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1 Introduction

In the polaron theory developed by Landau, Pekar, Fröhlich, Holstein and others,
and successfully used in the study of biomolecules by Davydov, Zolotaryuk and
Scott and others [1–7] the self-trapping of the electrons interacting with linear lattice
oscillations (phonons) dominates. Davydov exploited the possibility of soliton
excitations suitably using the above mentioned nonlinearity. He then identified
quasiparticles (“electrosolitons”) which move in general with subsonic velocity.
Davydov in collaboration with Zolotaryuk also treated the case when the lattice
bears a cubic or quartic nonlinearity [3, 5, 7]. This leads to “supersonic electrosoli-
tons”, or otherwise “lattice polarons”; excitations growing from the nonlinearity of
the lattice itself.

Starting first from semiclassical considerations in several works [8–18] a closely
related soliton-mediated form of supersonic charge transfer and electric conduction
has been proposed by introducing the concept of “solectron” as a natural extension
of both the polaron and the electrosoliton quasiparticles. In the solectron theory
the soliton carrier is obtained before an excess electron is added to the system.
Classical models and plasma-type Hamiltonians [8–13] and quantum-mechanical
models have been studied [14, 18–22]. The quantum theory was developed within
the tight-binding approximation (TBA). Besides the general methods which we
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developed in some earlier work [11,14–16,18] the quantum theory has been applied
to two different kinds of systems:

(a) Conducting polymers, studies of hopping processes in polymers based on a
TBA Hamiltonian [14, 18, 20–26].

(b) One- and two-dimensional plasmas and solid state plasma layers, studies of the
diffusivity and the conductivity by using a plasma Hamiltonian and Pauli-type
kinetic equations [12, 27].

The first line of research was developed in collaboration with Larissa Brizhik,
Leonor Cruzeiro, Dirk Hennig, John Kozak, Oliva Cantu Ros, and Gerd Röpke
concentrating on analytical and numerical studies of solectron bound states and
recently also on bisolectron bound states [21, 22, 25, 26]. The plasma approach
was developed with Gerd Röpke [27, 28]. Here we will study hopping transfer of
charges and hopping conductivity in plasma layers. We are using a particular method
which has been developed recently in the context of applications to plasmas and
charged layers in solids [19, 27, 29–31]. This approach is based on a generalization
of the kinetic equations developed already in 1928 by Pauli [32] and the more
recently developed Monte Carlo procedures of doing simulations of many particle
systems [33]. As we have shown in [27] by using a particular generalization of
the kinetic equations of Pauli-type, the excitations and transport processes based
on the coupling of the nonlinear lattice excitations to the hopping transport of the
charges may be well described by this method. This procedure is particularly useful
for studying the influence of nonlinear excitations of the lattice on electric transfer,
conduction and other transport properties.

Let us succinctly summarize the state of art and discuss some open tasks:
The solectron concept offers powerful methods to understand and to control

the motion of charges in nonlinear atomic lattices. It is in fact a significant
generalization of the polaron concept, extending the latter to nonlinear lattices [47].
This is indeed of some importance, since real atomic interactions are never strictly
linear, there are always some nonlinear contributions to the atomic interactions.

In our view, so far the most important results with respect to possible practical
applications are:

1. Development of tools to manipulate and control the path of charges, including
the so-called vacuum-cleaner effect [20, 23, 31]. This is in fact a new way of
controlling charges providing a method to overcome the spreading of probability
due Schrödinger evolution and bring electrons in a controlled way from point A
to point B in a lattice.

2. Studies of pair formation. It was shown that under appropriate conditions
solectron pairs may be formed [21–23, 25, 26, 34].

3. Extension of the one-dimensional solectron concept to two dimensions, i.e. the
step from chains to layers [28, 30, 31]. One of the results was the detection of
high energetic quasi one-dimensional solectrons running in higher-dimensional
systems along the crystallographic axes [31].
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Problems not yet treated include:

– Studying the influence of density of doping on physical properties [48],
– The study of nonideality effects in diffusion and conductivity,
– The quantitative treatment of percolation effects,
– The study of the influence of Fermion and Boson effects and the role of the Fermi

edge (Fermi net in 2d),
– The investigation of Bose–Einstein condensation in solectron/bisolectron

systems and their role in eventual superconducting systems.

As far as we can see, all known systems with high conductance—ranging
from usual metals to superconducting materials—operate on the basis of degen-
erate charges. For this reason we will discuss here the problems which arise in
generalizing the existing theory of individual solectrons and bisolectrons to many-
body thermal systems.

2 The Temperature-Density Phase Plane and Solectronic
Degeneration Effects

Our aim is to extend the existing theory at first in a qualitative way to finite densities
and to discuss density—as well as temperature effects. Let us start with some
estimates for the relative number of thermal solitons per site Ns=N as a function
of temperature. There are several theoretical estimates for Toda lattices [35, 36] as
well as estimates from computer simulations for Morse lattices [19]. According to
the existing estimates the soliton fraction increases with T 1=3 and has maximum
at certain temperature T0 which may be in the range of a few hundred Kelvin for
biomolecules [19]. For estimates we fitted the existing data with the formula

Ns

N
' A�1=3

1 C B�5
; (1)

where N is the total number of sites, � D kBT=2D and where A ' 0:5 and B ' 0:1

are two fitting constants. For fitting we used the results from simulations showing
clearly the existence of optimal temperatures for soliton generation [19, 23]. Let us
now study the role of electron density. The electron density can be given in several
units, the simplest is the so-called relative occupation or fraction �e which is defined
as the number of sites occupied by an electron relative to the total number of sites

�e D Ne

N
:

Note that in the simplest model, the electrons are always associated to one of the
sites. The relative occupation is denoted as doping.
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In real systems the fraction or doping may vary within wide limits, however the
fraction/doping will in general not exceed the value 0:2, i.e. not more than 20% of
sites are occupied (doping fraction). The number density in charges per unit volume

ne D Ne

V
;

where V is the volume may depend on the dimension and the lattice properties. In
1d the density is given by

ne D Ne

aN
;

where N is again the total number of lattice sites and a is the equilibrium lattice
spacing. In a 2d triangular quadratic or triangular lattice the density is given by

ne D Ne

Na2
; ne D Ne

Na2.2=
p

3/
:

Let us denote the number of solectrons by Nse. We assume that the number of
solectrons and the number of free solitons N � Nse are related by a Boltzmann
factor.

Nse

N � Nse
D exp

�
� �se

kBT

�
: (2)

Here �se is the energy gain in forming a solectron. This energy depends on the
specific physical conditions. Following Davydov [3], the ground state energy of
a strongly supersonic solectron can be estimated at

�se ' vse

vsound

me

mse
ŒeV �; (3)

where mse and vse are the mass and velocity of the solectron. For appropriate
parameter values, this energy could possibly reach 0:1 eV, which is a very high
value. Presumably the above given estimate is an upper bound. In our computer
simulations with Morse lattices having a potential well of value D we observe
solectrons in a temperature range of 0.1–1 D. Assuming wells of order 0.1–0.5 eV
we arrive at temperature intervals of 0.01–0.1 eV. In the following we will assume
that the ground state energy is around 0:01 eV. By using this and two smaller values
for the binding energy we can estimate the fraction of solectrons as a function of
temperature and density. The result is shown graphically in Fig. 1. Not that by using
higher values for the binding energy, the densities of solectrons are increasing.

We will now estimate the effects of degeneration assuming that the charges are
electrons or holes and are, as well as the corresponding solectrons, Fermions. Sys-
tems of Fermions show degeneration effects, if the thermal de Broglie wave length
of the charges is about the distance between them. That means the degeneration
effects of the charges will begin to play a role at densities satisfying the condition
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Fig. 1 Estimates of the soliton fraction per site (upper pink curve with maximum) and of the
solectron fraction for 3 given values of the solectron binding energy (lower three curves: �se '
0:001; 0:005; 0:01 eV). Left panel: a doping of 20%, right panel: a rather high doping of 50%. The
magenta lines going up as temperature increases show the border of degeneration effects which are
to be expected only above them

nse�
3
se ' 1I �se D hp

2�msekBT
; (4)

where mse is the effective mass of solectron and nse as before is the solectron density.
The condition of degeneracy provides us a line in the density-temperature plane

nse D const:T 3=2; (5)

which is displayed in Fig. 1. In the left panel we show the case of a quite an usual
doping of 20%, the right panel we have the case of a very high doping of 50%. Only
above the magenta lines the effects of degeneration may be expected.

Let us succinctly explain what we mean with a Fermi surface which is in 2d a
Fermi net. The Fermi net (Fermi surface in 3d) is defined by the condition that the
energy equals the Fermi energy. This corresponds to the transition to degeneration
which happens at nse�

3
se ' 1.

If the degeneration parameter crosses unity, we expect degeneration effects
(Fig. 1). The Fermi net is a set of lines on the plane where, the density corresponds
to the degeneration density at the corresponding given temperature. The electron
density in the field of atoms is in our case nonuniform and may have a quite
complex structure and net structure schematically shown in Fig. 2. As well known
from plasma physics and solid state physics most relevant processes, including
transitions, diffusion and conductivity occur at the Fermi surface. Therefore it is
a primary task, to explore the structure of the Fermi surface. In particular we have
to study questions like: Is the Fermi surface connected (percolated) or consisting of
non-connected pieces of density regions corresponding to solectrons at the Fermi
energy.
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Fig. 2 The Fermi surface
(Fermi net in 2d) is defined
by the condition that the
energy equals the Fermi
energy. In other words, the
density corresponds to the
degeneration density at
the given temperature

Our estimates show that it is not easy the cross the border of degeneration. We
need strong doping or low temperatures. As far as we can see, it is quite difficult to
have conditions for creating degenerate solectrons in real 2d or 3d systems. Probably
we need high doping for temperatures beyond 100 K. However one should note
that these estimates are conservative, the solectron mass was taken as equal to the
electron mass. In reality solectrons are heavier than electrons or holes and tends to
behave more classically than electrons. This question was appropriately raised by
Alexandrov [37].

3 The Hamiltonian of Our Model and the Equations
of Motion

We consider d -dimensional lattices of atoms (d D 1; 2; 3) and (added, excess) free
electrons which may carry electrical currents. In applications we restrict in most
cases to 1d-, or 2d-lattices in order to assess the influence of nonlinear excitations
on the electrical properties. The system consists of N classical atoms and one
ore several electrons. For the heavy atoms we assume that they obey classical
Langevin dynamics. We include a phenomenological damping �i . In the numerical
simulations we consider the lattice units with mass m. The atomic particles are
described by coordinates rj .t/ and velocities vj .t/, j D 1; : : : ; N . We assume
periodic boundary conditions. The Hamiltonian consists of three parts, the classical
atom/ion Hamilton function Hi , the electron ion interaction function Hie and the
rest He , accounting for the electrons.

H D Ha C Hie C He: (6)

The atomic part is

Ha D m

2

X
j

v2
j C 1

2

X
ij

Vij.rij/: (7)

The atoms repel each other by strong repulsive forces. The subscript “i” denotes the
number of the atom. Let us assume that the characteristic size of the atoms in the
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lattice is r0. In general we will approximate the potential of the forces between two
atoms by the Morse-potential

V M .r/ D D Œexp.2B.r � 	// � 2 exp.�B.r � 	//� : (8)

We note that the characteristic frequency of oscillations around the minima is

m!2
0 D V M .	/00: (9)

We introduce now an electron e.g. by doping, and define in TBA the amplitude for
being at site j in state n by cjn and the probability to find the electron at the lattice
site or atom located at xj in state n denoted as pjn by

pn D cnc�
n : (10)

We will show that any displacement of the atoms changes the energetic situation
of the electrons, the eigenvalues as well as the transition probabilities. The electron
dynamics is influenced by the lattice dynamics and as a result the electron will try to
follow up these changes. This is the basic effect leading to the solectron formation.
So the essential point is the running local compressions which generate a complex
landscape. As shown already by Davydov [3] there exist rather deep potential wells
moving (right to left or left to right) along the lattice that strongly influence the local
dynamics of the electrons and are able to capture the light electrons. In the TBA the
electron Hamiltonian is of hopping type [20–22]

He D
X

jn

EjncC
jn cjn C

X
jj 0n

tjj 0ncC
j 0ncjn: (11)

Here j denotes the number of the atom and n the quantum numbers of the atomic
states. In our adiabatic approach the atomic and the internal positions are assumed
to be fixed at Rj . The representation is based on a linear combination of atomic
orbitals (LCAO): j jn > which are approximately given by the wave functions of a
free atom at position rj . The matrix elements are related to the operators of kinetic
and potential energy. The energy levels Ejn fluctuate around the levels of the free
atoms. The transition matrix is also a fluctuating quantity depending on the time
varying atomic distances r 0

j � rj . In a simplified version we neglect the electron–
electron interaction. Hence (11) is in fact

He D
X

jn

EjncC
jn cjn C

X
jj 0

tjj 0n.Rj 0 � Rj /cC
j 0ncj n; (12)

with the matrix elements

Ejn D< jnjH0 C Vejj jn >I tjj 0n D< j 0njH0 C Vejj jn > : (13)
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We may simplify this expression assuming that the index n uniquely defines the
state and set [20–22]

He D
X

n

EncC
n cn C

X
nn0

tnn0.rn0 � rn/cC
n0 cn: (14)

In order to estimate the influence of the lattice on the energy levels we consider now
the electron–atom interaction.

For 1d-lattices one may consider only nearest neighbor coupling and simplify
[20–22]. In the general case the energy landscape shows a complex structure and
the dependence of the energy levels on the position has to be taken into account
[18, 20]. In the 1d-case the linear Holstein model is

En ' E0
n C 
0qn C 
1 ŒqnC1 � qn�1� : (15)

Here, for convenience in notation, qn denotes a lattice site spatial vibration (relative
displacement) coordinate defined by xn D n	 C qn=B . There is the problem that
for some values of the deviations (and typical parameter values, ˛ D 1 � 1:75/ the
exponents may take on very large values. The term E0

n denotes on-site energy levels
of the unperturbed lattice and ıEn is the perturbation due to the lattice vibrations
(harmonic as well as anharmonic modes may contribute). In the simplest case the
shift is linear in the deformations [38, 39]

ıEn D 
.qn=B/; (16)

where the “electron-phonon coupling constant”, 
, indicates that the on-site energy
level En, i.e. the local site energy, depends on the displacement of the moving unit;
qn is dimensionless (unit: 1=B). As shown e.g. in [38, 39], this coupling between
lattice deformations and electronic states, leads for large enough values of the
parameter 
 to the formation of polarons. In view of the above given parameter
values, the value of the coupling constant is in the range 
 ' 0:1 � 1 eV=Å.
Adapting these assumptions to our model without onsite contributions we have
to recall that our model is translationally invariant and we are considering relative
lattice displacements.

Recall also that the probability to find the electron at the lattice site or atom
located at xn, i.e. the occupation number pn is given by (10). The discrete
Schrödinger equation for the components of the wave function cn is then

i Pcn D ŒE0
n C 
1.qnC1 � qn�1/�cn

�V0

X
k

fexpŒ�˛.qnC1 � qn/�cnC1

C expŒ�˛.qn � qn�1/�cn�1g ; (17)

where an over-dot denotes time derivative; the energies are dimensionless (unit: 2D).
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The corresponding equations for the lattice particles are now

Rqn D 
1ŒpnC1 � pn�1�

C f1 � expŒ�.qnC1 � qn/�g expŒ�.qnC1 � qn/ �

� f1 � expŒ�.qn � qn�1/�g expŒ�.qn � qn�1/ �

� ˛V0

˚
expŒ�˛.qn � qn�1/�.c

C
nC1cn C cnC1c

C
n /

C expŒ�˛.qnC1 � qn/�.cC
n cn�1 C cncC

n�1/
�

: (18)

The problem reduces, in principle, to solving coupled together both (17) and (18).
Let us study now the two-dimensional case. A standard assumption is, that the

interaction is described by a pseudo-potential of polarization type. We assume that
the total potential acting on an electron in the field of atoms at positions r1; : : : rN is

Ve.r/ D �
X

j

Ue

Œ1 C .r � rj /2=h2�2
: (19)

Here h is a characteristic cut-off distance and Ue the maximal polarization energy
of the electron. As an estimate we may assume Ue ' 0:1 eV. In earlier work we
used also a different pseudopotential approach [27]. In order to be consistent with
the pseudopotential formula used above to quadratic terms we can make the choice
h ' 0:7	 .

The eigenvalue problem is in general very complicated and practically unsolv-
able, so we will use the simple assumption that the eigenvalues are shifted like the
polarization potential

En ' E0
n �

NX
j D1

Ue�
1 C .rn � rj /2=h2

�2
: (20)

The discrete Schrödinger equation for the components of the wave function cn

assumes now the form [28, 30]

i Pcn D ŒE0
n �

NX
j D1

Ue�
1 C .Rn � Rj /2=h2

�2
�cn

�V0

X
k

fexpŒ�˛jRk � Rnj�ck: (21)

As before the forces between particles are supposed to be of the Morse kind and
the friction and random forces accounting for a Langevin model bath in the case
of a heated lattice. For convenience in the 2d lattice dynamics we use complex
coordinates Zn D xn C iyn, where xn and yn are Cartesian coordinates of the n-th
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particle. Then the Langevin model provides the equations of motion for the lattice
units

d2Zn

dt2
D

X
k

h
F M

nk .Znk/ C F P
nk .Znk/

i
z nk � ˛V0

X
k

exp Œ�˛jZnkj� .cC
n ck C ckcC

n /

C
�
��

Zn

dt
C

p
2Dv

�
�nx C i�ny

��
;

(22)

where index n identifies a particle among all N particles of the atomic ensemble,
� is a friction coefficient, Dv defines the intensity of stochastic forces, �nx;y

denotes statistically independent generators of the Gaussian noise; Znk D Zn � Zk .
Further z nk D .Zn � Zk/=jZn � Zkj is a unit vector defining the direction of the
interaction force F M

nk , corresponding to the Morse potential, and F P
nk , corresponding

to the polarization interaction, between the n-th and the k-th particles. The Morse
interaction force Fnk is here given by

F M
nk D 2BŒexp.�2BjZnkj/ � exp.�BjZnkj�; (23)

and the polarization interaction force by

F P
nk D 4Uek

pnjZnkj � pkjZknj
Œ1 C jZnkj2=h2�3

: (24)

Note that to have dimensionless variables we may consider the spatial coordi-
nates normalized to the length 	 used in the Morse potential. Time may be nor-
malized to the inverse frequency of linear oscillations near the minimum of the
Morse potential well, !�1

M . The energy is usually scaled with 2D, where D is the
depth of the Morse potential well, a different possibility is to use V0 as the unit
of energy. Further the stiffness parameter B defines the strength of the repulsion
between particles. In view of the above only those lattice units with coordinates Zk ,
satisfying the condition jZn � Zkj < 1:5, are taken into account in the sum in (41).
In computer simulations the interaction of particles is considered to take place inside
a rectangular cell Lx � Ly with periodic boundary conditions.

In practice some open problems remain, in particular there is the compatibility
between the quantum-mechanical and the classical part of the dynamics. Due to the
Langevin sources of noise and friction in the classical part of the dynamics, the
dynamics is irreversible. However so far there is no proof that the final distribution
corresponds to the correct Gibbs-von Neumann measures. In the following we
assume a kinetic description which is irreversible from the very beginning and
converges to the correct distributions. The idea we follow is due to Wolfgang
Pauli who focused on pn and not cn hence disregarding phases. Thus the Pauli
averaging excludes a complete description of coherent states hence ruling out a
proper treatment of superconducting states.
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4 Pauli Kinetics for Nondegenerate Solectrons on Nonlinear
Heated Nonlinear Lattices

So far our analysis has been based on the Schrödinger equation for the free electrons
in the TBA which is coupled to the Langevin equation for the classical lattice
particles. This tacitly assumed the existence of a heat bath in which the lattice
particles are embedded. In principle this picture provides a complete description
of the coupled lattice–electron dynamics. The irreversibility is guaranteed by the
friction-noise terms in the Langevin-equations (23). As earlier shown [14, 18, 20]
we may describe this way also irreversible solitonic excitations at finite temperature.
However, a serious problem here is the very long relaxation times of the electrons
due to the large differences between the time scales of the electrons and the lattice
particles. This leads to some difficulties in extensive computer simulations. In
the standard theory of electronic transport this problem is solved by Boltzmann-type
descriptions or by Fokker–Planck-type equations, which introduce an irreversible
behavior [32, 40–43]. The main problem is here to give a correct description of
the coupling to the heat bath [41–43]. In the TBA case, the situation is somehow
simpler due to the discrete character of the electronic states, which allows a descrip-
tion by discrete Markov chain equations [29, 44]. The Markov approach to electron
dynamics goes back to the seminal work of Pauli, Tolman, van Hove and others
[32,40–43]. Pauli started from the Schrödinger equation and derived by perturbation
theory a Markov chain description and an expression for the transition probabilities.
He introduced an irreversible master equation expressing the balance between the
transitions in an ensemble. Pauli’s equation is valid for a microcanonical ensemble
and neglects symmetry effects. Further extensions took into account the symmetry
of the wave functions and offered a description compatible with the statistics
of Bose–Einstein and Fermi–Dirac. Later generalizations are connected with the
development of Metropolis algorithms for canonical ensembles [33]. Applications
to hopping conduction in solids were given since the 1970s of last century by several
authors [44]. First applications of the master equation formalism to electron transfer
in macromolecules appear in [45]. The system we are studying here is rather difficult
and seems to be too complicated to be treated in full detail. We have:

(a) Quantum electrons located in discrete states, which are coupled to a heat bath
and to the classical lattice,

(b) Classical lattice particles coupled to the heat bath and to the quantum electrons.
(c) The heat bath with an unspecified nature.

Simplifying this situation we postulate here that the thermal electrons allow a
Markov description. Thus we proceed from the reversible Schrödinger equation for
the tight-binding model to an irreversible Pauli master equation description [32,
40–43]. Following Pauli’s method [19, 29] we use here a master equation for the
occupation probabilities of electrons pn in a system with the energy levels En:

dpn

dt
D

X
ŒWnn0pn0 � Wn0npn� : (25)
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The transition probabilities were derived by Pauli using perturbation theory
for microcanonical ensembles (transitions in a narrow energy shell). Applications
of this formalism to our Schrödinger equation confronts us with the problem of
applicability of the perturbation approach to our basic equation. Note that the
diagonal part of the interaction operator may not be small in comparison to the
nondiagonal elements. We neglect here this problem and assume that we have found
already an appropriate unitary transformation which makes the nondiagonal ele-
ments sufficiently small to satisfy the conditions of Pauli’s perturbation approach.
With this assumption the transition probabilities for the 1d-tight-binding model read
in a microcanonical ensemble according to Pauli [19, 29, 32] is

Wmicro.n; n0/ D V0

„ expŒ�2˛jqn0 � qnj�2�V0ı.En � En0/; (26)

where n0 D n ˙ 1 and ı.x/ is Dirac’s delta function. The transitions from state n to
a state n0 at one of the nearest-neighbor sites should correspond to the same energy
level (or to a level within a narrow shell). In the case of a dissipative embedding, the
situation is more complicated due the interaction of the electrons with the dissipative
heat bath. For a canonical ensemble we assume the transition probabilities

W.n; n0/ D V 2
0

„ expŒ�2˛jqn � qn0 j�E.n; n0; ˇ/: (27)

Instead of a delta-like shell we have now a Lorentz-like profile around it. In the limit
of narrow profiles these expressions converge to the Pauli formula with a delta-
factor. Temperature effects are to be included. When the electrons are embedded
into a heat bath together with the heated lattice particles, the temperature-dependent
thermal factors E.n; n0; ˇ/ are not symmetric with respect to the arguments but they
are subject to the condition of detailed balance

W.n0; n/

W.n; n0/
D expŒˇ.En � E 0

n/�: (28)

In other words, the relation of the thermal factors should correspond to the relation
of Boltzmann factors. The property (28) suggests the symmetry

E.n; n0/ D expŒ�ˇ

2
.En � E 0

n/�F .n; n0/; (29)

F.n; n0/ D F..En � E 0
n//; (30)

where F(n,n’) is an even function. There are several variants for this even function
F.x/ which we will discuss. The simplest is defined by the phenomenological
“ansatz” of the Monte-Carlo procedure, where downhill transitions are weighted
with E D 1 and uphill transitions with a factor less than unity [33]. This corresponds
to the F -function.
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F.En � En0/ D expŒ�ˇ

2
jEn � E 0

nj�: (31)

Proper statistical derivations of the thermal factors may be based on certain
microscopic models of the heat bath. Assuming that the heat bath is a carrier of
phonons which drive transitions by a one-phonon mechanism Böttger and Bryksin
[44] studied hopping systems starting from the von Neumann equation for the
density matrix. The authors give the following general expression

F.En � En0/ D
Z 1

�1
expŒ

i

„� jEn � En0j�K.j� j/d�; (32)

where K.j� j/ is a rapidly decaying memory kernel. The decay of these correlations
is connected with the damping of lattice-particle motion. In the simplest case we
may assume here an exponential decay with the same damping constant as appears
in the above introduced Langevin dynamics. This leads to the Lorentz profile

F.En � En0/ D V0

„
�

�2 C .jEn � En0 j/=„/2
: (33)

In the limit of small damping we come back to the delta-function in the Pauli
expression for the transition probabilities.

The master equation is a useful tool for computer simulations of electron
hopping processes. Since the detailed balance is obeyed, it is guaranteed that in
thermal equilibrium the canonical distribution is solution of the master equation.
In order to simplify our computer simulations we used so far only the simplest
“ansatz”, the Monte Carlo procedure. Our basic system of equations contains several
approximations, however it provides a rather fast and therefore useful tool for the
computer simulations of the electron–lattice dynamics in thermal systems. Figure 3
illustrates results of computer simulations based on this approach. Due to the way
we treat electron relaxation effects there are differences between the methodology
using the coupled Schrödinger equation and Langevin equation system (23) and
that using Pauli’s approach albeit they are minor differences at least for small and
for intermediate values of adiabaticity � � 1. For large � , the electron relaxation
in the heat bath is very fast and the distribution may be approximated by a local
Boltzmann- or Fermi distribution as shown in [23]. For small and intermediate
values of the �-parameter, say for � ' 10 � 20, the approach based on the Pauli
equation (25) is most useful, since it provides informations on deviations from
the adiabatic approximation. Our approximation based on the Pauli method (25)
goes beyond the adiabatic approximation since the lattice dynamics and the electron
dynamics are treated independently including their coupling. Recall that in a strict
adiabatic approximation one assumes that the electron adapts “instantaneously” to
any change in the lattice. In other words one assumes that the electrons follow in
a very fast way to the new lattice configuration and may be described at any time
by the canonical distribution [46]. In the new approach based on Pauli’s method
we take into account that the electrons need time to follow the lattice motions what
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Fig. 3 Time evolution of one-dimensional probability distribution according to Pauli’s equation.
In the upper panel we see the evolution of an initial rectangular distribution, into a uniform
distribution without any coupling to the lattice T D 0, thus illustrating an H-theorem. In the center
panel and in the lower panel two temperatures different from zero are considered: upper case:
T D 0:01: an initially rectangular distribution tends irreversibly towards homogeneous spreading
along the lattice, the wave is weakly structured due to the excitations along the lattice; and lower
case: T D 0:5: the initial rectangular distribution is spreading but at the same time becomes
localized around a few peaks thus illustrating the corresponding local formation of solectrons

leads to certain delay in their response and to some deviations from the stationary
solution. Qualitatively however the picture remains similar to the results obtained in
adiabatic approaches. Figure 3 illustrates how the spreading of the electron density
in the 1d case is diffusion-like and strongly influenced by the excitations of solitons
in the lattice.

5 Kinetic Equations for Fermi Solectrons with Zero Spin

An advantage of the Pauli approach is, that it can be easily generalized to include
the influence of spin and symmetry effects which we have neglected so far, except
when using the Hubbard approximation. Following Pauli and Tolman [32, 40] now
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we take into account that the electrons are Fermions which are not allowed to
occupy a quantum state with more than one particle. In principle there exist the
possibility to form bosons by pairing of two electrons but this effect we will
considered later on. In a first approach we study electrons without spin, or what
is equivalent we consider the case of very low density, where double occupation
cannot occur due to the low probability that two electrons meet at the same place.
Taking into account symmetry effects for (non-interacting) Fermions without spin
the Boltzmann equilibrium distributions are to be replaced by Fermi distributions

p0
n D 1

expŒˇ.En � �/� C 1
: (34)

Here the “plus one” in the denominator expresses the Fermion character. The
chemical potential � marks the border between the occupied and the non-occupied
states. Following a procedure described by Tolman and van Hove [40–43] the master
equation may be generalized in such a way that Bosonic or Fermionic symmetry
effects are included. The idea is to change the transition probabilities in dependence
on the occupation of the target state. Let us explain this procedure for Fermions
with zero spin. In order to include the Fermi principle we introduce the modified
transition probabilities

QWnn0 D .1 � pn/Wnn0 : (35)

The prefactor reduces the probability of the transition as a function of the occupation
of the target state. This way we get a nonlinear master equation

dpn

dt
D

X � QWnn0pn0 � QWn0npn

�
; (36)

incorporating the Fermion character. If the spin is different from zero, the prefactor
appears only for transitions to states with the same spin direction. The appearance
of products like .1 � pn/pn0 leads to the fact that effective hopping is restricted to
transitions between states near to the Fermi surface. The meaning is the following:
Consider the transitions n0! n. These transitions occur with the weight pn0 if
and only if the state n is free as expressed by the weight factor .1 � pn/. In
Fig. 4 it is demonstrated that according to this weight factor. The states near to the
Fermi surface are the major contributors to transport. The new probabilities are still
between zero and one i.e. 0 < pn < 1 but they are normalized in a different way
namely

NX
nD1

pn D Ne (37)

where Ne < N is the total number of free electrons in the system. Accordingly, pn

expresses the probability to find one electron in the state 1 � n � N . Recall that we
assume here one state per atom. This one electronic state per atom may be occupied
or not. The prefactors on the r.h.s. of (36) make sure the probabilities pn cannot grow
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larger than unity. The transition probabilities remain the same as for the Boltzmann
case discussed above. The only general condition they have to satisfy is

W.n0; n/

W.n; n0/
D expŒ�ˇE 0

n�

expŒ�ˇEn�
: (38)

In equilibrium the normalization defines the chemical potential by

X
n

1

expŒˇ.En � �/� C 1
D Ne: (39)

Clearly the states En D � play a very special role not only in equilibrium but also
for transport.

By taking into account the spin we may easily modify the distribution in such a
way that two electrons may occupy the same site. This corresponds to the formation
of a (small) bipolaron. However it is not trivial to take the Coulomb repulsion into
account, which is significant for the formation of bipolarons.

The master equations are not closed, they still depend on the particle coordinates.
The corresponding equations for the lattice particles are in the 1d case given by
Chetverikov et al. [29]

d 2qn

dt2
D 
1ŒpnC1 � pn�1� C f1 � expŒ�qnC1;n�g expŒ�qnC1;n�

� f1 � expŒ�qn;n�1�g expŒ�qn;n�1� � 2˛V0.expŒ�˛qn;n�1�
p

pn�1pn

C expŒ�˛qnC1;n�
p

pnpnC1: (40)

which are phase-averaged modifications of (18).
In the 2d case the equations of motion are more complicated. Assuming the same

model about forces and friction as earlier done and using also complex coordinates
Zn D xn C iyn, where xn and yn are Cartesian coordinates of the n-th particle we
get the Langevin equations
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d 2Zn

dt2
D

X
k

�
F M

nk .Znk/ C F P
nk .Znk/

�
znk � 2˛0 X

n0

exp
��˛0jRn � Rn0 j� p

pnpn0

C
�
��

dZn

dt
C

p
2Dv

�
�nx C i�ny

��
;

(41)

where as above the index n identifies a particle among all N particles of the atomic
ensemble, � is a friction coefficient, Dv defines the intensity of stochastic forces,
�nx;y denotes statistically independent generators of the Gaussian noise. Note that
the new Langevin equations (41) are different from the previous ones (22), since
due to the phase averaging only the variables pN and not the cn appear. Further we
note that in the classical equations of motion (40) and (41) appear two terms which
couple the classical dynamics to the quantum master equations. One is due to the
dependence of the energy levels on the coordinates of the atoms and the other on the
dependence of the transition probabilities on the atomic distances. Furthermore let
us insist on that the description by Pauli TBA equations contains less information
than the standard TBA since all phases are lost and only the probabilities pn appear
in the dynamics equations.

6 Spatial Distributions, Energy Spectrum
and Energy Distributions

Numerical simulations of our systems of equations (kinetic and dynamic equations)
provide snapshots of the spatial distribution of Fermi solectrons on a square of 20 �
20 triangular lattice at T D 0:01. We studied 3 electron numbers Ne D 16; 200; 300

on a triangular lattice of 400 sites, whose fractional densities are, respectively,
�e D 0:04, 0.5, 0.75. Results are shown in Figs. 5 and 6. The corresponding prob-
ability and energy distributions are shown in Figs. 7 and 8. Note that the solectrons
inside the clusters, stripes or percolated regions are degenerated. Investigating the
spatial distributions shown in Figs. 5 and 10, we see interesting structures. We
see clustering at the lowest density, striping at the moderate density and a kind
of percolation at the highest density. The general trend is that the solectrons tend
to cluster rather than remaining isolated. This means that there is a tendency to
cluster, hence to pairing in space. This is a point which also needs a further analysis.
We have to find the radial distribution function and expect to see a peak at small
distances. This would confirm predictions made by Alexandrov [37]. From the
informations we have on the energies of the Fermi particles we calculated the
distributions by averaging.

Investigating the energy distributions shown in Figs. 7–10, we see also interesting
structures. The general trend is that the probabilities decrease with energies.
The energies are given here relative to the minimal energy and are ordered
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Fig. 5 Snapshot of the
spatial distribution of Fermi
solectrons on a versus sites
20 � 20 triangular lattice at a
low temperature T D 0:01.
We study 2 electron numbers
Ne D 16; 200 on a triangular
lattice of 400 sites. This
corresponds to the (fractional)
doping densities
�e D 0:04; 0:5. We see
clustering at the lowest
density and striping on the
moderate density

Fig. 6 Probability distribution of Fermi solectrons on a versus sites 20 � 20 triangular lattice at a
very low temperature T D 0:001 for two extreme cases. Left panel for N D 1 shows the expected
equal distribution of quantum probability. In the right panel for N D 395 we see a nearly equal
distribution for the case of a near to full occupation
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Fig. 7 Snapshot of the probability distribution of Fermi solectrons on a versus sites 20 � 20

triangular lattice at a very low temperature T D 0:001 for two intermediate densities. Left panel
N D 16 and right panel N D 200

Fig. 8 Probability distribution for �e D 300=400 D 0:75 at a low temperature T D 0:001. First
we see versus sites and then the distribution versus energies (energy distribution). In the latter we
observe (the lowest energies are left) the formation of a Fermi edge and may identify the Fermi
energy

Fig. 9 Typical probability
distribution versus energies
(energy distribution) of Fermi
solectrons at a low
temperature T D 0:001 for
the moderate doping density
�e D 200=400 D 0:5. We
observe again the formation
of a Fermi edge and may
identify the Fermi energy
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Fig. 10 Another example for the probability distribution versus energies (energy distribution) of
Fermi solectrons at an intermediate temperature T D 0:5 for the moderate doping density �e D
200=400 D 0:5. We observe that the Fermi distribution tends to a Boltzmann distribution. In the
left panel we see a snapshot of the corresponding spatial electron distribution

in a way that on the left are the lowest energies for a given snapshot. At low
temperatures and higher densities (region of degeneracy) a typical Fermi distribution
appears which transforms at higher temperatures into a Boltzmann distribution. This
transition from degeneration to Boltzmann behavior occurs at

ne�3
e ' 1; �e D hp

2�mekBT
; ne D Ne

Na2=2
:

Besides this general trend we see an interesting fine structure including steps
and gaps. This is a point which needs a further analysis. We cannot exclude the
possibility that the gap-like phenomena are connected with the existence of pseudo
gaps, but this needs more accurate computer simulations.

Our approximations provide a rather fast and therefore useful tool for the
computer simulations of the electron–lattice dynamics in heated systems. Figures 3
and 5 illustrate results based on this approach. Due to the way we treat the
electron dynamics, there are differences between the methodology using the coupled
Schrödinger equation and Langevin equation system and that using Pauli’s approach
albeit they are minor differences. An advantage of the Pauli approach is, that it can
be generalized to include the influence of spin, and Bose effects which we have
neglected so far.

The qualitative difference between the Boltzmann distributions and the Fermi
distributions is that Fermi distributions distinguish sharply between electrons below
and above the Fermi level �. The chemical potential (Fermi level) may be estimated
from our energy distributions.

The states below the Fermi level are occupied and the states above are empty
or weakly occupied. This way the Fermi level acts as the sea level in a country
with many mountains. Lowering the sea level decreases the area occupied by the
sea and increasing the sea level increases the area of the sea and reduces the
part of the mountains. Note that transfer and transport happens only at the Fermi
level (Fig. 2). Finally the “land” consists of separated islands. When this happens
we have a percolation transition as seen in Fig. 11. The possible Fermi levels are
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Fig. 11 Percolation is
illustrated by a snapshot for a
rather high level of doping
density of 75% and a rather
low temperature T D 0:01

given here by the colors. Clearly, for the given potential landscape the Fermi level
� ' � 1 hints at percolation. We see that the regions E < � ' � 1 are connected,
this is what we mean by percolation. With increasing density the Fermi level
raises, and increasing Fermi levels may lead to percolation of the electronic density
corresponding to a sudden increase of diffusion, conductivity and other macroscopic
transport properties, from side to side of the system like, indeed, in the Italian coffee
percolator when making expresso (Fig. 11). In this respect the 2d- as well as the 3d-
systems are fundamentally different from the 1d-systems.

By analyzing the Pauli equation we see that due to the existence of a factor
.1�pn/pn0 only the states near to the Fermi level the regions En ' � may contribute
to transport.

7 Discussion and Outlook

We have investigated the role of Fermi degeneration for a system with nonlinear
anharmonic excitations. This may be significant for a theory of conducting lattices.
Solitons are hard excitations of the lattice which have a long lasting time and
influence the local density and this way the Fermi level. Solitons are local
deformations—peaks of the density—propagating with a supersonic soliton velocity
vsol which strongly increases with the increase in the stiffness of the lattice. As
the soliton velocity is much smaller than the thermal velocity of the electrons, the
interaction between soliton-like waves and electrons is weak, since an effective
interplay requires that the concentration of electron in the region of the soliton
velocity is sufficiently high. In fact electrons captured certain time by solitonic
excitations are only weakly affected by scattering processes. We have used this
property for estimating the contribution of solitonic excitations to the collision
frequency in [31] (Fig. 12).

An evaluation of the influence of solitons predicts for 1d-lattices a conductivity
increase in the temperature region where most thermal solitons are excited. For
2d-lattices we find an eventual percolation transition to connected conducting
regions. We have shown that the Fermi level of the electrons determines the
percolation effects.

A few remarks are worth recalling:

(a) As our simulations show, there is a general tendency for formation of pairs.
In recent work [25, 26, 34] we have shown that the soliton mediated pair
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Fig. 12 The case of high temperatures: Snapshots of the electron density in a 2d Fermi system
with zero spin and N D 400 sites at the temperature T D 2:5 for two different doping situations
Ne D 250I �e D 0:625 and Ne D 300I �e D 0:75

formation is energetically favorable. However as well known this proves only,
that pairs will form at T D 0; at higher T one has to estimate the thermodynamic
probability. This is done for example by our simulations which clearly show
that at moderate T , pairs can be formed. According to Alexandrov [37] the
existence of local pairs is relevant for high Tc superconductors. Therefore the
present study may be useful to start solving this question. However the proper
treatment of pairs at finite temperatures requires first an extension of the theory
to Bose systems [49].

(b) If solectrons (polarons) are dominant, the Fermi surface of the solectrons
determines the electrical conductivity. That means that in order to get high
conductivities, we need high enough densities of solectrons near to the Fermi
surface.

(c) In certain regions (Fig. 3) bi-solectrons may be more frequent than solectrons.
Note that what matters for Bose–Einstein condensation is not the Fermi levels
but the lowest energy levels. Since bisolectrons are bosons, Bose condensation
is then at least in principle possible. However a problem in this respect is the
relatively large mass of solectrons and bisolectrons, which make it difficult to
reach the conditions for Bose–Einstein condensation.
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