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Abstract After recalling features of solitons in the Toda (more precisely an adapted
Morse-Toda) lattice a succint discussion is provided about the stability of such
solitons when the lattice is heated up to physiological temperatures for values of
parameters typical of bio-macro-molecules. Then the discussion is focused on the
soliton trapping of an added excess (originally free) electron thus creating the solec-
tron electric carrier. Results are presented for 1d- and 2d-anharmonic crystal lattices.
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1 Background: Solitons

The study of anharmonic lattices owes much to the seminal work done by Fermi,
Pasta and Ulam (1955). They tried numerically albeit with no success to explain
equipartition of energy (of paramount importance in statistical mechanics) by using
the first few non-Hookean corrections to linear elasticity as a mechanism to allow
energy sharing and exchange between harmonic modes otherwise non-interacting.
The difficulty was clarified by Zabusky and Kruskal (1965) and Zabusky (2005)
who studied solitary waves, their overtaking collisions in such anharmonic lattices
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and their continuum counterpart. In view of their remarkable particle-like behavior,
these waves reappearing unaltered following collisions, the hallmark of their
dynamics, they denoted them by solitons (solit/solitary wave; on/like in electron,
proton, etc.). In fact, before the discovery of the soliton, Visscher and collaborators
numerical computations (Payton et al. 1967) had revealed “soliton-like” mediated
behavior and enhanced heat transport. Solitary waves and solitons, found also in
other realms of science, appear as potential “universal” carriers of almost anything
(del Rio et al. 2007; Nayanov 1986) (like surf waves/non-topological solitons
in the ocean or bores/topological solitons in rivers). Of particular interest to us
here is the model-lattice invented by Toda (1989) for which analytical, exact
solutions are known.

Let us recall how solitons appear in the anharmonic Toda lattice. Consider an
one-dimensional (1d) lattice of units (equal masses, m and m D 1 for simplicity)
interacting with their nearest-neighbors via a potential U.x/. Then, classically,
for the displacement of the nth-lattice unit/particle from its equilibrium position,
Newton’s equations are

Rxn D U 0 .xnC1 � xn/ � U 0 .xn � xn�1/ ; (1)

where xn denotes displacement (depending on circumstances it is of interest to
focus on local lattice deformations or on gradient of displacements) of the unit
at site “n”. A dash indicates a derivative with respect to the argument. No on-
site dynamics or structure is considered. There are cases of, e.g., biological
interest where an intra-unit dynamics is added. If rather than actual unit-
displacements, relative displacements, �n D xnC1 �xn, are considered, then Eqs. (1)
become

R�n D U 0 .�nC1/ � 2U 0 .�n/ C U 0 .�n�1/ : (2)

The paradigmatic interaction potential introduced by Toda is

U .�n/ D �a

b

�
e�b.�n��/ C b .�n � �/ � 1

�
; (3)

where � is the mean equilibrium interparticle distance; a > 0 and b > 0 are
parameters; b accounts for the non-Hookean stiffness of the “springs” in the lattice;
the last term (�1) is added for computational convenience and need not to be
included. Note that with ab finite for b ! 0, the function (3) becomes the
harmonic potential (linear Hookean “springs” for a standard crystal lattice) and
!2

0 � ab=m defines the angular frequency of vibrations in the harmonic limit.
In the extreme opposite case b ! 1, the potential (3) approaches the hard-
rod/sphere limit (fluid-like system). Note also that under an external force or for
finite temperatures the lattice constant equilibrium distance may not correspond
to the minimum of the potential. Figure 1 shows the Toda potential adequately
compared with Morse and Lennard-Jones potentials of current use in Physics and
Chemistry. In what follows consideration will be given only to strong interparticle
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Fig. 1 Rescaled representation with a common minimum (using r rather them x) of the
Toda potential
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compressions such that � � �=2 (for simplicity � D 1). Materials are usually
stronger when compressed and weaker when stretched. In view of this, the fact
that the attractive part of Toda’s potential (3) is unphysical is of no concern to the
study here.

For any finite value of b, in the infinite lattice, the equations of motion (2) possess
a one-parameter family of soliton solutions

�n D � � 1 .1=b/ `n
�
1 C sinh2�sech2 .�n � sinh�/ !t

�
: (4)

Inverting the logarithm it is just the sech2 for e�b.�n��/. This exponential is
related to the force (3) and characterizes the strength of the solitonic pulse. The
parameter � controls the wave velocity and by the same token the wave amplitude
(higher solitons travel faster),

vsoliton.�/ D ˙!0 .sinh�/ =�; (5)

which in dimensionless units shows its supersonic character as the linear sound
velocity is here given by vsound D !0 (positive and negative signs merely give
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direction of wave propagation). When a periodic hence finite lattice is considered the
exact solution of the equations of motion is a periodic “cnoidal” wave formed with
Jacobian elliptic functions and complete elliptic integrals of the first and second
kind (Toda 1989). It can be shown that in the continuum limit the solution of the
discrete lattice can be approximated by the cnoidal solution of the Boussinesq-
Korteweg de Vries equation (Boussinesq 1877; Korteweg and Vries 1895; Nekorkin
and Velarde 2002) and in another limit by the solitary wave solution in the form of
sech2. When the lattice has fixed constant length, as expansion is not permitted,
experiences internal stress (pressure). If, however, the lattice length is free but no
external force to it is applied (like compression or stretching at a free end), it can
be shown that the lattice expands as it vibrates. The solitary wave is a compression
pulse, and cnoidal waves cause expansion with, however, high compression at each
periodic wave “peak” (or maximum). The exact wave dispersion relation of the Toda
lattice is known explicitely.

Incidentally, the Toda lattice cannot sustain a thermal gradient although it permits
a temperature difference, hence it is “transparent” to heat (solitons with exponential
interaction like (3) run freely in the Toda lattice). This problem does not arise
with Lennard-Jones interactions. In view of this, use is to be done of an imperfect
Toda lattice and, recalling that interest here focused only on rather-strong lattice
compressions, this can be achieved by substituting (3) with an adapted (non-
integrable, hence imperfect) Toda-Morse lattice whose solutions and corresponding
features should not differ significantly from the exact Toda solutions given above
(Chetverikov et al. 2006; Dancz and Rice 1977; Rolfe et al. 1979). Thus rather
than (3) we shall use:

UM .�/ D D
�
e�B.���/ � 1

�2
: (6)

The specific heat at constant length/volume of the Toda lattice was obtained long
ago (Toda 1989). The high-temperature limit CL D 0; 5 corresponds well with the
fluid-like, hard-sphere phase. Then around T D 1, CL � 0; 75 it is the soliton
range (T unit: 2D; see below for further scalings). Well below T D 1 D Ttransition,
phonons (Fourier modes) control the thermodynamics (and dynamics) of the system.
Similar phenomena can be observed in the dynamical structure factor (DSF) (typical
for inelastic thermal neutron scattering experiments, 4 Å � 5 meV � 60 K even
up to 0:3 Å � 0:1 eV � 103 K). The latter is the double Fourier transform of the
density-density correlation. When T is well below T D Ttransition a single phonon
peak appears that provides the linear sound velocity. As the transition temperature is
approached from below the phonon spectrum gets multipeaked with many phonons
or highly deformed phonons showing up (multiphonon range), until a much higher
peak clearly emerges above a messy background. It corresponds to the soliton with
supersonic velocity (5). Both the specific heat and DSF point to the significant role
played by strong lattice compressions leading to solitons (Chetverikov et al. 2006).



Soliton-Mediated Electron Transfer and Electric Transport Arising... 51

2 Electron Capture and Electron Transfer

2.1 The Solectron Concept

If we now consider that lattice units are atoms with electrons and we add an excess
electron we can consider two possibilities, one is electron transfer (ET) from a donor
(D) to an acceptor (A) as schematized in Fig. 2 (Velarde et al. 2010a). The other
possibility is electric transport or current in the presence of an external electric
field. In both cases we have to follow the time evolution of the electron coupled
to that of the lattice units, one affects the other. In the simplest form we can use
the tight binding approximation (TBA) hence placing the electron at a lattice site
and allowing electron hopping to nearby sites. In the TBA the time evolution of the
electron follows the Schrödinger equation (for the lattice “space”) augmented with
the coupling with the anharmonic lattice, that reduces to

i„ Pcn D Encn � .Vn;n�1cn�1 C VnC1;ncnC1/ ; (7)

where the coupling of electron (normalized) probability density (amplitude, jcnj2)
to lattice variables implicit in the Vn;m appears. The choice

Vn; n�1 D V0e
�˛.�n��n�1/; (8)

is of current use dealing with, e.g., biomolecules. The parameter ˛ is an inverse
characteristic “length” scale.

To have a universal description suffices to make quantities dimensionless by
introducing suitable scales/units: � D V0=„!M , Q̨ D ˛=B , and QV D V0=2D

thus using the depth of the Morse potential as unit/scale; !M D �
DB2=M

�1=2
, M

denotes lattice units mass (typical parameter values for some biomolecules (Gray
and Winkler 2003, 2005) are: B D 4:45 Å�1, ˛ D 1:75B , D D V0 D 0:1 eV,
!M D 3:1012 s�1, V0=„ D 0:6 � 1014 s�1, � D 10). Then we can rewrite (7) as

i Pcn D ��
�
e�˛.�n��n�1/cn�1 C e�˛.�nC1��n/cnC1

�
: (9)

Fig. 2 ET along a biomolecule modeled by a lattice. The excess electron (wave function � )
is emitted from site D (donor) by appropriate energy supply and travels along the bridge or
“backbone” lattice made of anharmonic elements down to the site A (acceptor)
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The parameter � shows explicitely the time scale of electron motions while the time
t corresponds to the slower time scale of the lattice vibrations. The latter obey the
Eq. (2) augmented with the coupling to electron hopping motions or better said,
electron probability coefficients,

R�n D �
1 � e.�nC1��n/

�
e�.�nC1��n/ � �

1 � e�.�n��n�1/
�

e�.�n��n�1/ �
�˛V

��
c�

nC1cnCcnC1c
�
n

�
e�˛.�nC1��n/C �

c�
n cn�1Ccnc�

n�1

�
e�˛.�n��n�1/

�
:

(10)

Clearly, the interplay between electron and lattice vibrations has now a genuinely
new element, the soliton-mediated effect. This permits to consider the compound
electron-soliton “quasiparticle”, due to its “universal” carrier character, as a new
physical entity which is the “solectron” one way of providing electron “surfing” on
a subsonic/supersonic sound (longitudinal lattice soliton) wave (Cantu Ros et al.
2011; Velarde 2010).

2.2 Soliton Electron Trapping

Consider an electron placed at site “n” in a lattice. Then let alone the electron,
its evolution is dictated by Eq. (9) with ˛ D 0. Figure 3 shows how from an
initially peaked probability density as time proceeds the probability spreads down
to a uniform distribution over all lattice sites and hence ends up by being completely
delocalized.

Other evolution possibilities have been explored (Hennig et al. 2006, 2007).
Taking now Eq. (2) and launching as an initial condition a soliton at a certain
lattice site and then switching-on the electron-lattice interaction hence switching-
on Eq. (10), for an initial condition of the electron completely delocalized, and
then operating Eq. (9) in full, the striking result found is illustrated in Fig. 4.
Subsequently, after trapping the electron, the compound or bound state soliton-
electron, i.e., the solectron proceeds moving unaltered along the lattice.

When two solitons which are allowed to collide in their evolution along the lattice
are launched and the electron starts being trapped and carried by one of the solitons,
e.g. by the one moving left-to-right, then as the collision proceeds and “finishes”,
the electron may leave the first soliton and reappear trapped and carried by the
second soliton. Accordingly, the electron may change both partner and direction of
motion after the collision. Another striking result also observed numerically is the
electron probability density splitting thus illustrating how quantum mechanically
the electron (in probability sense) can move simultaneously! in both directions
(Velarde et al. 2008a).

If an external electric field is acting there is current, it suffices to add to Eq. (9)
the term (�nEcn) and then to compute

j D i
X �

c�
nC1cn � c�

n cn�1

�
; (11)
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Fig. 3 Soliton and electron taken separately (no interaction). (a) lattice soliton time evolution
starting at site n D 200. (b) Electron probability density time evolution. From initial “localization”
at site n D 200 the electron ends up completely delocalized, i.e., the proability density is spread
“uniformly” everywhere along the lattice

which then depends on the external field strength. This is apparently so but not
always in reality. Indeed, for high enough field strength it can be seen that the
latter forces the electron to follow Ohm’s law. But as the field strength becomes
low enough it is rather the soliton which commands the electric current which
becomes field-independent thus remaining constant as the field strength tends to
zero. This striking result is not unexpected if we recall what the “soliton” wave does
to a surfer.
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Fig. 4 Interaction of a soliton with a completely delocalized electron. Right figure: the electron
after following evolution dictated by Schrödinger equation ends up completely delocalized with
probability density spread like “dust” over the entire lattice. Then at such time instant the soliton is
launched taking as initial condition for the electron the final state of the right picture in Fig. 3. Left
figure: the soliton after gathering the electron dusty probability density eventually reconstructs the
electron probability density in a kind of “vacuum cleaner” process

3 Heated Crystal Lattices

So far no mention was done of temperature other than when referring to the specific
heat (Fig. 5). Strictly speaking the results described above hold at zero-K. Let us now
consider that the system is heated-up from zero-K to the soliton range (T � 0:1�1)
defined in Fig. 5. The heating can be done by a suitable thermal bath satisfying
Einstein’s relation between noise strength and equivalent temperature in K. As we
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Fig. 5 Specific heat at constant length/volume in kB units. Ttransition D 1, for which here
CL � Cv D 0:75. Cv D 1 is the Dulong-Petit (Einstein) value (solid phase; harmonic interaction)
and Cv D 0; 5 corresponds to the fluid-like phase (hard-rod interaction). Missing in the figure
is the low temperature values arising from genuinely quantum mechanics (T d Debye law with
d denoting space dimension)

shall continue restricting consideration to 1d lattices let us recall the Hamiltonian,
Ha, using xn as lattice coordinates. Then we have

Ha D m

2

NX

nD1

v2
n C 1

2

NX

n;iD1

U .xn; xi /; (12)

where vn denote velocities, and U corresponds to the Morse potential (6) (Fig. 1).
Then in the presence of random forces (hence nonzero temperature) and also
external forces the evolution of lattice particles is given by the Langevin equations

d

dt
vn C 1

m

@Ha

@xn

D ��0vn C
p

2Dv �n.t/: (13)

The stochastic forces
p

2Dv �n.t/ define a time delta correlated Gaussian white
noise. The parameter �0 describes the standard friction frequency acting from
the bath. The Einstein relation is Dv D kBT �0=m, where T denotes absolute
temperature and kB is Boltzmann’s constant.

In order to visualize the solitons we can focus attention to the “atomic” density.
We assume that each lattice unit is surrounded by a Gaussian electron density
providing a screened ion core of width s D 0:35� . Then the total atomic electron
density, defining a lattice unit, is given by
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Fig. 6 Visualisation of soliton-like running excitations. Density �0 D �
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2	s refers to electrons
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temperatures (given in units of 2D) we have: Upper set of figures: (i) T D 0:005: Only harmonic
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T D 1: Besides many excitations also a few strong solitons appear running with velocity around
1:3vsound . In both cases a snapshot of the distribution for a certain time instant and the actual time
evolution of the distribution are displayed

�.x/ D
X

n

1p
2	s

exp

�
� .x � xn.t//2

2s2

�
: (14)

Hence we assume that the atom is like a spherical object with continuous electron
density concentrated around each lattice site. In regions where the atoms overlap, the
electron density is enhanced. This permits easy visualization of soliton-like excita-
tions based on the colors in a density plot. This is of course a rough approximation.
Figure 6 shows the result of simulations for the temperatures T D 0:005 and T D 1.
The diagonal stripes correspond to regions of enhanced density which are running
along the lattice. This is a sign of solitonic excitations. Checking the slope we
see excitations which over 10 time units move with supersonic velocity. We have
solitonic excitations living about 10–50 time units corresponding to 1�3 ps. Besides
they survive even at T D 1 which is well above the physiological temperature (about
300 K which is above T � 0:1 with D ' 0:1 eV). Due to lack of space we shall not
discuss here the solectron survival as we heat the lattice. The formation of solectron
occurs as indicated above and does survive as a compound up to such temperatures.
For details we refer the reader to the analyses presented in Chetverikov et al. (2009,
2010, 2012), Ebeling et al. (2009), and Velarde et al. (2008b).
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4 Two-Dimensional Soliton-Like Excitations

Let us now extend the study to the case of a two-dimensional (2d) lattice still with
Morse interactions. The lattice Hamiltonian (12) becomes now

Ha D m

2

X

n

v2
n C 1

2

X

i;j

V .ri ; rj /: (15)

The subscripts locate atoms at lattice sites n with coordinates (i; j ) and the
summations run from 1 to N . As before the characteristic distance determining
the repulsion between the particles in the lattice is � . We limit ourselves to nearest-
neighbors only using the relative distance r D jrn �rkj. The Morse potential (Fig. 1)
if for convenience, expressed as

UM D D fexpŒ2B.r � �/
 � 2 expŒ�B.r � �/
g : (16)

In order to avoid unphysical cumulative interaction effects, a suitable cut-off rules
out a stronger interaction than due arising from the influence of particles outside
the first neighborhood of each particle. In fact, rather than a cut-off we consider the
interaction with a smooth decay to zero as distance increases. Hence rather than (16)
for the 2d lattice we take

UM .r/ D 2D fexp Œ�2b.r � �/
 � 2 exp Œ�b.r � �/
g �
� f1 C expŒ.r � d/=2�
g�1 : (17)

As a rule the cut-off “interaction radius” is supposed to be equal to 1:5� , together
with parameter values d D 1:35� and � D 0:025. Beyond the cut-off radius the
potential is set to zero. To study, at varying temperature, the nonlinear excitations
of the lattice and the possible electron transport in a lattice it is sufficient to know
the lattice (point) particles coordinates at each time and the potential interaction
of lattice deformations with electrons. The former are obtained by solving the
equations of motion of each particle (15) under the influence of all possible forces.
The latter include forces between particles which are supposed to be of the Morse
kind and the friction and random forces accounting for a Langevin model bath in
the heated lattice. We use complex coordinates Z D x C iy, where x and y are
Cartesian coordinates for each r . Then the Langevin equations (13) for the lattice
units, n, become now

d 2Zn

dt2
D

X

k

Fnk.Znk/znk C
�
��

Zn

dt
C

p
2Dv

�
�nx C i�ny

��
; (18)

where � , Dv and �nx;y have earlier defined roles. Znk D Zn �Zk , then znk D .Zn �
Zk/=jZn � Zkj is a unit vector defining the direction of the interaction force Fnk .
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To have dimensionless variables we consider the spatial coordinates normalized to
the length � . The energy is scaled with 2D. The interaction force Fnk is given by

Fnk D Fnk.jZnkj/ D �dV.r/

dr
jrDjZnk j: (19)

In view of the above only those lattice units with coordinates Zk , satisfying the
condition jZn � Zk j < 1:5, are taken into account in the sum in Eq. (18). In
computer simulations the interaction of particles is considered to take place inside a
rectangular cell Lx � Ly with periodic boundary conditions and Lx;y , depending on
the symmetry of an initial distribution of units and their number N . For illustration
we consider a distribution corresponding to the minimum of potential energy for
an equilibrium state of a triangular lattice 10� � 10

p
3=2� for N D 100 or

20� � 20
p

3=2� for N D 400.
As in the preceding Section, we will assume that the atomic electrons may be

represented by a Gaussian distribution centered on each lattice site:

�.Z; t/ D
X

jZ�Zi .t/j<1:5

exp

�
�jZ � Zi .t/j2

2�2

�
: (20)

In Fig. 7 we show the evolution of one localized soliton-like excitation in a
triangular Morse lattice. The initial form of the excitation is a small piece of
a plane soliton-like wave with a front oriented along one of symmetry axes of
a triangular lattice and a velocity directed along an other axis (x-axis here). The
density distribution (left column), and the cumulated during the time mentioned
at each row amplitude-filtered density-distribution (right column) are presented for
three time instants. We observe the transformation of the initial piece of a plane wave
to a soliton-like horseshoe-shaped supersonic excitation. As the excitation travels a
distance of about 16 units in the time internal t D 8, its supersonic velocity is
16=8 D 2 in units of the sound velocity in 1D lattice. Note that vsound D 1 for
1d-lattices. In a 2d-triangular lattice the sound velocity is

p
2 ' 1:4 times higher

than the sound velocity in a 1d-lattice.
In a subsequent set of simulations we studied two solitons excited initially, the

left one propagating to the right, the right one – to the left. The parameter values are
the same as in the one-soliton case above. We have observed first a transformation of
the initial pieces of a plane wave to a 2d horseshoe-shaped soliton-like wave fronts
and then both moving head-on against each other. Looking at Fig. 8 we observe
that the two localized and supersonic excitations pass through each other without
changing their form. This is a signature of solitons. They are not solitons in the
rigorous mathematical sense because we do not prove that they are exact stationary
waves (indeed our 2d excitations are “long lasting” transitory waves) but clearly
their behavior is like that of surface solitons observed in fluids (Chetverikov et al.
2011b,c; Nepomnyashchy et al. 2002).
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Fig. 7 Propagation of soliton-like excitation in a triangular lattice. Left column: density of the
atom cores. Right column: a cumulated representation at final time. In order to study the evolution
of perturbations we changed the initial positions of the atoms at t D 0 in a small region. Parameter
values: N D 400, b� D 4, � D 0:3, T D 0:01

We have also studied the role of heating and hence observing excitations at finite
temperatures. As we have no space to discuss this problem here we refer the reader
to Chetverikov et al. (2011a).

5 Conclusion

We have succintly discussed features of solitons in 1d and 2d anharmonic crystal
lattices and, in particular, some consequences of heating the system. We have also
discussed features of coupling lattice solitons to added excess electrons leading to
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Fig. 8 Triangular lattice: Head-on collision of two oppositely moving solitons in the interval
t D 0 � 8, both with the same parameters values: N D 400, b� D 4, � D 0:3, T D 0:01

the formation of bound states or compounds electron-soliton, denoted solectrons.
Recently, we have also studied, albeit only in the 1d case, the formation of electron
pairs (with opposite spins satisfying Pauli’s exclusion principle and experiencing
Coulomb repulsion using Hubbard’s local approximation) (Hennig et al. 2008;
Velarde and Neissner 2008; Velarde et al. 2010b, 2012). Finally, three recent
experiments have provided collateral verification of the major predictions of the
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theory here presented. One (Slinker et al. 2011) provides evidence of ballistic
transport in synthetic DNA and the other two (Hermelin et al. 2011; McNeil et al.
2011) (see also Chetverikov et al. (2012) and Nayanov (1986)) provide evidence
of electron “surfing” on sound waves in piezoelectric GaAs. Further details about
comparison between theory and experiments would be provided elsewhere.
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