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Abstract

We generalize the school choice problem by defining schools priorities on (po-

tentially transferable) students characteristics. Taking into account students pref-

erences, school s priorities, and schools available seats, a school choice program

selects an (extended) matching that is an assignment of students to schools and a

final allocation of characteristics. We define the Student Exchange with Transfer-

able Characteristics (SETC) class of mechanisms. Each SETC produces a stable

extended matching that is not Pareto dominated by another stable extended match-

ing. Moreover, any constrained efficient extended matching that Pareto improves

upon a stable extended matching can be obtained via an algorithm in the SETC

class. When schools’ priorities are fully transferable among students, a particular

algorithm in the SETC is equivalent to the application of the Top Trade Cycle

Algorithm starting from the Student Optimal Stable Matching.
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1 Introduction

The school choice problem considers mechanisms for assigning students to schools. Stu-

dents are considered to be strategic agents and the schools seats are objects to be dis-

tributed among students. In the late 80’s many US states stated to give each student the

option to choose the school she wants to attend. Today, many US cities and elsewhere

around the world (UK, Sweden, Spain among others) are using school choice programs.

In a school choice program, each student submits a list of preferences of schools to

a central placement authority, such as the school district. This central authority then

decides as to which student will be placed in each school. This decision is based on stu-

dents’ preferences over schools and on schools’ priority rankings that determines who will

get a seat in case that a school is over demanded. In the recent years, a bast major-

ity of school authorities have reformed their allocation algorithms and abandoned earlier

mechanisms based on Immediate Acceptance of demands, to algorithms based on Gale

and Shapley’s Deferred Acceptance Algorithm (Abdulkadiroğlu and Sönmez, 2003; Ab-

dulkadiroğlu et al., 2005a,b; Pathak, 2016). Under Immediate Acceptance (IA), families

demanded their best preferred school, and each school granted a seat to as many demand-

ing students as seats available according to each school priority ranking. In subsequent

steps, rejected students demanded a set in the remaining schools that had vacant seats in

the same fashion. Deferred Acceptance (DA) (Gale and Shapley, 1962) applies the same

logic, but acceptance is only temporary. Rejected students apply in subsequent phases

to any school that has not yet rejected them, and may obtain a seat at expense of the

students that have not been rejected in the initial phase.

In the canonical school choice problem (Abdulkadiroğlu and Sönmez (2003); Balinski

and Sönmez (1999)) priorities are a primitive of the model. However, school districts

use several criteria in determining a priority order for a school. For example, in Boston,

the first priority for a school is given to the students who are in the same walk zone

and who have a sibling attending that school, the second priority is given to those who

only have a sibling attending that school, the third priority is given to those who are

only in the same walk zone, and, finally, the fourth priority is given to all other students

(Abdulkadiroğlu et al. (2005a,b)). Other school districts use a cardinal priorities. in Spain,

all school districts use point systems. There are a number of categories. Depending on

students’ characteristics, each student is awarded a number of points for each category
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at each school. The more points a student obtains across all categories at a given school,

the higher the priority the student has for a seat in that school.1 When the number

of potential students is large, these priority rankings based on categories lead to coarse

partitions of the set of students and rely on randomly generated tie-breaking rules to

strictly order all possible participant.

In cases of multiple tie-breaking (MTB) the tie-breaking is a source of inefficiency

that can be solved by trading this characteristic. We have the example of Amsterdam

where the immediate acceptance MTB (IA-MTB) rule was initially adopted for equity

reasons. The MTB reduces the chances that over-demanded schools systematically reject

a student that has a bad lottery draw. It spreads the pain better Arnosti (2016(@). In

2014 the association of Amsterdam school boards (OSVO) decided to move from IA-MTB

with ex-post trade to a system of deferred acceptance with multiple tie breaking (DA-

MTB) without ex-post trade. This decision was challenge in court. In 2015 a lawsuit by

families who wished to switch assignments (in fact switch the tie break in each school).

The courts rejected this claim on the grounds that DA-MTB will not be strategy-proof

if a post allocation trade is allowed. Latter, the OSVO backed on their initial decision

and moved to a single tie-breaking rule DA- STB.2 In our setting OSVO could as well

have made this characteristic transferable. This is because, in our setting, the exchange

of school among two student that has identical characteristics but for a different school

specific tie breaking does not generate a fairness violation.That would have allowed the

city to maintain the DA-MTB introduced in equity grounds while correcting its possible

efficiency consequences and limiting this correction to the effects of the tie-breaking rule

while respecting any additional priority source.

Also, priority structures need to be carefully designed to achieve their objectives re-

gardless on how those structures are form. We have an example of this ordinal priority

1In Spain students may receive points at a given school for socio-economic characteristics (family

income, number of siblings), siblings attending the school, also (non negligible) legacy points if her

parents or older siblings attended that school, as well as school specific tie-breaking points. See Górtazar

et al. (2020); Casalmiglia et al. (2020) for detailed descriptions of Barcelona and Madrid point systems.
2The issue is discussed in https://www.nemokennislink.nl/publicatiesschoolstrijd-in-amsterdam/

(Schoolstrijd in Amsterdam) (Arnout Jaspers, Kennislink, July 1, 2015). This reference is taken from

Ashlagi et al. (2019). Also the reader can access https://medium.com/social-choice/ why-a-dutch-court-

stopped-high-school-students-from-exchanging- schools-1315303a48b6 (accessed may 21st 2020).
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structure in the case of Boston where unintentionally the precedence rule at the moment

to apply the 50-50 reserve system for neighborhood students undermined intended policy

and led to the elimination of walk zone reserves in Boston’s public school match Dur

et al. (2018). In Madrid, where a point system to form cardinal priorities is in place,

abolishing school choice proximity points does not seem to have been an effective public

policy for reducing school segregation under tIA (Górtazar et al., 2020). We show that

in our model in both in the cases of ordinal and cardinal priorities the consequences of

removing a characteristic form consideration has different consequences that allow the

agents to exchange this particular characteristic.

We propose a class of algorithms named Student Exchange with Transferable Char-

acteristics (SETC). Each algorithm in this class gives a matching of students to schools

and a redistribution of transferable characteristics such that the matching is stable with

respect to the new allocation of characteristics and it is not Pareto dominated by another

stable matching with respect to some admissible redistribution of characteristics. More-

over, each such pair of a matching and a redistribution of characteristics can be obtained

by an algorithm in the SETC class (Theorem 1).

One particular algorithm in this class the Top Trade SETC algorithm (TTSETC)

has the same outcome that the Efficiency Adjusted Deferred Acceptance Mechanism

(EADAM) Kesten (2010) when schools priorities are monotonous and fully transferable

(Theorem 2). None of the mechanism in the class of the SETC is strategy proof. However,

if we give every student the set of characteristics resulting from a mechanism in the SETC

class and apply the SOSM the allocation will be identical and students will reveal their

true preferences as a dominant strategy (Corollary 1). Therefore, we can consider the

outcome of the an algorithm in the SETC class as the resulting of applying the SOSM

after students trade their characteristics in a way that, ex-post, will not violate fairness.

1.1 Related Literature

The school choice problem was first introduced by Balinski and Sönmez (1999). In this

paper the authors introduce the idea of fairness to allocate seats to students. In Ab-

dulkadiroğlu and Sönmez (2003) the same problem is analyzed from a mechanism design

perspective. the authors compare the SOSM by Gale and Shapley (1962) they show that

this mechanism is produce fair or stable allocations and it is strategy-proof. They also
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study an adaptation of Gale’s top trading cycles procedure: the TTCM. They show that

the TTCM is Pareto efficient and strategy-proof.

It is not possible to reconcile this three properties in the school choice problem. In

general, fair allocations are not efficient and the level of inefficiency of a fair allocation

can be severe (Dur and Morrill, 2017; Kesten, 2010; Abdulkadiroğlu et al., 2009)

We can find in the literature several attempts to ameliorate the conflict between fair-

ness and efficiency by weakening the notion of stability. In this matter, (Kesten, 2010)

focus on the idea of ‘consent.’ In Kesten’s proposal students can renounce to their prior-

ities over schools that will not be allocate to them but, nevertheless will generate ineffi-

ciencies if the final allocations is produce by the SOSM. This is the logic behind Kesten’s

EADAM. The EADAM gives students incentives to consent and finds a constrained effi-

cient matching. This idea of consent is also present in (Tang and Yu, 2014) that introduce

an algorithm that is computationally simpler than the EADAM. Both in (Kesten, 2010)

and (Tang and Yu, 2014) when all the students consent to waive their priorities the

algorithm produce efficient allocations. Alcalde and Romero-Medina (2017) propose an

alternative weakening of fairness: α-equitability. In the case of α-equitability a matching

with a priority violation is unfair only if a student’s objection to that priority violation

can not be counter-objected by another student. Ehlers and Morrill (2019) also relax the

fairness constraint. In its case, a student’s priority at a school needs to be respected only if

there exists a matching in which that student is assigned to the school. Ehlers and Morrill

(2019) propose a stable set of legal matchings that are not dominated in fairness terms

by any other legal matching, and (illegal) matchings are dominated by a legal matching.

Finally, Alva and Manjunath (2019) also weaken stability presenting the concept of stable

domination. A rule is stable-dominating if it selects an allocation that Pareto improves

some stable allocation at every preference profile. They show that the SOSM is the only

stable-dominating and strategy-proof rule.

The paper most closely related to ours is Dur et al. (2019). They propose another form

of weakening stability so the final (fair) allocation is as efficient as possible. they propose

the notion of partial stability. Under partial stability some specific priorities of some

students at some schools are ignored. Once the set of priorities to be ignored is deter-

mined the paper explores the the idea that possible welfare gains can be captured by the

improvement cycles proposed by Erdil and Ergin (2008) in the context of coarse schools’
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priorities. Our paper follows the same approach. We look for admissible improvement

cycles by justifying the violation of initial priorities via exchange of transferable charac-

teristics. Beyond the formal similarities conceptually the two papers have considerable

differences. First, our primitives are not priorities but individual characteristics. Second,

the possible welfare gains we capture are derived form the trade of characteristics and

this trade will be allowed or not depending on whether the characteristic is tradeable

and a potential trade does not violate fairness. That is, the resulting extended matching

is justified with the final allocation of transferable characteristics and does not generate

complaints of students that would like to improve the school that they are assigned to.

Third, the resulting extended matching is a new allocation of school seats and student

characteristics. Clearly all students that are relocated to a new school will be better off.

However, the SETC trades characteristics and contrary to the stable improvement cycles

algorithm in Erdil and Ergin (2008) some of the students that participate in this trade do

not change schools but they change characteristics. Those students will participate in the

characteristic trade but they will be weakly better off. This will allow to other students to

trade their characteristics. Finally, on a technical note, our extended priorities framework

does not require the introduction of additional conditions on the set of priorities that may

be ignored. Our results only requires that school priorities are monotonic in students

characteristics.3

After this brief literature review, the rest of the paper is organized as follows. In

Section 2, we introduce the model and notation. In Section 3 we present our main

results that we prove in Section 4. In Section 5 we relate our framework of transferable

characteristics to the school choice with consent proposed by Kesten (2010). In Section 6

we conclude.

2 Notation and Definitions

We present the standard school choice problem and then introduce the extended model

with partially transferable characteristics.

Let I be a finite set of students and S a finite set of schools where students have to be

3Assumption 1 in Dur et al. (2019). See Remark 1 in Section 2.
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allocated. Each student i is equipped with a strict preference Pi over S∪{∅},4 where {∅}
stands for the option of being unassigned. We denote by Ri the weak preference relation

associated to Pi defined in the standard way and by P a generic students’ preference

profile. Let P denote the set of all students’s preference profiles. Each school s has a

limited number of seats available qs.

A matching is a function µ : I → S ∪ {∅} such that (i) for each i ∈ I, µ(i) ∈ S ∪ {∅}
and (ii) for each s ∈ S, #µ−1(s) ≤ qs. A matching µ′ Pareto dominates the matching

µ if for each i ∈ I, µ′(i) Ri µ(i), and for some j ∈ I, µ′(j) Pj µ(j).

The final component of the school choice problem is the priorities of schools. Each

school ranks prospective students according to a priority order. Our contribution to

the literature is to explore the structure of such priority orders. We consider that schools

priorities may depend on different characteristics of students. Some of those characteristics

are intrinsic to each student, but some characteristics can be exchanged among students.

The relevant priorities for schools depend on the final allocation of such characteristics.

For each student i let ω(i) = (ωs(i))s∈S be the initial vector of transferable char-

acteristics that influence the position of student i at each school. Each student initial

endowment consist of transferable characteristics specific to each school. For each school

s, let Ωs = ∪i∈Iωs(i) be s’s set of available transferable characteristics. For each school

s let λs be a bijection from students to Ωs. That is, λs is a permutation of s’s transfer-

able characteristics among the students. For each i ∈ I, and s ∈ S there is j ∈ I with

λs(i) = ωs(j), and for each j, j′ ∈ I, λs(j) 6= λs(j′). For each s, let Ls be the set of

all permutation of s’s transferable characteristics among students. We call λ = (λs)s∈S

an allocation of transferable characteristics. Finally, for each student i and each

allocation λ, λ(i) ≡ (λs(i))s∈S. We denote by ω the initial endowment allocation of

transferable characteristics.

When the characteristics are transferable, the assignment of such characteristics is

relevant. Note that each admissible λ ∈ L can be obtained via exchange cycles of charac-

teristics among the students. An extended matching is a pair (µ, λ) such that µ is a

matching and λ ∈ L. Let M be the set of all extended matchings.

4A strict preference is a complete, antisymmetric, and transitive binary relation.
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In the extended framework, schools priorities do not compare only students, but pairs

of students and the allocations of transferable characteristic that they present to the

school choice process. Hence, each school is equipped with a complete, transitive, and

antisymmetric binary relation �s on I ×Ωs. We use the notation %s to refer to the weak

priority relation associated to �s.

Throughout this paper, we assume that transferable characteristics are monotonous

in the sense that affect all the students in the same direction.

Monotonous Priorities For each i, j and s, for each l, l′ ∈ Ωs: (i, l) �s (i, l′) if and

only if (j, l) �s (j, l′).

Under monotonous priorities, for each s the set Ωs is naturally ordered and, abusing

notation, for each Λs ⊆ Ωs we define

max{Λs} ≡ {l ∈ Λs, for each i ∈ I, l′ ∈ Λs, (i, l) %s (i, l′)}.

Remark 1. Under monotonous priorities, for each school s, each i0, i1, i2, i3 ∈ I, and

each extended priority %, if

�s (i1, λ
s(i1)) �s (i2, λ

s(i2)) �s (i3, λ
s(i3)), and

(i3,max{λs(i0), λs(i3)}) %s (i1, λ
s(i1))

then (i3,max{λs(i0), λs(i3)}) %s (i2, λ
s(i2)).

Finally, we present the stability notion that takes into account the fact that school

priorities depend on the identity of the students and some transferable characteristics.

An extended matching (µ, λ) is (ex-post) stable if:

• µ is λ-fair : for each i, j ∈ I, µ(j) Pi µ(i) implies (j, λs(j)) �µ(j) (i, λs(i)).

• µ is individually rational : for each i ∈ I, µ(i) Ri {∅}

• µ is not wasteful : if for no i ∈ N and s ∈ S, s Pi µ(i) and #µ−1(s) < qs.
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The interpretation of (ex-post) stable coincides with the natural notion of stability. An

(ex-post) stable extended matching does not generate complaints of students that would

like to improve the school that they are assigned to. The matching proposed is justified

wth the final allocation of transferable characteristics.

It is worth to note that our notion of (ex-post) stable is parallel to partial stability in

Dur et al. (2019) but we provide a rationale and structure to the admissible violations of

the initial priorities. In the light of Remark 1, our extended priority structure does not

call for the introduction of additional restrictions on the set of admissible violations of

fairness as Assumption 1 in Dur et al. (2019).

We are interested in obtaining (ex-post) stable extended matching that are not Pareto

dominated by other (ex-post) stable extended matchings. If there is no possibility of

exchange of transferable characteristics, the students proposing deferred acceptance algo-

rithm selects the student optimal stable extended matching (SOSM). The (ex-post) stable

(µ, ω) is the student optimal stable extended matching (SOSM) if µ is not Pareto

dominated by another (ex-post) stable extended matching (ν, ω).

When the students may exchange their transferable characteristics, we could find (ex-

post) stable extended matchings (µ, λ) such µ Pareto dominates the SOSM matching. We

focus on extended matchings that can be obtained by limited exchanges of transferable

characteristics that lead to changes that justify the change of the students’ school match.

Given an extended matching (µ, λ), we say (µ̄, λ̄) is a reshuffle of (µ, λ) if for each i ∈ I,

for each s /∈ {µ(i), µ̄(i)}, λs(i) = λ̄s(i).

We are now in condition to present the notion that captures the idea of obtaining

efficient matchings that are required to satisfy fairness and stability when transferable

characteristics can be traded.

An extended matching (µ, λ) is constrained efficient if it is (ex-post) stable and for

no (ex-post) stable reshuffle (µ′, λ′), µ′ Pareto dominates µ.

Example 1. Let I = {i1, i2, i3}, S = {s1, s2, s3}, qsx = 1 for x = 1, 2, 3. The preferences

of students are:
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Pi1 Pi2 Pi3

s2 s1 s1

s1 s2 s2

s3 s3 s3

Each school uses two criteria to determine their priorities. They consider whether

students have a sibling already enrolled at the school and whether they live in the Walk-

Zone of the school. These criteria determine four coarse priority classes in each school.

Each school prioritizes students with Sibling+Walk-Zone, and those students who have

a Sibling but do not live in the Walk-Zone to students who live in its Walk-Zone with

no enrolled Sibling. No student lives in s3’s walk-zone or has a sibling in s3. Finally,

the inverse natural order breaks ties inside each priority class.

Assume that no student has any sibling and walk-zone characteristics are transferable.

Student i1 lives in school s1 walk-zone, Student i2 lives in school s2 walk-zone, while

student i3 lives out of the school district. Hence, we can write the initial endowment

allocation of transferable characteristics:
ω(i1)

ω(i2)

ω(i3)

 =


(ωs1(i1), ωs2(i1), ωs3(i1))

(ωs1(i2), ωs2(i2), ωs3(i2))

(ωs1(i3), ωs2(i3), ωs3(i3))

 =


(1, 0, 0)

(0, 1, 0)

(0, 0, 0)

 .

Schools’ priorities under the initial endowment allocation of transferable characteristics

are:

�s1 �s2 �s3
(i1, 1) (i2, 1) (i3, 0)

(i3, 0) (i3, 0) (i2, 0)

(i2, 0) (i1, 0) (i1, 0)

The SOSM for the initial endowment of transferable characteristics is (µ, ω) with µ =

{(i1, s1), (i2, s2), (i3, s3)}.
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When students {i1, i2} exchange their transferable characteristics, the allocation of

exchangeable characteristics is
λ(i1)

λ(i2)

λ(i3)

 =


(λs1(i1), λs2(i1), λs3(i1))

(λs1(i2), λs2(i2), λs3(i2))

(λs1(i3), λs2(i3), λs3(i3))

 =


(0, 1, 0)

(1, 0, 0)

(0, 0, 0)

 ,

and schools’ extended priorities under λ are:

�s1 �s2 �s3
(i2, 1) (i1, 1) (i3, 0)

(i3, 0) (i3, 0) (i2, 0)

(i1, 0) (i2, 0) (i1, 0)

The SOSM under λ is (µ′, λ) with µ′ = {(i1, s2), (i2, s1), (i3, s3)}. Clearly, µ Pareto

dominates µ′, and student i3 has not justified envy for i1 under the extended priorities

obtained with the allocation of transferable characteristics λ.

3 Improvement Cycles for Extended Matchings

Our approach follows Erdil and Ergin (2008) and Dur et al. (2019) that propose a methods

for finding fair Pareto improving trade cycles upon SOSM for coarse priorities with ar-

bitrary tie-breakers and partially non-enforceable priorities respectively. In both papers,

the logic behind improving cycles is parallel. For an initial stable matching, if there’s a

vacant position at some school, that position may be assigned to one student such that

no other student with higher priority at that school prefers that vacant position to her

position at the initial matching. In our extended framework this rationale cannot be

applied immediately. Although the students may be willing to accept any position at a

desirable school, depending on the student that exchanges the transferable characteristic

some violation of fairness may appear. For this reason Pareto improvements involving

two students may require the participation of additional students who just swap trans-

ferable characteristics without involving a change of school. Moreover, once a student

leaves a position in a school, she may start a process similar to a vacancy chain (Blum

et al., 1997). The first student in the priority ranking of the school may be admitted in

the school without any need of the exchange in the transferable characteristics since the

student that leaves the vacant position obtains a position at a preferred school.
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Given an (ex-post) stable extended matching (µ, λ), for each school j ∈ I, let:

• D(µ,λ)(j) = {i ∈ I : µ(j) Ri µ(i)} and D̃(µ,λ)(j) = {i ∈ I : µ(j) Pi µ(i)}.

• X(µ,λ)(j) = {i ∈ D(µ,λ)(j) : ∀k ∈ D̃(µ,λ)(j)\{i}, (i,max{λs(i), λs(j)}) �s (k, λs(k))}.

The set D̃(µ,λ)(j) contains all the students who prefer the match for student j rather than

their own match. The set D(µ,λ)(j) also includes all students who are matched to µ(j).

The set X(µ,λ)(j) includes all the students who would be willing to occupy j’s position at

µ(j) and there would not be any instance of envy if they are matched to µ(j) should j

leave her position. The members of X(µ,λ)(j) are those students in D(µ,λ)(j) that either

after they obtain λµ(j)(j) or maintaining λµ(j)(j) are ranked above the remaining members

of D̃(µ,λ)(j). Hence, if j moves to a preferred school and a member of X(µ,λ)(j) gets j’s

position at µ(j), nobody could argue that the change violate her priority over µ(j).

Let G = (V ;E) be a directed graph with the set of vertices V , and the set of directed

edges E, which is a set of ordered pairs of V .

For each extended matching (µ, λ), G(µ, λ) = (I;E(µ, λ)) is the (directed) application

graph associated with (µ, λ) where the set of directed edges E(µ, λ) ⊆ I × I is as follows:

ij ∈ E(µ, λ) (that is, i points to j) if and only i ∈ X(µ,λ)(j). A set of edges φ =

{i1i2, i2i3, . . . , inin+1} is a path if the vertices i1i2, i2i3, . . . , inin+1 are distinct, and a cycle

if the vertices i1i2, i2i3, . . . , inin+1 are distinct and i1 = in+1. A student i is involved in

the cycle φ if there is a student j such that ij ∈ φ. A cycle φ = {i1i2, i2i3, . . . , inin+1}
is solved when for each ij ∈ φ, student i is assigned to µ(j) to obtain a new matching.

Formally, we denote the solution of a cycle by the operation ◦ that is, η = φ ◦ µ if and

only if for each ij ∈ φ , η(i) = µ(j), and for each i′ /∈ {i1, . . . , in} η(i′) = µ(i′). A cycle φ

is an improvement cycle for G(µ, λ) if there is ij ∈ φ such that i ∈ D̃(µ,λ)(j).

The following algorithm is built on an (ex-post) stable extended matching and is defined

by solving cycles iteratively:

Student Exchange with Transferable Characteristics (SETC):

Step 0: Let (µ0, λ0) be an (ex-post) stable extended matching.

Step k ≥ 1: Given an extended matching (µk−1, λk−1),

12



(k.1) if there is no improvement cycle in G(µk−1, λk−1), then the algorithm terminates

and (µk−1, λk−1) is the matching obtained,

(k.2) otherwise, solve one of the improvement cycles in G(µk−1, λk−1) say φk let µk =

φk ◦ µk−1, and define λk as follows. For each i ∈ I, let sk = µk(i) and s0 = µ0(i).

• For each s /∈ {s0, sk}, λsk(i) = λs0(i).

• If there is no i′ such that ii′ ∈ φk, then λskk (i) = λskk−1(i).

• If there is i′ such that ii′ ∈ φk then λskk (i) = max{λskk−1(i), λskk−1(i′)}.

• If there is j such that λs00 (i) = λs0k (j), then λs0k (i) = λs00 (j), otherwise λs0k (i) =

λs00 (i).

The next example shows the relevance for constructing improvement cycles of students

who do not strictly benefit from the exchange of transferable characteristics.

Example 2. Let I = {i1, i2, i3, i4}, S = {s1, s2, s3}, qsx = 1 for x = 1, 3; and qs2 = 2.

The preferences of students are:

Pi1 Pi2 Pi3 Pi4

s2 s1 s1 s2

s1 s2 s2 s3

s3 s3 s3 s1

Each school uses two criteria to determine their priorities. Schools 1 and 3 consider

whether students have a sibling already enrolled at the school and whether they live in the

Walk-Zone of the school. These criteria determine four coarse priority classes in each

school. Each school prioritizes students with Sibling+Walk-Zone, and those students

who have a Sibling but do not live in the Walk-Zone to students who live in its Walk-

Zone with no enrolled Sibling. Finally, the inverse natural order breaks ties inside

each priority class. School s2 orders students according to the outcome of exam, using

the Walk-Zone for breaking ties (and eventually with the inverse natural tie-breaker).

Students i1 and i2 live in s1’s walk-zone. Student i1 has a sibling in s1 but their parents

would like to move their children to s2. Student i4 has the highest test-score overall for s2

13



while students i1, i2 and i3 have same test-score ranking. Finally, student i4 lives in s2’s

walk-zone. 
ω(i1)

ω(i2)

ω(i3)

ω(i4)

 =


(ωs1(i1), ωs2(i1), ωs3(i1))

(ωs1(i2), ωs2(i2), ωs3(i2))

(ωs1(i3), ωs2(i3), , ωs3(i3))

(ωs1(i4), ωs2(i4), , ωs3(i4))

 =


(1, 0, 0)

(1, 0, 0)

(0, 0, 0)

(0, 1, 0)

 .

Schools’ priorities under the initial endowment allocation of transferable characteristics

are:

�s1 �s2 �s3
(i1, 1) (i4, 1) (i4, 0)

(i2, 1) (i3, 0) (i3, 0)

(i4, 0) (i2, 0) (i2, 0)

(i3, 0) (i1, 0) (i1, 0)

Moreover, (i3, 1) �s1 (i2, 1) and (i1, 1) �s2 (i2, 0).

The SOSM for the initial endowment of transferable characteristics is (µ, ω) with µ =

{(i1, s1), (i2, s3), (i3, s2), (i4, s2)}. The assignment µ′ = {(i1, s2), (i2, s3), (i3, s1), (i4, s2)}
Pareto dominates µ but if i1 and i3 exchange their transferable characteristics then the

resulting extended matching would result in justified envy since ωs2(i3) = 0 and (i2, 0) �s2
(i1, 0). However, if student i4 participates in the exchange of characteristics, we would

obtain the resuffle λ:
λ(i1)

λ(i2)

λ(i3)

λ(i4)

 =


(λs1(i1), λs2(i1), λs3(i1))

(λs1(i2), λs2(i2), , λs3(i2))

(λs1(i3), λs2(i3), λs3(i3))

(λs1(i4), λs2(i4), λs3(i4))

 =


(0, 1, 0)

(1, 0, 0)

(1, 0, 0)

(0, 0, 0)

 ,

and the extended matching (µ′, λ) is (ex-post) stable.

Starting from the initial SOSM, in Figure 1 we present the graph where each student

points to the positions that students whose position would like to occupy (including indif-

ference relations). In Figure 2 we show the strict improvements that would not generate
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s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 1: Example 2. Student ix points student iy if ix ∈ D(µ,ω)(iy). Solid lines: ix points

iy if ix ∈ D̃(µ,ω)(iy). Dotted Lines: ix points iy if ix ∈ D(µ,ω)(iy) , µ(ix) = µ(iy).

s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 2: Example 2. Graph associated to (µ, ω). Student ix points student iy if ix ∈
X(µ,ω)(iy) and µ(ix) 6= µ(iy).
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s2

s1 s3

+ +

++

i3

i1 i2

i4

Figure 3: Example 2. G(µ, ω). Student ix points student iy if ix ∈ X(µ,ω)(iy).

justified envy and observe that no cycle can be constructed. Note that i1 does not point

i3 because (i2, ω
s2
i2

) �s2 (i1,max{ωs2i1 , ω
s2
i3
}). Finally, in Figure 3 and we present the graph

associated to (µ, ω). We observe the existence of a unique cycle γ = i1i4i3i1. Solving γ

generates the extended matching (µ′, λ). In Figure 4, we present the graph G(µ′, λ). The

graph contains no improvement cycle and indeed the extended matching (µ′, λ) is (ex-post)

stable.

Remark 2. The school priorities presented in Example 2 are consistent with point-system

based priorities. Point system generate additively separable extended priorities. That is

for each school s, for each pair of students ix, iy and each λs, λ̄s ∈ Ωs, (ix, λ
s) �s (iy, λ

s)

if and only if (ix, λ̄
s) �s (iy, λ̄

s).

Next, we present our main result. It turns out that starting from any (ex-post) stable

extended matching the application of an algorithm in the SETC class always yields a

constrained efficient and (ex-post) stable extended matching. Moreover, any constrained

efficient extended stable matching can be obtained from a SETC algorithm starting at the

SOSM extended matching. Hence, the SETC class identifies all the improvement cycles

that yield an (ex-post) stable extended matchings.
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s2

s1 s3

+ +

++

i4

i3 i2

i1

Figure 4: Example 2. G(µ′, λ). Student ix points student iy if ix ∈ X(µ,ω)(iy).

Theorem 1. For each problem, an extended matching is constrained efficient and Pareto

dominates the SOSM if and only if it is obtained by an algorithm within the SETC class

starting with the SOSM extended matching.

The proof of Theorem 1 is presented in the next section. The proof follows similar

arguments to the proof of Dur et al. (2019) but the extended model generates important

intricacies. Transferable characteristics differ among students and only exchanges involv-

ing specific students in a school may be mutually viable. Moreover, improvement cycles

may need to involve students who do not strictly improve by the exchange but facilitate

the reassignment by trading their transferable characteristics.

Two immediate consequences follow from Theorem 1. Since the result of a SETC is

constrained efficient and (ex-post) stable with respect to the final allocation of transferable

characteristics, then it is the result of the SOSM for the final allocation of transferable

characteristics.

Corollary 1. For each problem and each stable matching µ0 and each algorithm in the

SETC class, if the extended matching (µ, λ) is the outcome of the SETC algorithm then

(µ, λ) is the SOSM with initial endowment of transferable characteristics λ.
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We conclude this section analyzing the incentives of students to reveal their true

preferences when the allocation of schools’ seats is determined by an algorithm in the

SETC class. For that purpose, we need to introduce further notation that relates the

outcomes of different problems defined for different preference profiles.

A rule is a mapping Ψ : P →M. The application of a SETC algorithm starting with

the SOSM extended matching corresponding to each preference profile defines a rule that

always selects a (ex-post) stable and constrained efficient extended matching. We call

the class of such rules as the students’ optimal with transferable characteristics

(SOTC) class of rules.

Strategy-proofness A rule Ψ satisfies strategy-proofness if for each i ∈ N , each

P, P ′ ∈ P such that for each j 6= i Pj = P ′j with Ψ(P ) = (µ, λ) and Ψ(P ′) = (µ′, λ′),

µ(i) Ri µ
′(i).

The following result is an immediate consequence of the fact that SETC rules defined

By the results in Abdulkadiroğlu et al. (2009); Alva and Manjunath (2019); Kesten and

Kurino (2019), since the matching selected by any SETC algorithm starting with the

SOSM Pareto dominates the SOSM matching for the initial endowment of characteristics,

and it results in efficient allocations, any SETC is manipulable at some profile of students

preferences.

Proposition 1. There is no rule in the SOTC class that satisfies strategy-proofness.

Proof. Let A be an algorithm in the SETC, define the SOT rule Ψ that for each profile of

students preferences selects the matching obtained through the application of A at that

preference profile. By Theorem 1, for each preference profile the matching selected by Ψ

is (ex-post) stable and Pareto efficient. For each P ∈ P , Ψ selects an extended matching

that represents a Pareto improvement upon the SOSM matching. By Abdulkadiroğlu

et al. (2009), the SOSM is in the Pareto frontier of the set of rules that satisfy stability

and strategy-proofness. Hence, Ψ violates strategy-proofness.

4 Proof of Theorem 1

Although Theorem 1 refers specifically to the application of SETC algorithms to the

SOSM extended matching, the analysis can be carried out from any arbitrary (ex-post)
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stable extended matching. We study separately the proofs of necessity and sufficiency

sides of the results.

4.1 Proof of “if” part

For a given problem (R,%) and a stable extended matching (µ0, λ0) consider an algorithm

in the SETC class. Let K be the last step of the algorithm and (µk, λk) be the extended

matching selected at k ∈ {1, . . . , K − 1}. A cycle is solved at each step of the algorithm,

which implies that the students in the cycle are better off and no student is worse off at

the new matching obtained by solving the cycle. Thus, the matching at each step Pareto

dominates the matching in the previous step, and for each k ≥ 1, if student j is not

involved in any improvement cycle at Step k, D̃(µk,λk)(j) ⊆ D̃(µk−1,λk−1)(j). Hence, if i

points to j in G(µk−1, λk−1) and both students are not involved in animprovement cycle

at Step k then i points to j in G(µk, λk).

Lemma 1. Each extended matching obtained by a SETC algorithm is stable.

Proof. Let (µk, λk} be the extended matching obtained at Step k ∈ {0, . . . , K − 1}. We

prove the result by induction on k. The initial extended matching (µ0, λ0) is stable.

Fairness Assume that (µk−1, λk−1) is fair. Take any pair of students (i, j) such that

µk(j) Pi µk(i). At each step of the algorithm, each student is either better off (she is

in a solved cycle) or she is assigned to the same school as in the previous step. Let φk

denote the improvement cycle solved in step k. Assume first that j is not involved in

the cycle φk. Since µk(j) Pi µk(i), µk−1(j) Pi µk−1(i) and i ∈ D̃(µk−1,λk−1)(j). Then,

by fairness of (µk−1, λk−1), (j, λµk−1(j)(j)) �µk−1
(i, λµk−1(j)(i)). Since j is not involved

in φk, λ
µk−1(j)(j) = λµk(j)(j). Since i ∈ D̃(µk,λk)(j), λ

µk−1(j)(i) = λµk(j)(i). Therefore

(j, λµk(j)(j)) �µk(j) (i, λµk(j)(i)). Assume now that j is involved in φk. Let j′ ∈ I be such

that j′j ∈ φk. Hence, µk−1(j′) Pi µk−1(i), i ∈ D̃(µk,λk)(j
′), and λµk−1(j′)(i) = λµk(j′)(i).

Since j′j ∈ φk, (j,max{λµk−1(j′)
k−1 (j′), λ

µk−1(j)
k−1 �µk−1(j′) (i, λµk−1(j′)(i)), and (j, λµk(j)(j)) �µk(j)

(i, λµk(j)(i)). Since i, j are arbitrary, (µk, λk) is fair.

Individual Rationality Since µ0 is individually rational, and each student is never

worse off after each step of the algorithm, the µK is individually rational.
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Non-Wastefulness The initial match µ0 is non wasteful. At each step students are

assigned to better schools swapping their positions at schools, hence #µ−1
k (s) remains

constant at any step of the algorithm. Assume school s has an empty slot at step k,

then the school s has an empty slot at step 0. Since µ0 is non wasteful and individually

rational, for each student i with µ0(i) 6= s, µ0(i) Pi s. Since for each i, µk(i) Ri µ0(i),

µk(i) Ri s, and (µk, λk) satisfies non-wastefulness.

Lemma 2. For each stable extended matching (µ, λ) and j ∈ I, X(µ,λ)(j) ⊆ µ(µ−1(j))\{j}
if and only if D̃(µ,λ)(j) = {∅}.

Proof. If D̃(µ,λ)(j) = {∅}, since D(µ,λ)(j) = µ(µ−1(j)) and X(µ,λ)(j) ⊆ D(µ,λ)(j), the

result is immediate. On the other hand, if D̃(µ,λ)(j) 6= {∅}, then by completeness and

transitivity of schools’ priorities there is i ∈ D̃(µ,λ)(j) such that for each i′ ∈ D̃(µ,λ)(j),

(i, λµ(j)(i)) %µ(j) (i′, λµ(j)(i′). By monotonicity of priorities, (i,max{λµ(j)(i), λµ(j)(i)}) �µ(j)

(i, λµ(j)(i)). Therefore, µ(i) 6= µ(j) and i ∈ X(µ,λ)(j).

Lemma 3. Let (µ, λ) and (η, λ′) be (ex-post) stable extended matchings such that µ

Pareto dominates η. For each s ∈ S, #µ−1(s) = #η−1(s).

Proof. Let N = {i ∈ I : µ(i) Pi η(i)}. Since µ Pareto dominates η, for each j ∈ I \ N ,

µ(j) = η(j). Consider school s and assume that #(N ∩ µ−1(s)) > #(N ∩ η−1(s)). This

implies that #η−1(s) < qs. For each i ∈ N ∩ µ−1(s), µ(i) = s Pi η(i), which contradicts

η non-wastefulness. Hence, #(N ∩ µ−1(s)) ≤ #(N ∩ η−1(s)). Finally, assume to the

contrary there is s such that the strict inequality holds. Summing up the inequalities

across schools, the number of students in N who are assigned to some school in matching

η is larger than the number of students in N that are assigned to some school in matching

µ. Hence there is a student i ∈ N such that η(i) ∈ S, and µ(i) = {i}. Since η is a

individually rational matching, η(i) Pi µ(i) which contradicts the definition of N .

Lemma 4. An extended matching obtained by an SETC algorithm is constrained efficient.

Proof. Let (µ, λ) be an extended matching obtained by an SETC algorithm. By Lemma

1, (µ, λ) is (ex-post) stable. We show that there is no stable extended matching (ν, λ′)

such that ν Pareto dominates µ. Assume to the contrary, that (ν, λ′) is a (ex-post) stable

extended matching and ν dominates µ. By the definition of the SETC algorithms, there

is no improvement cycle in the graph G(µ, λ). There are two cases:

20



Case 1. For each j ∈ I D̃(µ,λ) = {∅}. Then for each ∈ I, X(µ,λ)(j) ⊆ µ−1(j) \ {j}. Thus

each student is assigned to her best school at µ and ν does not Pareto dominate µ

Case 2. There are chains in G(µ, λ) involving students who would like to change her

assigned school, but there is no cycle. This implies that there are students who are

only pointed by the students assigned to the same school.

Assume we are in Case 2. Since there is no improvement cycle, there is a set of students

who are not pointed by any other student in G(µ, λ). Let I1 = {i | D̃(µ,λ)(i) = ∅}. Let

i1 ∈ I1 and s1 = µ(i1). Note that for each j ∈ µ(s1), D̃(µ,λ)(j) = ∅ and µ(s1) ⊆ I1

Since ν Pareto dominates µ, there does not exist any j′ ∈ I, such that µ(j′) 6= s1 and

ν(j′) = s1. Thus ν−1(s1) ⊆ µ−1(s1). By Lemma 3, #µ−1(s1) = #ν−1(s1) and we get

µ−1(s1) = ν−1(s1). Since i1 was arbitrary, this holds for each s such that µ−1(s)∩ I1 6= ∅.

Next, since there is no improvement cycle in G(µ, λ), then there is at least a student

in I \ I1 such that she is only pointed by students in I1. Otherwise there would be an

improvement cycle or no improvement chains (Case 1). Let I2 = {i | D̃(µ,λ)(i) ⊆ I1} \ I1

be the set of such students. Let i2 ∈ I2 and s2 = µ(i2). We first show that there is no

j with µ(j) 6= s2 and ν(j) = s2. Assume to the contrary and since ν Pareto dominates

µ, s2 Pj µ(j) and thus, j ∈ D̃(µ,λ)(i2). Nevertheless, by definition i2 is only pointed

by students in I1. By the previous paragraph, for each j ∈ I1, µ(j) = ν(j). Hence,

ν−1(s2) ⊆ µ−1(s2). By Lemma 3, #µ−1(s2) = #ν−1(s2), and therefore µ−1(s2) = ν−1(s2).

We can continue applying the same argument iteratively, to conclude that all students

in any improving chain in G(µ, λ) have the same assignment under µ and ν. The students

who are not in a chain in G(µ, λ), are contained in I1 and have the same assignment in

both µ and ν. We conclude that µ = ν and ν does not Pareto dominate µ.

4.2 Proof of the “only if” part

Let (µ0, λ0) a partially stable extended matching. We prove that each constrained efficient

matching that Pareto dominates (µ0, λ0) can be obtained by an algorithm in the SETC

class.
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We use again the notion of improvement cycle we introduced in the previous subsection

without making reference to the desirability graph. The following lemma is a crucial first

step for the construction of improvement cycles in the desirability graph.

Lemma 5. Let (µ, λ) and (ν, λ̄) be stable extended matchings such that ν Pareto dominates

µ. Then there exists a set of disjoint improvement cycles Γ = {γ1, . . . , γk} such that

ν = γk ◦ . . .◦γ1 ◦µ, and there is λ′′ obtained as in the definition of SETC such that (ν, λ′′)

is stable extended matching.

Proof. Let N ⊆ I be the set of students who strictly prefer their assignment under ν to

the assignment under µ or such that λ(i) 6= λ′(i). Partition the set N in three disjoint

sets N = N1 ∪ N2 ∪N3. Define

N1 ≡ {i ∈ N | µ(i) = ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N2 ≡ {i ∈M | µ(i) 6= ν(i) & λ̄ν(i)(i) 6= λν(i)(i)},
N3 ≡ {i ∈ N | µ(i) 6= ν(i) & λ̄ν(i)(i) = λν(i)(i)}.

Let m = #N and index the students in N in such that for each j, j′, j′′ ∈ {1, . . . ,m}
ij ∈ N1, ij′ ∈ N2, ij′′ ∈ N3 if and only if j < j′ < j′′. Let G̃[(µ, λ), (ν, λ′)] = (N,E) be a

directed graph where the edges E ⊆ N ×N are constructed in the following way:

• For each ij ∈ N1, ij points l if and only if λ̄µ(ij)(ij) = λµ(ij)(l).

• For each ij ∈ N2, ij points l if and only if λ̄ν(ij)(ij) = λν(ij)(l).

• For each ij ∈ N3, ij points an arbitrary student in l ∈ N such that l has not been

pointed by any ij′ with j′ < j and µ(l) = ν(ij).
5

In the graph G̃[(µ, λ), (ν, λ̄)], each student is pointed by a unique student and points

to a unique student in N . Since N is finite, each student is in a cycle and no two cycles

intersect. By construction each of those cycles is an improvement cycle over µ and the

extended matching (ν, λ̄) is obtained solving these cycles in any order.

Lemma 6. Let (µ, λ) be an (ex-post) stable and (ν, λ̄) a (ex-post) stable reshuffle of

(µ, λ) such that ν Pareto dominates µ, then there exists a sequence of cycles (γ1, . . . , γk)

such that:

5Note that since (ν, λ̄) is a reshuffle of (µ, λ) such a student l exists for each ij ∈ N3.
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• γ1 appears in G(µ, λ).

• for each k′ ∈ {2, . . . , k}, γk′ in G(γk′−1 ◦ . . . ◦ γ1 ◦ (µ, λ)),

• γk ◦ γk−1 ◦ . . . ◦ γ1 ◦ (µ, λ).

Proof. By Lemma 5, we can construct a set of improvement cycles Φ = {φ1, . . . , φq}. The

result is trivial for the case where all the cycles in Φ appear in G(µ, λ): it follows that

there are disjoint cycles in G(µ, λ) and solving them in any order leads to the ν and to

some λ′ such that (ν, λ′) is an (ex-post) stable reshuffle of (µ, λ). To prove the alternative

case, we assume that none of the cycles in φ appears in G(µ, λ). This assumption is

without loss of generality because of the following observation. If a cycle φ ∈ Φ appears

in G(µ, λ), then this cycle is solved first and µ′ = φ ◦ µ is obtained. If another cycle

φ′ ∈ Φ also appears in G(µ′, λ∗), by the fact that all the cycles in Φ are disjoint and that

if there are two students forming a link in G(µ, λ),and those students do not belong to φ,

then the link also appears in G(µ′, λ∗). Following this logic, whenever a subset of cycles

Φ appear in G(µ, λ), these cycles are solved first, and we focus on the case where none of

the improvement cycles appear in G(µ, λ).

To show the existence of a cycle in G(µ, λ) first we prove that for any φ ∈ Φ and any

ij ∈ φ, there exists some k ∈ I such that kj ∈ G(µ, λ) and lk ∈ φ′ for some l ∈ I and

φ′ ∈ Φ. Consider an arbitrary φ ∈ Φ and ij ∈ φ.

• if i ∈ X(µ,λ)(j), then ij ∈ G(µ, λ) by construction. Moreover, i is a part of φ, which

implies there exists l ∈ I with li ∈ φ.

• if i /∈ X(µ,λ)(j), there exists a student i′ such that i′ ∈ D̃(µ,λ)(j) and (i′, λµ(j)(i′)) �µ(j)

(i,max{λµ(j)(i), λµ(j)(j)}) %µ(j) (i, λµ(j)(i)). Let k be , among those students,

one such that (k,max{λµ(j)(k), λµ(j)(j)}) �µ(j) (k′,max{λµ(j)(k′), λµ(j)(j)}) for each

k′ ∈ Dµ,λ)(j).
6 Note that k ∈ X(µ,λ)(j), and therefore kj ∈ G(µ, λ). Finally, we

check that k is in an improvement cycle in Φ. That is there is φ′ ∈ Φ such that

lk ∈ φ′ for some l ∈ I. Assume to the contrary that µ(k) = ν(k), and µ(j) Pk

µ(k) = ν(k). Note that k ∈ X(µ,λ)(j), i /∈ X(µ,λ)(j), ν(i) = µ(j), and λ̄µ(j)(i) =

max{λµ(j)(i), λµ(j)(j)}). Since (k, λµ(j)(k)) �µ(j) (i,max{λµ(j)(i), λµ(j)(j)}), this is

a contradiction, since (ν, λ̄) is (ex-post) stable. Thus, ν(k) Pk µ(k), which implies

that k is in an improvement cycle in Φ.

6By our definition of extended priorities the existence of such a student k is ensured. See Remark 1.
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Thus, for any student j who is in an improvement cycle ϕ ∈ Φ, there exists another

student k such that kj ∈ G(µ, λ) and k is in an improvement cycle φ′ ∈ Φ. Since the

set of students in improvement cycles is finite, and each student is pointed at least by

another student in N , and there exists a cycle γ1 in G(µ, λ). Note that for each ij ∈ φ
such that ij /∈ γ1, then ij /∈ G(µ, λ), and i /∈ X(µ,λ)(j).

We next show that the matching γ1 ◦ µ Pareto dominates µ and it is weakly Pareto

dominated by ν. Since γ1 ◦ µ solves a cycle in G(µ, λ) clearly γ1 ◦ µ Pareto dominates µ.

Hence, we focus on proving that ν (weakly) Pareto dominates γ1 ◦ µ. For any kj ∈ γ1

such that (γ1 ◦ µ)(k) 6= µ(k) note that (γ1 ◦ µ)(k) = µ(j).

• If kj ∈ φ for some φ ∈ Φ, then ν(k) = µ(j).

• If kj /∈ φ for any φ ∈ Φ, we claim that ν(k) Rk µ(j). Suppose that µ(j) Pk

ν(k), that is, k ∈ D̃(ν,λ̄)(j). Consider the student i ∈ I such that ij ∈ φ for

some φ ∈ Φ, so ν(i) = µ(j). By the definition of γ1, ij /∈ G(µ, λ). implies

λ̄µ(j)(i) = max{λµ(j)(i), λµ(j)(j)}). Since kj ∈ γ1, kj ∈ G(µ, λ) and ij /∈ G(µ, λ),

(k, λµ(j)(k)) �µ(k) (i,max{λµ(j)(i), λµ(j)(j)}), which is a contradiction becase (ν, λ̄)

is (ex-post) stable.

Thus, under the matching γ1 ◦µ, each student in γ1 is better off than under the matching

µ and worse off than under the matching ν. Each remaining student is assigned to the

same school to which she’s assigned under µ which implies that the matching γ1 ◦ µ
Pareto dominates µ and is weakly Pareto dominated by ν. Let λ1 be the allocation of

characteristics obtained by solving the cycle γ1 according to the definition of the SETC

algorithm. By the arguments in Lemma 1, (γ1 ◦ µ, λ1) is (ex-post) stable. If the extended

matching (γ1 ◦ µ) is equivalent to ν the proof is complete. If not we can use the same

argument inductively. By Lemma 6, there is a set of distinct improvement cycles, such

that the matching ν is obtained by solving these cycles over γ1 ◦ µ solving at each stage

a cycle that appears in the graph defined by the SETC algorithm.

5 Fully Transferable Characteristics

Theorem 1 is a general result without any reference on the construction of schools pri-

orities. In this section we discuss the implications for specific definitions of priorities.
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In the case that the transferable characteristics determine completely schools priorities,

when a student participates in an improvement cycle, it is equivalent to the fact of giving

up completely the priorities the student have for a position at that school. With that

intuition in mind, we propose a restricted domain of priorities that are completely defined

by the transferable characteristics.

Fully Transferable Extended Priorities. For each i, i′, j, j′j ∈ I and s ∈ S, for each

λs, λ̄s ∈ Ls: (i, λs) �s (i′, λ̄s) if and only if (j, λs) �s (j′, λ̄s).

Under fully transferable priorities, the analysis of the algorithms in the SETC is sim-

pler, since any student that desires the position of another student can obtain it with the

exchange of the transferable characteristics.

Lemma 7. Let (µ, λ) be an (ex-post) stable extended matching and G(µ, λ) the (directed)

application graph associated with (µ, λ). If schools’ extended priorities are fully transfer-

able and i ∈ D̃(µ,λ)(j), then ij ∈ G(µ, λ).

Proof. Let s = µ(j). Since ∈ D̃(µ,λ)(j), s Pi µ(i). Since (µ, λ) is (ex-post) stable, for each

j′ 6= i such that s Pj′ µ(j′), (j, λs(j)) �s (j′, λs(j′)). Therefore, since s extended priorities

are fully transferable, (i,max{λs(i), λs(j)}) �s (j′, λs(j′)) and i ∈ X(µ,λ)(j).

The previous lemma implies that under fully transferable priorities improvement cycles

do not need the participation of students who transfer their characteristic but remain

assigned to the same school.

At this point, before we introduce a specific selection of cycles in SETC algorithms,

we need additional notation.

Let (µ, λ) be an extended matching. Define the graph G̃(µ, λ) ⊂ G(µ, λ) as the

restriction of G(µ, λ) where students only point to students assigned to different schools.

Hence, E = I and V are such that ij ∈ G̃(µ, λ) if and only if i ∈ D̃(µ,λ)(j) and i ∈ X(µ,λ)(j).

Let T0(µ) = I and recursively for each k ≥ 1

Bk(µ) = {i ∈ Tk−1(µ) | for each j ∈ Tk−1(µ), µ(i) Ri µ(j)} ,

and Tk(µ) = Tk−1(µ) \ Bk(µ). Let k∗ be the smallest integer such that Bk∗(µ) = {∅},
and T (µ) ≡ Tk∗ . The set B1(µ) contains the students that are assigned at µ to their

preferred school. Hence for each j ∈ B1(µ) there is not j′ such that jj′ ∈ G̃(µ, λ).
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Recursively, for each k < k∗ and j ∈ Bk(µ), jj′ ∈ G̃(µ, λ) implies that j′ ∈ Bk′(µ) for

some k′ < k. This immediately implies that students in I \ T (µ) cannot participate in

any Pareto improvement cycle. Moreover, if T (µ) = {∅}, then the extended matching

(µ, λ) is Pareto efficient. Finally, for each extended matching (µ, λ) define the graph

G′(µ, λ) ⊂ G̃(µ, λ), such that each ij ∈ G′(µ, λ) if and only if i, j ∈ T (µ), ij ∈ G̃(µ, λ),

and for each j′ ∈ T (µ), µ(j) Ri µ(j′).

Lemma 8. Let schools’ extended priorities be fully transferable. If Tk(µ) 6= {∅}, then

there is a Pareto Improvement cycle φ ∈ G′(µ, λ) such that for each ij ∈ φ, and each

j′ ∈ T (µ), µ(j) Ri µ(j′).

Proof. Note that for each i ∈ T (µ) there is j ∈ T (µ) such that i ∈ D̃(µ,λ)(j) and by the

previous lemma, i ∈ X(µ,λ)(j). Note that each i ∈ T (µ) points to at least some j ∈ T (µ)

such that µ(i) 6= µ(j). Since T (µ) is finite, there is at least one cycle in G′(µ, λ).

Remark 3. There can be several improvement cycles in G′(µ, λ) but either they are

completely disjoint (ij ∈ φ implies that for no j′, ij′ ∈ φ′) or if ij ∈ φ and ij′ ∈ φ′,

µ(j) = µ(j′).

The previous lemma shows that under fully transferable characteristics the logic of the

TTC algorithm can be applied to find (ex-post) stable Pareto improvement cycles. This

logic allows us to define a subclass of SETC algorithms that perform Pareto improvement

cycles that are obtained following this TTC logic.

Top Trade SETC Algorithm:

Step 0: Let (µ0, λ0) be a stable extended matching.

Step k ≥ 1: Given an extended matching (µk−1, λk−1),

(k.1) if there is no improvement cycle in G(µk−1, λk−1), then the algorithm terminates

and (µk−1, λk−1) is the matching obtained,

(k.2) otherwise, solve one of the improvement cycles in φ ∈ G′(µk−1, λk−1), and let µk =

φk ◦ µk−1, and λk be defined correspondingly to the definition of SETC.
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The Top Trade SETC applies the TTCM for each stable allocation. With this obser-

vation our final result relating our framework and Kesten (2010) immediately follows.

Theorem 2. Let µ0 be the SOSM and (µ, λ) an outcome of and Top Trade SETC al-

gorithm under µ0, then µ is the matching obtained with the TTCM under the initial

allocation of seats µ0.

Proof. By Lemmata 7 and 8, under monotonous and fully transfer preferences, the Top

Trade SETC algorithm is well defined. At each stage of the algorithm, there is a group of

students who obtain a seat at their best preferred available school till the stage where no

Pareto improvement is possible, therefore µ is the At and it coincides with the application

of the TTCM for any stable matching µ. If the initial matching is the SOSM, the stable

matching selected by the Top Trade SETC coincides with the application of the TTCM

after the selection of the SOSM.

We conclude by relating fully transferable priorities with students’ consent and EADAM

(Kesten, 2010). The motivation behind the EADAM is to explore the source of inefficiency

of the SOSM due to fairness constraints and improve it on the efficiency dimension. An

important observation made by Kesten (2010) is that the priority of student i at school s

might not help her to get a better school under the SOSM at all. If this is the case, giving

i the lowest priority at s instead of her current priority would not change her assignment

and the DA would possibly select a matching that Pareto dominates the SOSM with the

original priorities. Motivated by this observation, Kesten (2010) introduces the EADAM

in a setting that allows students to consent for the violation of their own priorities. Un-

der fully transferable priorities, Pareto improvements from an initially stable matching

never generates a violation of fairness. This relates to the concept of consent in Kesten

(2010). In that paper, if each student consents for priority violation at each school, the

Efficient Adjusted Deferred Acceptance Algorithm results in the matching obtained with

the application of the TTCM after the selection of the SOSM.

Corollary 2. Let µ0 be the SOSM and (µ, λ) an outcome of and Top Trade SETC algo-

rithm under µ0. If schools priorities are monotonous and fully transferable then µ is the

outcome of the EADAM when all students consent.
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6 Conclusions

In this paper we generalize the school choice problem by defining schools priorities on

(transferable) students characteristics. We define a family of algorithms– Student Ex-

change with Transferable Characteristics (SETC) class– that starting at a (ex-post) stable

extended matching produce an (ex-post) stable extended matching that is not Pareto

dominated by another (ex-post) stable extended matching. Moreover, any constrained ef-

ficient extended matching that Pareto improves upon a stable extended matching can be

obtained via an algorithm in the SETC class. Finally, we show that a particular algorithm

in the SETC class selects the outcome obtained with the iterated application of SOSM

and TTTC algorithm and coincides with the Efficiency Adjusted Deferred Acceptance

Mechanism (EADAM) proposed by Kesten (2010) when all students characteristics are

transferable.

Although the focus on this work has been on the application to school choice, there are

further natural applications of the model. Recent research on the allocation of medical

resources under triage have proved the possibilities of encompassing ethical values with

the application of deferred algorithm when some resources are reserve to some groups

of individuals (Pathak et al., 2020) in a situation similar to strict priorities. While this

work has focused on the allocation of scarce resources when there individuals only care

about getting access to one unit, our work provides techniques that allow for Pareto

improvements of those allocations, when the ethical considerations may be relaxed and

transfers of characteristics (as residence area or tie-breakers) are allowed.
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Dur, U.M., A. Gitmez, and Ö. Yılmaz (2019) “School Choice under Partial Fairness”.

Theoretical Economics 14-4, 1309–1346.

Dur, U.M., S.D. Kominers, P.A. Pathak, and T. Sonmez (2018) “Reserve Design: Unin-

tended Consequences and The Demise of Boston?s Walk Zones?. Journal of Political

Economy, 126-6, 2457-2479.

29

http://dx.doi.org/10.2139/ssrn.2571527


Dur, U.M., T. Morrill (2017) “The Impossibility of Restricting Tradeable Priorities in

School Assignment”. Unpublished mimeo, North Carolina State University.

Ehlers, L., and T. Morrill (2019) “(Il)legal Assignments in School Choice”. Forthcoming

Review of Economic Studies.

Erdil, A., and H. Ergin (2008) “What’s the Matter with Tie-Breaking? Improving Effi-

ciency in School Choice”. American Economic Review 98-3, 669-689.

Gale, D., L. Shapley (1962) “College Admissions and the Stability of Marriage”. American

Mathematical Monthly 69, 9-15.
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