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We study the quantum dynamics and statistics of electrons interacting with nonlinear excitations of a classical
thermal lattice of atoms on a semi-phenomenological basis. By theoretical estimates based on tight-binding
approximations, Wigner distributions and computer simulations we show the existence of fast and nearly loss-
free motions of electrons along crystallographic axes of a nonlinear lattice. Using mass-action relations we
estimate the density of moving bound states between electrons and lattice solitons and estimate analytically
and by simulations Wigner momentum distributions which are non-Maxwellian. Calculating the currents from
these bimodal distributions we show that thermally excited solectrons in nonlinear media may lead to a consid-
erable transport enhancement. Our estimates and simulations demonstrate that in a temperature window, where
solectrons are excited and are relatively stable, conductivity and diffusion may be enhanced by up to two orders
of magnitude.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In a previous work we investigated the formation of moving bound states between solitons excited in nonlinear
lattices and electrons hopping between the sites [1]. As shown, these so-called solectrons may have supersonic
velocity, which is possibly a few km/s. Here we intend to estimate the number density and the momentum distri-
butions of thermally excited solectrons and to show that they may contribute to reach high values of conductivity
and other related transport properties. We will show that solectron effects may help to bring thermal electrons or
holes to velocities in the range of v � km/s. We note in this context that in normal conductors the velocities are
in the range v � cm/s−m/s. The electrical current depends on the density of the charges, the charge itself and
the drift velocities or mobilities:

j = nevd, vd = 〈v〉 = μE.

In the linear (Ohmic) case, the conductivity is given by σ = neμ. In general mobilities are given in the units
cm2/Vs. In these units some typical values are:
Amorphous Si: μ < 0.5,
typical organic semiconductors: μ < 10,
silicon at room temperature : μ � 1400,
graphene at low temperature μ � 200000,
special conducting polymers like PDA, PDATS: μ � 200000− 500000,
two-dimensional degenerated electron gas at low T: μ � 3000000.
In order to get high conductivities we need either high density of the charges (e.g. metals), high velocity of
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the charges (Tokamaks, new polymer materials), or high charge (dusty plasma). Standard good conductors as
metallic Cu, Ag, have high conductivity due to the large density of the degenerate electrons in the conduction
band. Standard superconductors have also high electron density but high-temperature superconductivity is not
necessarily connected with high densities. High conductivity in materials with low density of itinerant electrons
is observed in special conducting polymers as in polyens (polyacetylen, polydiacetylen, etc.). We note that in
such crystals drift velocities up to 5km/s were observed experimentally by Donovan and Wilson on samples of
PDA- and PDTA-crystals [2–4]. According to several authors the large drift velocities observed may be due to
bound states between nonlinear lattice excitations and electrons [3–9].
In previous work we have shown the possibility of enhanced electron transport mediated by supersonic excitations
[1]. Here we will consider thermal systems, estimate the density of solectrons by mass-action methods, estimate
Wigner momentum distributions analytically and from simulations and calculate transport properties from these
non-Maxwellian bimodal distributions.

2 Solitons and solectons in anharmonic chains

For the one-dimensional case analytical results for the problem of supersonic charge transfer in anharmonic
chains were obtained first by Davydov and collaborators [6, 9]. Let us assume that we consider a rectilinear axes
described by the coordinate z. According to the Davydov theory [6], the probability density of electrons ρe(z, t)
introduced by doping is closely related to the compression density ρ(z, t) in a nonlinear molecular systems. Let
us consider for illustration a chain of Morse molecules with the pair interaction

VM (r) = D [exp(−2b(r − σ)− 2 exp(−b(r − σ)] � −D+(m/2)ω2
M (r−σ)2+(γ/3)(r−σ)3 (1)

where D, b are the depth and the stiffness, σ the lattice spacing, ω0 = (b/m)
√
2D the oscillation frequency and

γ = 3Db3 the factor of nonlinearity of the Morse potential. A supersonic soliton creates in a Morse lattice a
compression density

ρ(z, t) = ρ0sech
2κ(ξ − st), ρ0 = 3

ω2
M (s2 − 1)

2γ
. κ =

1

2

√
σρ0, (2)

Here ξ = z/σ is the dimensionless coordinate and s = vs/v0 the velocity of the soliton vs related to the sound
velocity v0. Further ρ0 is the maximum value of the lattice deformation which depends on the soliton velocity
vs and lattice anharmonicity. In thermal systems, solitons will be created depending on temperature with some
probability according to the canonical weights. At very low temperatures the density of thermal solitons increases
with AT 1/3 [7, 11, 12]. The coefficient A of the increase was numerically and analytically calculated for Toda
systems by several authors (see e.g. [11, 12]) as A � 0.56/T

1/3
0 ; kBT0 = 4aT /3bT . By using the equivalence

between Toda and Morse systems aT = 2bD/3, bT = 3b we estimated the coefficient in the law T 1/3 for Morse
systems and found A � 1.06. At larger temperature the density of thermal solitons increases monotonically but
cannot exceed the number of sites in the lattice. Fitting these results to some numerical data [10] we got as an
estimate the curve (see Fig. 1)

Ns

N
� AT 1/3 +BT

1 +AT 1/3 +BT
, kBT/2D → T. (3)

where N is the total number of sites with the fitted constant B � 20. Here and in the following T is the
dimensionless temperature in units 2D.

We introduce now an electron into the nonlinear lattice and investigate the bound states electron - soliton. The
compression density created by solitons induces a moving potential well which may attract electrons and form
rather stable bound states. According to Davydov the potential well may be represented by

W (z, t) = −χρ(z, t) = −3χω
2
M (s2 − 1)

2γ
sech2[κ(ξ − st)] = 3χ

ω2
M (s2 − 1)

2γ
[−1 + κ2(ξ − st)2 + ...] (4)

where χ is the parameter of electron lattice coupling. The wave function may be represented as a phase factor
and an envelope function [6, 19]

Ψ(z, t) = exp(i(kz − ωt)Ψ0(ξ), ξ = z − z0 − vset; vse = svs (5)
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where ξ is a running coordinate. In harmonic and adiabatic approximation the envelope of the moving ground
state is bell-shaped in coordinate space and is given by

Ψ0(ξ, t) � C0sech(κξ) � 1

[2πx2
0]

1/4
exp

[
− ξ2

4ξ20

]
, ξ20 = 〈ξ20〉 =

�

2mω0
. (6)

In the supersonic case the energy of our moving ground state is in harmonic approximation [19]

Ese � 3χ
ω2
0(s

2 − 1)

2γ
[−1 + �

2κ2 + ..]. (7)

This is a ground state for fixed value of the solectron velocity vse. Note that this ground state is degenerated
and the energies are the same for right and left running solectrons. The state energy is proportional to the deviation
of the square of the solectron velocity from the sound velocity. Let us now estimate the formation of solectrons
by mass-action relations. The density of free electrons can be given in several units, the simplest is the so-called
relative occupation or doping νe which is defined as ratio of the number of sites occupied by an electron to the
total number of sites νe = Ne/N . Note that within our simple model, the electrons are always associated to one
of the sites. In real systems the doping νe may vary within certain limits, in general it will not exceed the value
0.3, i.e. not more than 30 percent of sites may be occupied by electrons. Let us denote the number of solectrons
by Nse. In some approximation we may assume that the number of solectrons and the number of free solitons
Ns −Nse are related by a mass action factor and get:

Nse

Ns −Nse
=

Ne

Ns
K(T ); K(T ) �

(
Ts

T

)1/2

exp

[ |Ese|
T

]
;

Nse

Ns
=

νeK(T )

1 + νeK(T )
(8)

Here −Ese is the energy gain in forming a solectron, we may assume that this energy is usually less than 0.1
eV [6]. By using these formulae in combination with eq. (3) we estimated the fraction of solectrons Nse/N for
two different values of the solectron energy, |Ese| = 0.5D and for an in two times smaller value |Ese| = 0.25D
assuming for the entropic temperature Ts � 0.2. The result is shown also in Fig. 1 for a thermal Morse lattice with
30 percent doped sites, i.e. about one third of the sites are occupied with charges. Note also that the temperature
is given here in units of 2D/kB . We observe that the existence of solectrons on 1d Morse lattices is for realistic
values of the binding energy rather concentrated on the region T � 0.05 − 0.2. For larger temperatures the
potential well of the soliton is not able to bind electrons. We note the existence of two opposite tendencies: The
density of thermal solitons increases with T but their ability to bind free electrons decreases with T such, that an
optimal temperature range exists.

Fig. 1 Estimate of the soliton density in a thermal Morse
lattice (eq.(3), upper curve, blue) and the solectron den-
sity per site after (eq.(8) (for the assumed binding en-
ergies |Ese| � .5D - 2nd curve from above, red and
|Ese| � .25D - 3rd from above, green) for 30 percent
doping. The temperature is given in units of 2D where
D � 0.1eV is the depth of the Morse potential.

3 Calculation of solectron momentum distributions

In the ground state the wave function in the momentum space is centered around the solectron momentum pse =
msevse. Corresponding to the two possible directions, the ground state is degenerated, i.e. there are two states

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



Contrib. Plasma Phys. 53, No. 10 (2013) / www.cpp-journal.org 739

with same energy. The wave functions are in first approximation Gaussians

Φ±
0 (pz, t) � c± exp

[
− (pz ± pse)

2

2mse�ω0

]
(9)

The corresponding density in momentum space is a product of wave functions which in the case that the two
states are not overlapping can be approximated by

ρse(pz, t) � w+√
πmse�ω0

exp

[
− (pz − pse)

2

mse�ω0

]
+

w−√
πmse�ω0

exp

[
− (pz + pse)

2

mse�ω0

]
(10)

For systems in a heat bath at finite temperatures, the effective temperature of the ground state, which is �ω0/2
has to be generalized and to be replaced by a quantum temperature. For parabolic potentials, the calculations
are quite easily performed in the framework of Wigner functions [13–15] and the resulting Wigner momentum
distributions for a particle in an oscillator potential at rest is

f(pz) =
1√

2πmkBTq

exp[− p2z
2mkBTq

] (11)

with an effective quantum temperature Tq which replaces the classical temperature

Tq =
1

2kB
�ω0 coth

�ω0

2kBT
(12)

We see easily the limits

Tq → T if T →∞, kBTq → �ω0/2 if T → 0 (13)

In other words, this formula contains the classical as well as the quantum-mechanical case. Note that such a
simple formula is valid only in the oscillator approximation.
Applying this to solectrons, the momenta have to be shifted. This way we obtain the momentum Wigner function

f(pz) =
w+√

2πmkBTq

exp

[
− (pz − pse)

2

2mkBTq

]
+

w−√
2πmkBTq

exp

[
− (pz + pse)

2

2mkBTq

]
. (14)

We see that the momentum Wigner function is bistable and looks very much like the quantum-mechanical density
in the ground state. We have to underline however that this expression is an approximation which is valid under
the assumption that the overlap of the two Gaussian hills is weak.
In the following we will try to confirm the bimodal distributions which we found by simulations. So far only
a few numerical studies of the momentum and distributions for solectrons and for transport enhancement are
available. In order to check the theoretical estimates for the momentum distribution given above we compare with
simulations for discrete lattices. In earlier work we formulated the Hamiltonian, classical dynamical equations
for a nonlinear lattice of Morse atoms as well as Schrödinger equations for the electron [16]. Then we provide
numerical evidence that appropriately shaped nonlinear waves on a nonlinear lattice are indeed able to transfer
electrons in a controlled way and without dispersion over distances of a few hundred lattice sites. In earlier work
we studied moderate temperatures and used kinetic approximations (Pauli equations) for the electron motion
[17, 18]. Here we consider the region of rather low to moderate temperatures. We solve directly the Schrödinger
equations in the framework of TBA and apply an electronic Hamiltonian with distance-dependent transition
probabilities [16]. We study as an example trajectories of solectrons in a 1d lattice obtained from simulations of
the tight binding equations

dcn
dt

= −iτ exp(αbσ)
∑
m

cm exp(−α|zn − zm|). (15)

Realizations are shown in Fig. 2. Note that zn(t) is here the time-dependent coordinate of the lattice atom num-
ber n in the direction of the 1d-motion, which was calculated by solving classical Langevin equtions for Morse
atoms [17, 18]. We consider in the simulation the trajectories of N = 200 or N = 400 Morse particles which
were calculated from solutions of Langevin equations. We note that earlier classical simulations of solectrons
described in [10] show also typical Gaussian stochastic trajectories and bimodal distributions.
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Fig. 2 Typical trajectories in a thermal solectron systems imbedded into a Morse lattice. We show the position (ordinate)
over the time (abscissa) and observe left and right running solectrons to be seen as stripes. An estimate of the velocity
distribution obtained from the bistable Wigner distribution for T = 0.1 is shown on the r.h.s.. The picture of trajectories and
the distribution are at least in qualitative agreement. Parameters of simulation: T = 0.1, bσ = 1, α = 1.75, τ = 10.

4 Enhancement of transport

On the basis of the Wigner functions in momentum representation several soliton-mediated transport properties
may be calculated. The mean one-particle current may be obtained by using the Wigner momentum functions:

jz =
e

mse

∫ +∞

−∞
dpzpzf(pz) (16)

Assuming that we generated by appropriate initial and boundary conditions one directed solectron with velocity
vse moving in right or left z-direction we get the current

j(0)z =
e

mse

∫ +∞

−∞
dpzpz

1√
2πmsekBTq

exp

[
− (pz ± pse)

2

2mkBTq

]
= ±evse (17)

Here mse is the effective mass of the solectron [6]). The distribution of a directed solectron is in the given
approximation Gaussian and the dispersion is given by the quantum temperature. Note that the solectron velocity
vse is in general much larger than the Drude velocity of electrons in small and moderate electrical fields E and
also larger than the thermal velocity. In thermal equilibrium the solectrons are no more uni-directed but are
equally distributed between right and left. Then the fluctuations of solectrons are very large, since the solectrons
may have positive and negative sound velocities what leads to current fluctuations of order e2v2se. We demonstrate
these large fluctuations by simulations in the tight-binding approximation (TBA), (see Fig. 2). The mean squared
velocity is in thermal equilibrium

〈v2〉 =
∫ +∞
−∞ dpz(pz/mse)

2
[
exp(−βq(pz − pse)

2) + exp(−βq(pz + pse)
2)
]

∫ +∞
−∞ dpz [exp(−βq(pz − pse)2) + exp(−βq(pz + pse)2)]

(18)

Carrying out the integration gives a generalized Nyquist formula for solectrons.

〈v2〉 = kBTq

mse
+ v2se; βq =

1

2msekBTq
(19)

The mean squared velocity is the sum of a thermal part and a solectronic part. These large fluctuations are ac-
cording to the Taylor-Kubo formulae related to transport. This appears as the physical reason for an enhancement
of transport which we want to estimate now. The simplest (classical) estimate due to Drude (1900) and Lorentz
(1904) is based on the assumption that the dissipative losses are characterized by an effective collision frequency
νe for electrons, correspondingly we introduce νse for solectrons [10]:

ve(t) = ve(t0) exp[−νe(t− t0)]; vse(t) = vse(t0) exp[−νse(t− t0)] (20)
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The relaxation time of solectrons is τse = ν−1
se . The simple Drude model yields for the velocity correlation

function

Av(t− t0) = 〈v(t)v(t0)〉 = exp(−νse(t− t0)]〈v2〉 (21)

and for the transport coefficients [10] as the diffusion constant and the conductivities for a single solectron

Dse =
1

νse
〈v2〉; σse =

e2

kBTqνse
〈v2〉; σse(ω) =

e2νse
kBTq(ν2se + ω2)

〈v2〉 (22)

According to eq. (19), the transport coefficients are enhanced in the presence of solectrons. We denote the
coefficient

r1(T, vse) =
Dse

D
=

σse

σD
= 1 +

νsemsev
2
se

νekBTq
(23)

as the transport enhancement factor.
Our elementary approach is consistent with the kinetic theory developed by Gogolin [5] as well as with the
fluctuation - dissipation theorem (FDT) for quantum oscillators [14,15,20]. According to Balescu the FDT reads
in the classical version

je =
E

kBT

∫ ∞

0

dτ〈jeje(τ)〉 (24)

For the special case of oscillator states the generalization for quantum oscillators with frequency ω0 reads [?, 20]

je =
(2/�ω0)E

kB coth(�ω02kBT )

∫ ∞

0

dτ〈ĵeĵe(τ)〉. (25)

The application to solectrons leads in the (rather crude) relaxation time approximation again to the formula we
found in the context of Drude’s approach. This way we find the following expression for low-field contribution
of one solectron to the current

jse =
e2E

kBTqνse
〈v2〉 (26)

This way we are back to the previous formula of the Drude theory. Note that the current may also be calculated
for higher fields. As shown already by Gogolin [5], this leads to a saturation with the field which was observed
by Wilson [3]. Here we consider only the low field linear approximation.
The enhancement factor r1(T, vse) for a single solectron shows how much transport is enhanced by solectron
effects compared to the Drude-Lorentz theory. The physical interpretation of our formulae for the enhancement
factor is interesting: The solectronic contribution to the velocity dispersion leads to an additional term propor-
tional to the solectron velocity squared. This shows that the relation between the solectron-driven current and the
Drude Lorentz current may be very large and has a maximum for T → 0 as shown in Fig. 3. Assuming as in
earlier work [19] the typical set of parameters for a 1d lattice:

ω0 � 1012s−1;mse � 5 · 10−25kg : vse � 103m/s

we get for the maximum of the enhancement factor the theoretical estimate (see Fig. 3)

r1(T → 0) = 1 +
2msev

2
se

�ω0
� 102 (27)

Note that the maximum is mainly influenced by the sharpness of the minimum of the Morse potential. In a more
realistic calculation we have to take into account that the formation of solectrons is bound to the existence of
thermal solitons which is temperature-dependent.
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Fig. 3 Solectron-enhancement factor of transport according to the theoretical estimates obtained from Wigner distributions.
Left panel: The factor of transport enhancement r1(T ) due to a single solectron compared to electron transport as a function
of temperature. Right panel: The enhancement factor multiplied with an estimate of the total fraction of solectrons per site
two binding energies, uper curve |Ese| = 0.5D (red), lower curve |Ese| = 0.25D (green).

Fig. 4 Solectrons in a Morse lattice. Left panel: Example of the spreading of the electron density for the temperature
T = 0.1 from simulations with the TBA-Schrödinger equation. The initial density condition is delta-like, concentrated
around the center. Parameter values: N = 400, bσ = 1, α = 1.75, and τ = 10. Right panel: The points obtained from the
TBA-simulations are compared with the theoretical estimate obtained above.

Taking into account the equilibrium between bound solectrons and free electrons, the formula (23) has to be
modified taking into account that the enhancement refers only to the solectrons and not to the free electrons.

r(T ) = 1 +
Nse

N

νsemsev
2
se

νekBTq
;

Nse

N
� AT 1/3 +BT

1 +BT

νeK(T )

1 + νeK(T )
. (28)

The factor Nse/N provides the relative occupation of sites with solectrons. This way we find the average en-
hancement per electron which is sometimes much smaller than the enhancement per solectron. We note that so
far only estimates for the constants A,B, |Ese|,mse, vse, νse are known. In order to check transport enhancement
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we studied numerically the temperature dependence of the mean square displacement. The problem reduces to
solving coupled together both Eqs. (3) and the classical Langevin equations for the lattice for specific conditions:
First we heat the system to a given temperature (e.g. T = 0.1 in units 2D in the example shown in Fig. 4). Then
we inject one electron, the electron density concentrated in the center of the sample. Then we switch-off the heat
bath and solve the coupled system of lattice and electron equations, in our example for delta-like initial electron
densities.

For not too low temperatures the simulations show a stochastic diffusion-like trajectories. With increasing
temperature the angle of the opening of the cone is decreasing. The spreading of the electron density is a complex
diffusion-like process. and thermal solitons create a diffusive channel which stabilizes the electron dispersion.
We compare in Fig. 4 the numerical points for the dispersion with the theoretical estimate obtained above. In the
region of mean temperature the agreement is quite good, the large deviations at small temperatures are connected
with the fact that at low T the process is not more diffusion- like and the mean-square displacement cannot be
obtained with good precision.

5 Discussion and Conclusion

This work is devoted to charge transport, as conductance and diffusion, in thermal systems at moderate to low
temperatures say around 102 K. We have shown that thermal solitons may be excited which may form with
electrons bound states, called solectrons. At moderate temperatures solectrons are rather stable and may provide
a considerable enhancement of transport as diffusion and conductance. The enhancement factor depends on the
soliton density, the fraction of solectrons and their lifetime. The probability of forming solectrons reaches in the
range T � 0.2 − 0.5D (where D is the depth of the Morse well) a maximum and then goes down again, since
solectrons are not stable at higher temperatures, We show that at favorable parameter conditions, the enhancement
may be considerable and reach values in the range of a factor around 102.

We thank Sergey Trigger for a collaboration on a related classical kinetic theory based on Fokker-Planck equa-
tions. In the more complicated quantum case, investigated here, a complete kinetic theory is still to be developed.
This research was supported by the Spanish Ministerio de Ciencia e Innovacion, under Grant MAT2011-26221
and by the Ministry of Education and Science of the Russian Federation within FTP ”Scientific and scientific-
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