coupling appears as:

g = χ + αV0.

The term (−gρ) plays the role of an external potential in
the Schrödinger equation for φ (10). Note that the valid-
ity of the continuum approximation is restricted to small
values of α, χ, γ0.

The system modeled by the Davydov and SSH
Hamiltonian [4,7] corresponding to (10) and (11) has two
limit cases:

(i) The regime of SSH topological solitons which is
characterized by nearly pinned topological soliton
fronts/kinks between two opposite deformation states
(left/right elongation from the rest states). This
regime is akin to polaron effect limited to the param-
eter interval 1 < α̃ < 2 and γ0 small or even zero [25].

(ii) The regime of lattice solitons is characterized by
rather energetic lattice solitons which are only weakly
disturbed by the electrons. It is the genuine solectron
regime for parameter values 1 ≤ α̃ ≤ 2 and moderate
γ0. For semiquantitative estimates, using the above in-
dicated approximation we shall restrict consideration
to the second case.

Another remark is appropriate: the electrons influence
lattice oscillations of electronic bound states (exciton-
polaron effects) and the electrons that influence lattice ef-
fects on transitions between sites, are not necessarily iden-
tical. Those electrons introduced by doping are strongly
affected by polarization effects and shifts of bound states.
On the other hand the electrons in polymers responsable
for hopping, the π-electrons are strongly affected by the
transition effects. If both types of electrons are described
by a different basis, we might have to introduce extra
creation and annihilation operators. In the simplest case
we may assume than the doping electrons influence only
the bound states and the π-electrons influence only the
hopping transitions.

3 Solectrons-bound states between electrons
and solitons

Let us now add an excess electron to the anharmonic
lattice and investigate its bound state to a lattice soli-
ton. For the one-dimensional case several analytical re-
sults for the problem of supersonic charge transfer were

obtained by Davydov and collaborators. These results are
obtained only for the Davydov-Scott Hamiltonian, i.e., for
χ > 0, α = 0. According to the results obtained in [25]
we may expect that the nonlinear terms described by the
parameter α act in a similar way.

The results obtained in [8,12,13] for the case of a cubic
nonlinearity of the lattice are simplified in the following.
With nonlinearities included, there exist two branches of
solutions for the wave functions and the deformation func-
tions. We represent the wave functions by a phase factor
and an envelope function [8,38]

Ψ(z, t) = exp(i(kz − ωt)φ(ξ)), (12)

where ξ = z − vset is a coordinate running with the solec-
tron velocity vse. Let us consider now the envelope func-
tions and the corresponding compression functions in the
continuum approximation (Eqs. (10) and (11)):

(i) The first type of soliton solutions are polaron-type
solutions or Davydov-Scott-type solutions with the
shape

ρ(ξ) ∼ sech2(κξ); (φ(ξ))2 ∼ (v2
0−v2

se)ρ(ξ)+γ0ρ
2(ξ),
(13)

where v0 = ω0a is the sound velocity.
(ii) The second type of soliton solutions are determined by

the lattice nonlinearities and are called lattice polaron
(lp) solutions or Davydov-Zolotaryuk solutions with
the shape

ρ ∼ sech2(κξ); (φ(ξ))2 ∼ ρ2(ξ), (14)

which not being the most general ansatz it is a useful one
for our purpose here. The essential differences are the re-
lations between wave functions and deformation compres-
sion densities. Another difference is their corresponding
velocities. The Davydov-Scott solutions are subsonic, but
as shown in [13], they may have also a supersonic branch.
On the other hand the Davydov-Zolotaryuk lp-solitons
are always supersonic. However as shown in several com-
puter experiments with discrete lattices, this evidently
is an artefact of the continuum approach. If supersonic
lattice solitons are “loaded” with an electron, their ve-
locity is affected and often it goes down to values be-
low the sound velocity. Therefore, strictly speaking, the
classification into supersonic and subsonic solectrons does
not have a precise meaning [31]. In the following we con-
sider Davydov-Zolotaryuk -type solectrons with appropri-
ate corrections- in order to extend their range of validity
to the subsonic case. This can be achieved by assuming
that the general solution is the addition of both types of
soliton solutions. Then we make the following ansatz for
the charge probability density:

(φ(ξ))2 = c1ρ + c2ρ
2. (15)

Because of the normalization condition only one of these
constants is free and may be used to monitor com-
puter simulations. By introducing the ansatz (15) into
the Boussinesq equation (11) we get the following mod-
ified Boussinesq equation for solitons which differs from
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the original one only by renormalized coefficients

ρtt − (k0−gc1)ρzz +(γ0−gc2)(ρ2)zz − 1
12

ρzzzz = 0. (16)

The result is, that in the approximation used here the
compression density keeps its general shape except that
the soliton velocity vs is lowered since the lattice constant
is reduced and the effective stiffness is also diminished.
This corresponds to the gauge transformation:

k0 → k1 = k0 − gc1, γ0 → γ1 = γ0 − gc2, (17)

v2
s → v2

se = v2
s − gc1, (18)

where g is the electron-lattice parameter coupling in-
troduced above and vse appears as the velocity of the
compound electron-soliton (solectron) now of lower value
than the soliton velocity. Accordingly, for the one-soliton
solution

ρ(z, κ, t) � k1κ
2

2γ1
sech2(κ[(z(t) − z(0) ± vset]). (19)

Here the parameters k0 and γ0 of the original Morse sys-
tem are replaced by k1, γ1. This corresponds to a modifi-
cation of the Morse potential which is softened to a lower
frequency with a weaker stiffness. This might be an over-
simplification, but it agrees well with the trend seen in the
computer experiments [31].

For instance, a nearly linear dependence of velocity on
the electron-lattice coupling parameter V0 was found (in
particular no divergence found at vse → v0). The results
for the solectron velocity versus the compound electron
lattice coupling parameter, αV , may be described by the
relationship

v2
se � v2

s − 1.8α̃V v2
0 . (20)

A linear, albeit empirical fit may also account for the
computer data points. Having in mind also quasi-one-
dimensional lattices like solitons moving along crystallo-
graphic axes in a two-dimensional lattice we now consider
z for a generic rectilinear axis.

Now we need the charge density of electrons ρe(z, t)
which is according to the above closely related to the com-
pression density ρ(z, t). The compression density created
by solitons induces a moving polarization potential well
W (z, t) = −gρ, which may attract electrons and form
rather stable electron-lattice bound states (Fig. 1). Ac-
cording to the continuum theory introduced above, the
potential well creating a solectron is proportional to the
lattice compression deformation density

W (z, κ, t) = −gρ(z, κ, t) = −3g
k1κ

2a2

2γ1
sech2 (κξ) . (21)

By means of a Galilean boost and limiting ourselves to
the harmonic approximation (21) reduces to:

W (z, κ, t) � g
k1κ

2a2

2γ1

(−1 + κ2ξ2 + . . .
)
, (22)

-1

-0.8

-0.6

-0.4

-0.2

 0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

W
(z

)

q x

Fig. 1. The potential created by a supersonic soliton which
acts on added, excess electrons in the harmonic approximation.
We sketch also the ground state energy level and the shape of
the wave function also in harmonic approximation.

with ξ = z−z0−vset. Note that the spring constant k1 and
the nonlinearity γ1 are not the original ones for the Morse
potential but are already renormalized quantities as ex-
plained above. We may write the harmonic approximation
in another standard form

W (z, κ, t) = W0 +
1
2
mseω

2
seξ

2, (23)

with

W0 = −g
k1κ

2a2

2γ1
; ω2

se = g
k1κ

4a2

2γ1
. (24)

To further simplify the problem we recall that from the
oscillator quantum mechanics the bell-shaped oscillator
wave function can be written as:

φ0(ξ, t) � 1
[2πξ2

0 ]1/4
exp

[
− ξ2

4ξ2
0

]
, (25)

ξ2
0 = 〈ξ2〉 =

�

2mseωse
. (26)

Recall that mse is the effective mass of the “solectron”
quasi-particle and ωse its characteristic oscillation fre-
quency around the minimum of the soliton well. We note
that these two quantities determine most properties of the
solectron system. The energy of our mobile ground state
is in harmonic approximation [38]

Ese � −g
k1κ

2a2

2γ1
+

1
2

�ωse. (27)

This is a ground state for fixed (inverse) width κ tanta-
mount to fixed value of the solectron velocity vse. Note
that this ground state is degenerated and the energies are
the same for right and left running solectrons. The ground
state energy is proportional to the solectron (inverse)
width square, i.e., approximately to the difference be-
tween the solectron velocity square and the sound velocity
square [25].
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4 Thermal distributions of solectrons
and thermodynamic equilibria

In heated systems, low-energetic solitons will be created
depending on temperature with some probability accord-
ing to the canonical weights corresponding to the energy of
solitons. These thermal solitons which are spontaneously
formed are indeed able to trap electrons. Let us first study
the number density or fraction of solitons in a heated
Morse lattice. For Toda systems this problem has been
studied by several authors [11,14,39–41]. The distribution
with respect to the energy and the corresponding (inverse)
width κ was estimated by Marchesoni and Lucheroni [41].
For Toda systems these authors showed that the density
of thermal solitons, in a first approximation, goes as T 1/3.
For Morse systems, following closely the approach pro-
posed in [41] we find the fraction of lattice sites which are
occupied by solitons

x0
s(T ) =

Ns

N
� A1[T 1/3 − A2T

2/3 + O(T )], (28)

with A1 � 0.754, A2 � 1.89. Based on the fact that the
highest number of solitons is the number of lattice sites,
N , we can replace (28) by a Padé approximation [21]

x0
s(T ) =

Ns

N
� A1T

1/3 + BT

1 + A2T 1/3 + BT
. (29)

The value of B = 5 was estimated fitting results from
earlier computer experiments [40,41].

The next problem is to estimate, how many of the
thermal solitons are occupied by electrons, for a doping
fraction d. At low temperatures we have x0

s < d and, con-
sequently, nearly all electrons will find a partner for form-
ing a solectron. For simplicity, we can assume the Davydov
relation between charge density and lattice compression
density,

ρe(z, t) ∼ ρ(z, t). (30)

In order to estimate the number density of solitons and
the corresponding number density of solectrons we solved
first the discrete dynamics of solitons and solectrons which
is determined by the dynamical equations (7) and (8).
In order to visualize the charge densities several methods
were developed. We have to calculate in the discrete case
the distribution of

ρn(t) = qn(t) − qn−1(t). (31)

In first approximation we may neglect quantum effects in
equation (8), hence setting αV = 0, and using classical
trajectories subject to thermal noise. This method seems
well suited to estimate the solectron density, the solec-
tron number and related parameters at different temper-
atures. In the Langevin approach we perform computer
simulations of the equation (8) with an added standard
stochastic source. Examples are shown in Figure 2. At
low temperatures we may identify phonon-like excitations.
With increasing T soliton-like excitations appear as diag-
onal lines which are destroyed at too high T . In spite of
the rather qualitative character of these visualizations we
are able to identify several significant features:

Fig. 2. Space-time trajectories (ordinate-abcissa) of solectrons
moving to the right or to the left for three values of the dimen-
sionless temperature: T = 0.01, 0.05, 0.15.

(i) The density of solectron-like excitations depends in-
deed on the temperature. It seems to have an optimum
in the range of, say, moderately high temperatures.
This comes from estimating the number of maxima
going, at fixed time, along the interval of sites.

(ii) Most trajectories of the solectron excitations are par-
allel and oriented with nearly 45 degree angle (or −45
with respect to the vertical, hence 135 degrees). This
clearly means that the velocities have two preferred
values left to right around the sound velocity. This
follows from the slopes (the 45 degree directions) of
the solitonic “stripes” in Figure 2.

We can quantify these two features by calculating the
mean fraction of solitons and solectrons on a lattice and
subsequently their velocity or momentum distribution.

So far we tacitly assumed that all thermally excited
solitons are forming solectrons. This however will be vio-
lated in the region of “high” temperatures where x0

s > d.
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Then the number of solectrons will be lower than the num-
ber of thermal solitons. Here the doping d fraction corre-
sponds to the relative occupation x0

e which is the ratio
of the number of electrons (free or bound) to the total
number of lattice sites x0

e = d = Ne/N . In thermody-
namics this quantity is the mole fraction. In order to
estimate the thermal densities of the solitons and solec-
trons at different temperatures and doping densities, we
have to study the thermodynamic equilibria for the forma-
tion of solectrons (bisolectrons are not considered here).
Note that within our highly simplified model, the elec-
trons are always associated to one of the sites. In real
systems the doping expressed as mole fraction x0

e may
vary only within certain limits. In general it will not ex-
ceed the value 0.3−0.5, i.e., not more than 30−50 percent
of lattice sites can be occupied by electrons. Let us de-
note the number of solectrons by N∗

se, their density in
the lattice by nse = N∗

se/(Na) (recall that a is the lattice
spacing) and the fraction by xse = N∗

se/N . In first approx-
imation [22] we may assume that the number of solectrons
N∗

se and the number of free solitons N∗
s −N∗

se are related
by a Boltzmann factor. However this approximation has
the disadvantage that the fractions may violate sometimes
the condition that the solectron number cannot exceed the
total number of added excess electrons. In order to main-
tain bounds like N∗

se < Ne and N∗
se < Ns we start here

from a minimization of the free energy supplemented by
the corresponding balance equations. The thermodynamic
equilibrium, at fixed temperature, corresponds to the min-
imal free energy. This minimum depends on energy and
entropy and so the free energy of thermal systems. We
will use here the approximation of ideal solutions devel-
oped by Planck. In this approximation we consider the
system as a mixture of the species i which has the free
energy

F =
∑

i

Ni [Ei + kBT (ln(NiΛi/V ) − 1)] . (32)

The corresponding chemical potential and the thermal de
Broglie wave length are given by:

μi = Ei + kBT log(NiΛi/V ); Λi =
h

(2πmikBT )1/2
.

(33)

In chemical equilibrium, minimizing the free energy de-
mands that any change of the free energy due to an in-
finitesimal redistribution (change) of the particle numbers
must vanish. This means that for a particle change the
chemical potentials before and after the transitions should
be equal. The corresponding equations for the chemical
potentials will be derived now. Our system is a mixture
of N∗

e free electrons, N∗
s free solitons and N∗

se solectrons.
The equilibrium condition for the chemical potentials of
free solitons, free electrons and solectrons, supplemented
by the balance equations are:

μs +μe = μse; N∗
e +N∗

se = Ne; N∗
s +N∗

se = Ns. (34)

Using a semi-classical approximation we get

μe = kBT ln Λen
∗
e; μs = kBT ln Λsns; (35)

μse = Ese + kBT ln Λsense; Λi =
√

2π
�√

mikBT
. (36)

We introduce now the relative occupations by free elec-
trons and by free solectrons (recalling that N is the total
number of lattice sites).

xe =
N∗

e

N
; xse =

N∗
se

N
= x0

e − xe. (37)

The coupled system may be transformed to the quadratic
form

x0
e = x[1 + K2(x0

s − x0
e)] + K2x

2, (38)

K2(T ) =
(

Td

T

)d/2

exp
( |Ese|

kBT

)
. (39)

The solution for x = xe is easily found and we get for the
relative occupation by solectrons

xse = x0
e+

1
2K2

[ (
1+2K2x

0
s+2K2x

0
e+K2

2

(
x0

s−x0
e

)2
)1/2

− 1 − K2x
0
s − K2x

0
e

]
, (40)

where x0
s = x0

s(T ) is given by equation (28). Beware that
here d denotes dimension (in our case d = 1). Further Td

defines a degeneration temperature for the case of full oc-
cupation with electrons corresponding to number densities
of about 2× 107 cm−1. For reasonable assumptions about
the masses we find values of Td � 102 K; in units of 2D this
is Td � 10−1. Following Davydov, for the binding energy of
the solectron, we take |Ese| � 0.1 eV and with D � 0.1 eV
we get the dimensionless estimate |Ese| � 0.5. Note that
all these numbers are rough approximations, since the
binding energies and masses are not accurately known.
Two curves for the solectron fractions at doping fraction
d = 0.3 and d = 0.5 as a function of the temperature are
shown in Figure 3. For the calculation, we use the binding
energy |Ese| � D. The upper (green) curve corresponds to
a doping of 50 percent and the lower curve to a doping of
30 percent. Note that the minimization of the free energy
together with the correct balance of charges gives smaller
fractions of solectrons and a saturation of the solectron
fraction at the doping densities x0

e = 0.3 and x0
e = 0.5, re-

spectively, as requested. We observe that the existence of
solectrons on one-dimensional Morse lattices is, for realis-
tic values of the binding energy, rather concentrated in the
temperature range T � 0.05−0.2. For higher temperatures
the potential well of the soliton is not able to bind elec-
trons due to energetic and entropic influences. Noteworthy
is the appearance of two opposite trends. The density of
thermal solitons increases with T but their ability to bind
free electrons decreases with T . Accordingly, an optimal
temperature range exists.
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Fig. 3. Soliton and solectron fractions versus temperature T
(in units 2D) for two doping fractions Ne/N . The solectron
fraction is obtained by minimization of the free energy (equi-
librium of chemical potentials). The binding energy used is
|Ese| � D. The upper curve (green) corresponds to a doping
of 50 percent and the lower curve to a doping of 30 percent.
Clearly, there is kind of an optimal temperature for solectron
formation around T ∼ 0.1 (in units of 2D).

Of particular interest is the maximum which is near
to the temperature where the number of solitons xs(Tm)
equals the number of electrons introduced by doping
d = x0

e. For a doping d = 0.3 this temperature is around
Tm � 0.05 and we see from Figure 3 that, indeed, nearly
all doping electrons found a soliton to form a bound state.
However at d � 0.5 the effectivity in forming solectrons
deteriorates. We may conclude therefore that a doping in
the range d = 0.2−0.4 ia somehow optimal with respect
to formation of solectron bound states. Further we may
conclude that solectron based applications should oper-
ate near to the optimal temperature. At temperatures be-
yond the maximum the soliton is no more able to bind the
electron.

5 Calculation of solectron momentum
distributions

Let us first further examine the computer simulations of
solectron excitations shown in Figure 2. Most of the space-
time trajectories have a slope of nearly ±45 degrees, rel-
ative to the vertical, thus corresponding to unit velocity
which is the sound velocity in our dimensionless units. The
dispersion around the maxima of the velocities is rather
small. It is compatible with the assumption of a bistable
thermal distribution (around ±45 degrees). This result
purely classical is also the outcome of the integration of
the mixed classical-quantum system (7) and (8) [23]. The
solectrons are able to travel over distances of a few hun-
dred lattice sites. Similar results have also been obtained
at “moderately” high temperatures using Pauli master
equations for the electron motion [42–44]. Here we re-
strict consideration to rather low to moderate tempera-
tures solving (7) and (8) with an electron Hamiltonian

Fig. 4. Space-time trajectories of the added, excess electron
probability density obtained from the integration of equa-
tions (7) and (8). Parameter values: T = 0.1, ba = 1, α̃ = 1.75,
τ = 10, N = 200.
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Fig. 5. Momentum distributions for T = 0.1 obtained from
trajectories displayed in Figure 4. Parameter values: T = 0.1,
ba = 1, α̃ = 1.75, τ = 10, N = 200.

with distance-dependent transition probabilities [23]. Fig-
ure 4 illustrates the results found in one typical case, with
xn(t)/a the time-dependent coordinate of the lattice atom
number n in the direction of the one-dimensional motion.
In qualitative agreement with Figure 2 the diagonal stripes
correspond to regions of enhanced density of electrons
which are freely running along the lattice, this indicates
existence of solectron excitations. Checking the slopes we
see that the excitations which survive more than ten time
units move with supersonic velocity. The pictures shown
are quite similar to others earlier described in the litera-
ture [14], where life-times of about two picoseconds with
stability up to 10 K have been reported. In our computer
simulations life-times of about 10−50 time units can be
seen. Thus our solectrons survive for several picoseconds
up to T = 0.1 which is about physiological temperatures.
This confirms an earlier finding were at T ∼ 300 K sta-
ble solitons and solectrons could be identified [23,43,44].
Purely classical computer simulations described in [39] as
well as estimates based on the pseudopotential described
above also show typical Gaussian stochastic trajectories
with bimodal distributions as illustrated in Figure 5.

In order to derive analytical expressions let us first
study the case of very low temperatures. We start from
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the ground state wave function in Gaussian approxima-
tion as done above and get for a right- or left-running
solectrons

Ψ0(z, t) = exp(i(kz − ωt)φ(ξ)), (41)

φ(ξ) =
1

[2πξ2
0 ]1/4

exp
[
− (x ± vset)2

4ξ2
0

]
. (42)

The wave function in momentum space follows by
Fourier transform. It is also a Gaussian centered around
the solectron momenta pse = ±msevse,

Φ±
0 (pz, t) � c± exp

[
− (pz ± msevse)2

2mse�ωse

]
. (43)

Taking w+ and w− as relative weights for the left and
right-running excitations, respectively, the global density
in momentum space is:

ρse(pz, t) � w+√
πmse�ωse

exp
[
− (pz − msevse)2

mse�ωse

]

+
w−√

πmse�ωse

exp
[
− (pz + msevse)2

mse�ωse

]
, (44)

which is the sum of two Gaussian profiles. Needless to say
this is just an approximation which is strictly valid only
when the two wave functions do not overlap. Since overlap-
ping occurs just during a short time interval, the approx-
imation (44) in the thermal case appears justified. The
common width of the profiles of the ground state distri-
bution is �ωse/2. For systems in a heat bath at finite tem-
perature, the “effective temperature of the ground state”,
is the so-called quantum temperature. For parabolic po-
tentials, the calculations are easily performed in the frame-
work of Wigner functions [45–47]. The Wigner momentum
distribution for a particle in an oscillator potential at rest
is:

f(pz) =
1√

2πmkBTq

exp
[
− p2

z

2mkBTq

]
; (45)

Tq =
�ωse

2kB
coth

�ωse

2kBT
, (46)

with the quantum temperature Tq which, as said above,
replaces the classical temperature T . We have the limits

Tq → T if T → ∞, (47)
kBTq → �ωse/2 if T → 0. (48)

In other words, (45) and (46) embrace the classical as well
as the quantum-mechanical case, including the ground
state. Note that such a simple formula is valid only in
the harmonic oscillator approximation. If, however, we
use (45) and (46) for solectrons, the momenta have to
be shifted and centered around the soliton velocities. As
we have shown, the thermal soliton velocities have also a
distribution in momentum space. In order to simplify we
use, for a given temperature, instead of the thermal dis-
tribution of soliton velocities its most probable value, as

for T < 0.5 the distributions are rather narrow. Then we
set

v2
s(T ) � v2

0 [1 + 1.19T 2/3]; v2
se(T ) � v2

se[1 + 1.19T 2/3].

Thus the momentum Wigner function for solectrons, in
themal equilibrium with a Morse lattice, is:

f0(pz)=
w+√

2πmkBTq

exp
[
− (pz − msevse(T ))2

2mkBTq

]

+
w−√

2πmkBTq

exp
[
− (pz+ msevse(T ))2

2mkBTq

]
. (49)

We see that the momentum Wigner function of the solec-
trons is bistable and looks very much like the quantum-
mechanical density in the ground state (44). Our result is
a rough albeit useful first-order approximation. We note
further that through Tq, the frequency ωse of solectron os-
cillations in a soliton well is a significant physical quantity
in the problem.

Note that the solectron velocity vse is in general much
higher than the Drude velocity of electrons under low
and moderate values of the electrical field, E. It is also
higher than the thermal velocity. In thermal equilibrium
the solectrons are no more one-sided but are equally dis-
tributed between left and right directions of motion. Then
the fluctuations of solectrons are very large, since the
solectrons may have positive and negative sound veloci-
ties, i.e., according to their direction of motion, what leads
to electrical current fluctuations of order e2vse(T )2. In-
deed, in thermal equilibrium the mean square velocity is:

〈v2〉 =
1
N

∫ +∞

−∞
dpz (pz/mse)

2
[
exp

(
−βq (pz − pse)

2
)

+ exp
(
−βq (pz + pse)

2
) ]

, (50)

with

N =
∫ +∞

−∞
dpz

[
exp

(
−βq (pz − pse)

2
)

+ exp
(
−βq (pz + pse)

2
) ]

, (51)

with βq = 1/2msekBTq. Carrying out the integration, (50)
gives a generalized Nyquist formula for solectrons,

〈v2〉 =
kBTq

mse
+ vse(T )2. (52)

The mean square velocity is the sum of a thermal part
and a solectron part. The former is strongly temperature-
dependent while the latter one depends only weakly on
temperature and it is, in general, the dominant contribu-
tion. Note that (52) is for supersonic as well as for slightly
subsonic cases. These large fluctuations are, according
to the Taylor-Kubo theory, related to transport [46,48].
This appears as the physical reason for the significant
enhancement of transport which we shall estimate now.
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6 Enhancement of transport assisted
by solectrons

The dispersion of the velocities is connected with trans-
port by the fluctuation-dissipation theorem [22,46,48]. We
start with the simplest case, which is diffusion, and study
the influence of solitons and, consequently, on solectrons
on diffusion. In the relaxation time approximation, with
νse as the effective Drude-Lorentz frequency scale, the dif-
fusion coefficient is directly proportional to the dispersion
of the velocity

Dse =
1

νse
〈v2〉 � 1

νse

[
kBTq

mse
+ v2

se

]
, (53)

which shows two terms, a thermal contribution called Dth,
and a genuine solectronic contribution. When the latter
dominates we can estimate the enhancement by the ratio

Dse

Dth
= 1 +

msev
2
se

kBTq
. (54)

In order to check the validity of (54) we followed numeri-
cally the temperature dependence of the mean square dis-
placement of solectrons by starting a solectron at t = 0
and computing the dispersion of its density. The problem
reduces to solving equations (7) and (8) in their extended
Langevin-Schrödinger form, hence in a thermal bath. First
we heat the system to a given temperature (e.g. T = 0.1
in units 2D as in the case shown in Fig. 6). Then we
add an excess electron, with electron probability density
concentrated in the center of the lattice. After thermal-
ization at temperature T the heat bath is switched-off
and the dynamical system (7) and (8) is integrated using,
for simplicity, a Dirac delta-like initial electron density.
For not too low temperatures the computer simulations
show stochastic diffusion-like trajectories. With increasing
temperature the widening of the diffusive cone decreases.
The spreading of the electron density permits to define a
mean square displacement. Thermal solitons create a dif-
fusion channel which stabilizes the electron dispersion. We
compare in Figure 6 the points obtained from the mean
square displacement with the theoretical estimate for the
enhancement given by (54). The parameter values for the
computer simulation are: N = 400, ba = 1, α̃ = 1.75,
τ = 10, and 0.01 < T < 1. In the region of temperatures
T ∼ 0.1−0.5 the agreement is acceptable. The larger de-
viations at smaller and at higher temperatures may be
connected with the fact that at very low T , as well as at
very high T , the spreading is no more diffusion- like and
the mean-square displacement cannot be obtained with
enough accuracy.

Consequently, the solectronic contribution to the ve-
locity dispersion clearly leads to an enhancement ratio
proportional to the solectron velocity squared. This shows
that the ratio between the solectron-driven current (or
soliton-assisted transport) and the Drude current for sim-
ple electrons may be very high. It has a maximum for
T → 0 as seen in Figure 6. Assuming, as in earlier
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Fig. 6. Solectrons in a Morse lattice. Panel above: spread-
ing of the electron probability density for the tempera-
ture T = 0.1 from computer simulations with corresponding
Langevin-Schrödinger equations using equations (7) and (8).
Panel below: dots come from the computer simulations com-
pared with the theoretical estimate (continuous line) obtained
from equation (54) with ã � 10−2; b̃ � 103 (for definitions, see
main text).

work [38], for a one-dimensional lattice:

ωse � (1012−1013) s−1; mse � (1−10) me,

vse � (1−2) × 103 m/s,

we get characteristic enhancement parameters. The two
most relevant are

ã =
�ωse

4D
� 10−2; b̃ =

2msev
2
se

�ωse
� 101−103. (55)

Accordingly, the maximum of the enhancement factor is
around the value of b̃ (see Fig. 3). At low temperatures the
enhancement ratio is strongly influenced by the frequency
of the quantum-mechanical solectron oscillations in the
potential wells created by solitons.

Let us now estimate the soliton-assisted enhancement
of the electrical conductance. The fluctuation-dissipation
theorem in the classical version [48] yields the electrical
current as:

je =
E

kBT

∫ ∞

0

dτ〈jeje(τ)〉. (56)

Its generalization to quantum oscillators with
frequency ωse is [46,48]

je =
(2/�ωse)E

kB coth(�ωse/2kBT )

∫ ∞

0

dτ〈ĵe ĵe(τ)〉. (57)
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The equilibrium distribution of a solectron is the above
given Gaussian approximation and the dispersion is given
by the quantum temperature. As already said the solec-
tron velocity vse is, in general, much higher than the
thermal velocity and the Drude velocity of electrons.
The problem of conductivity leads us back to the prob-
lem of calculating the dispersion 〈v2〉. The expression
for the low-enough field contribution to the electrical
conductivity is:

σse =
nee

2

kBTqνse
〈v2〉 � nee

2

mseνse

[
1 +

msev
2
se

kBTq

]
. (58)

Here we have a contribution proportional to the thermal
velocities and a contribution proportional to the solectron
velocities, as expected.

7 The temperature range for significant
enhancement of the electrical mobility
and conductivity

Let us study the mobility in electrical field which corre-
spond to the mobility in the presence of a gradient of the
electron concentration. In view of equation (58) the low-
enough field contribution to the mobility of solectrons is:

μse =
e2

kBTqνse
〈v2〉 � e2

mseνse

[
1 +

msev
2
se

kBTq

]
, (59)

which shows the enhancement relative to the free electron
case.

Here we tacitly assumed that the solectron is moving
in a harmonic well and has the corresponding quantum
temperature Tq. In order to characterize the difference be-
tween the mobility of an electron and solectrons we also
introduce as above an enhancement ratio

r1(T, vse) =
μse

μe
=

[
1 +

msev
2
se

kBTq

]
meνe

mseνse
. (60)

This ratio shows, for a single solectron, how much the
transport is enhanced by solectron effects relative to the
Drude-Lorentz theory. Our kinetic approach fits well with
the quantum kinetic theory of polaron-mediated conduc-
tance developed by Gogolin [24]. The current may also be
calculated for higher fields, as shown by Gogolin [29] (see
also [49]). Ultrahigh mobilities as well as the saturation
effect with the increasing field strength were observed for
PDA polymer crystals and derivatives some thirty years
ago by Donovan and Wilson [26–28]. Here we consider
only the case of low-enough field values, i.e., the linear
approximation in E.

The enhancement ratio shows a strong maximum at
low temperatures. Note hat the singularity T−1 in the
transport quantities observed in classical theories is ruled
out by the Bose factor, which leads to a finite value of
the effective temperature T−1

q at zero temperature. This
is a quantum cut-off proportional to �. Apparently, the
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Fig. 7. Average enhancement by formation of solectrons in a
Morse lattice with 20 percent (bottom red curve), 30 percent
(middle green curve) and with 40 percent (upper blue curve)
doping.

solectron effects increases at low temperature. This is ex-
pected to be correct since the appearance of solectrons
demands adding the thermal bath to the dynamical equa-
tions. Solectrons may be formed only in the presence of
thermal solitons which occur only at finite temperature.
At higher temperatures a maximum of enhancement is
seen and then the effect decays to zero. In our case the
maximum of the effect is around T � 0.002 in units of
2D. The existence of such a temperature range, limited
from below and above, was found already as a result of
classical computer simulations [39], with however a lower
enhancement factor and an optimal temperature much
higher. Here the quantum corrections connected with the
Bose factor [45,46] not only give much higher values for the
enhancement in comparison to [39] but also shift the maxi-
mum to lower temperatures. Taking into account that such
estimates were based on entirely different methods using
the dynamic structure factor, such a qualitative agreement
is remarkable.

Last but not least we calculate the mean enhance-
ment of electric transport by charges in the presence of
many electrons Ne 
 1 and many solectrons Nse 
 1
due to doping. Taking into account the equilibrium be-
tween solectrons (bound electrons) and free electrons, the
formula (60) has to be modified since the enhancement
refers only to the solectrons and not to the free electrons,
which serve as reference level. Taking into account that
we have the fractions xe of free electrons and xse of solec-
trons, the mean enhancement of specific electric transport
(i.e. per unit volume or per lattice site) is:

〈ret(T )〉 = xe + r1(T )xse. (61)

Introducing here their corresponding expressions we find

〈ret(T )〉 = xe + xse

[
1 +

msev
2
se

kBTq

]
meνe

mseνse
. (62)

Thus, in a first approximation, the average enhancement
per electron is significantly smaller than the enhancement
per solectron (Fig. 7). Of most physical interest is the
region around the maximum of enhancement. We ought
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to insist that the results obtained above have to be con-
sidered as first qualitative estimates of the transport en-
hancement by solectron excitations. The most critical rea-
son is that so far only approximate estimates of the free
parameters of our theory

A, B, |Ese|, mse, vse, ω0, ωse, νse

are known. Further work is needed to allow for more
accurate values.

8 Discussion and conclusion

This work is devoted to soliton-assisted enhanced trans-
port in thermal systems in the range of moderately high to
low temperatures roughly around 102 K. We have shown
that thermal solitons may be excited which may form
with electrons bound states, called solectrons. These solec-
trons are able to move along crystallographic axes nearly
without losses by scattering [21]. In this respect, soliton
assisted transport is similar to ballistic transport [18].
At moderately high temperatures solectrons are rather
stable and may provide a considerable enhancement of
transport. The enhancement factor depends on the tem-
perature, the soliton density, the fraction of solectrons and
their lifetime. The probability of forming solectrons in the
range T � 0.01−0.05D (where D is the depth of the Morse
well) reaches a maximum and then goes down and also
solectrons are not stable at too high temperatures.

We show that for appropriate parameter values and in
the range of temperatures T � 0.01−0.1 (in units 2D),
the enhancement may reach values around two orders of
magnitude. We have shown that incorporating quantum
effects is a must in order to locate its maximum.

Finally, let us explore the case of a fiber bundle of
parallel oriented linear lattices of Morse atoms with only
weak lateral interactions, assuming a total density of lat-
tice points of about 1029 m−3. This may roughly mimic a
cubic crystal with one or two crystallographic axes, though
this is a more complicated case. Better is to have in mind
a stretched polyacetylene or other polymer material. As-
suming that one third of the lattice points are doped with
electrons and that about 30 percent of the possible number
of solitons are excited, for a temperature around 102 K, the
estimates for the solectron density and the contribution to
electrical conductivity are, respectively,

nse � 1028 m−3; σse � 5 × 107 S m−1. (63)

Recall that typical metals have conductivities in the range
σ � 105−108 S m−1. Our solectron model shows that the
electrical conductivity is in that range. Therefore we may
consider soliton-assisted or, more appropriately, solectron-
driven transport as a promising candidate, to say the
least, for developing new materials with quite high con-
ductivity (for stretched doped polyacetylene the value is
8 × 106 S m−1).

A complete kinetic theory of solectron-driven trans-
port is yet to be developed. In particular, the formation

of bisolectrons and Bose-Einstein effects ought to be in-
cluded. This is significant since many observations show
that the essential contribution to charge transport in, e.g.,
conducting polymers comes from spinless particles [50]
which in our case may correspond to adding bisolectron
contributions [38] thus eventually improving upon the re-
sult (62).
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Ministry of Education and Science of the Russian Federation.
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Velarde, Phys. Rev. B 85, 245105 (2012)
39. A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde,
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