Optimal non-absolute domains for the Cesaro
operator minus the identity

Sorina Barza and Javier Soria

Abstract We characterize the optimal non-absolute domain for the Cesaro operator
minus the identity (C — I), in the sequence space €7 (N), 1 < p < oo, and compare
the results obtained with the case of C, showing the different behavior in both cases.
We also address this question for the Copson operator C*.
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1 Introduction

We are going to consider the classical Cesaro averaging operator acting on the
sequence x = {x;}jen € R™:

+...+
Cx(n) = (Cx), = 210

as well as the Copson operator:
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- X
C*x(n) = (C*x)p = » =
k
k=n

(depending on each particular case, and in order to clarify the calculations, for the
elements of a sequence x € RY, we will use the notations x,, or x(n), preferably the
first one).

Our main goal in this work is the characterization of the optimal domains for C
minus the identity on the classical sequence spaces ¢” (N). Motivations for these
considerations come twofold: on the one-hand, there is already a great interest in
this topic for the Hardy operator

Sf(x):%/oxf(t)dt x>0,

(the continuous equivalent version of C), but for non-negative functions, as shown
in [5, 7, 12, 13, 14]. In particular, if X is a rearrangement invariant (r.i.) Banach
function space [1, Definition I1.4.1], BFS for short, for which S : X — X is bounded,
then the class of functions for which S(|f|) € X is known to be much larger than
X and, in fact, not even a subspace of (L1 + L®)(R*) [7, Theorem 2.6]. It is also
an easy exercise to prove that the only non-negative function f € L'(R*) such that
Sf € L'(R*) is the zero function (similarly for C and ¢! (N)). Some consideration in
the discrete setting of sequence spaces can be also found, for C and C*, in [2, 3, 6].
On the other-hand, no much is known when positivity is dropped from the definition
of the domain (see [10] for some preliminary results, dealing more with duality
properties of what the author refers to as the non-absolute domain: the space of
sequences x for which Cx € €7 (N)).

Moreover, it is also well-known that subtracting the identity from an averaging
operator provides some additional regularity and smoothness [9], which is the setting
in which we are going to work. In particular, we want to consider the following
problem: given a discrete BFS X = X(N) (mostly, X = £P(N)), study conditions
for a general sequence x so that (Cx — x) € X. That is, determine the conditions to
describe the optimal domain:

Dom[C - L X] ={x={x;}jen € RY: (Cx -x) € X}.

Observe that, this time, we do not assume a priori that the sequence {x;}jen is
non-negative. It is worth noticing that (Cx — x) = 0 if and only if x is a constant
sequence. Hence, the optimal domain will always be invariant under the addition of
constants (the kernel of the operator C —I). Thus, if C : X — Y is bounded and

X+R={x+c:x€X,ceR},

then, since X is r.i., we have that X ¢ Y and X + R ¢ Dom|[C -1, Y].

The paper is structured as follows: in Section 2 we start by showing some general
results for a BFS X. We then establish a useful tool, in Proposition 2, for getting
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precise norm estimates. Our main result is Theorem 1, where we fully characterize
Dom[C — L¢P (N)], 1 < p < oo. As a consequence of these results, we can see
that while Dom[C, ¢! (N)] ¢ £*(N), however Dom[C - I,£'(N)] € £)(N) +R. In
Section 3 we briefly describe the behavior at the end-point p = 1, in terms of the
weak-type space £1°(IN). Finally, in Section 4 we consider the study of optimal
domains for the Copson operator C* minus the identity, and show the analogous
results in Theorem 2.

In what follows, we will use the standard notation A < B to denote the existence
of a positive constant K > 0 (independent of the main parameters defining A and B)
such that A < KB (analogously for the notation A > B). Ifboth A < Band A > B
hold true, we will write A ~ B.

2 Domain for Cesaro type operators on sequence spaces

We start with the following auxiliary result (see, e.g., [11, end of page 2]):

Lemma 1 Let X, Y be two BFS and assume T is a positive operator (i.e., Tf > 0, if
f=0), suchthatTf €Y, whenever f € X. Then, T : X — Y, boundedly.

We now prove a general result on a discrete BFS X, that completes the observation
made in the previous section (we refer to [1, Definition 1.2.3] for the definition of
X’, the associate space of X):

Lemma 2 Let X be a discrete BFS and let X' be its associate space. Then, the
following statements are equivalent:

(i))C:X — Xand C* : X — X are bounded.
(ii) Dom[C -1, X] = X +Rand Dom[C -1, X'] = X’ +R.
(iii) Dom[C* - I, X] = X and Dom[C* -1, X'] = X'.

Proof We start by proving that (i) is equivalent to (ii): As we have already observed,
the fact that C : X — X is bounded, immediately gives that X +R c Dom[C -1, X].
Since C* : X — X is equivalentto C : X’ — X’, we also get X’ + R ¢ Dom[C —
LX'].

For the reverse inclusions, if x € Dom[C — 1, X],let y = Cx —x € X. Then

> 3.
- otz O

n—1
X2—x1+2y2=0 and x,-x +Lyn = —Z Yk
1
k=2
In fact, the equality is trivial for n = 2. If n = 3, then —y; — 3y3/2 = —(x; +x2) /2 +
x3 — (x1 +x2 +x3)/2 + 3x3/2 = x3 — x1. If we now assume (1) to hold for a given
n > 3, then
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n

Yk _ n Yn _ X1+t Xy
- =Xp — X1+ Yn — - — X1
k-1 n-1 n—1 n
k=2
X4+ xp4 n+1l
=Xp4l — X1+ - Xn+1
n n
n+1
=Xp+l — X1t Yn+l-

Now, observe that C* : X — X implies that {1/k}ren € X’. In fact, using [1,
Theorem 1.2.7] and [1, Corollary 11.6.8]

Itz

x| .
= osup > == sup [[C (Dl
X ixlx=1 oy llxllx=1

< sup [[C(IxDllx = IC7[Ix—x < e
Ixllx=1

Thus, if we call oy (k) = yi41 (the left shift operator), we have that o : X — X and,
forn > 3,
n—1 Vi
=C"(oy)(1) = C*(oy)(n-1),

k:zk_l

since y € X, using (1) we obtain
* n %
X =x1 = C(ey)(1) = ——yn + C(0y)(n = 1), 2

and taking into account that

n+1 .
{ Yne1 +C ((fy)(n)} e X,
n neN

we finally deduce that x € X + R. Similarly, since C* : X’ — X’ is equivalent to
C : X — X, reversing the role of X and X’ in the previous argument we also obtain
that Dom[C -, X'] c X" +R.

Conversely, to prove that (ii) implies (i), if Dom[C — 1, X] = X + R, pick x € X.
Then, Cx —x € X and hence Cx € X. Thus, using Lemma 1, we conclude that
C : X — X is bounded. By a similar and dual argument, we can also get that
C": X - X.

We now show that (i) implies (iii): The fact that C* : X — X is bounded gives that
X c Dom[C* -1, X]. Since C* : X’ — X’ we also get that X’ ¢ Dom[C* - I, X'].

For the reversed inclusion, if x € Dom[C* -1, X],lety = C*x —x € X. Asin (1),
one can prove by induction that

1

Xp =
n-—1

n-1
Zyk ~Vn = (CY)n-1=yn, n=2, 3)
k=1
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with x; arbitrary. Hence x € X. Similarly, since C : X’ — X’ we get also that
Dom[C* -1, X’] c X’.

To finish, we prove that (iii) implies (i): If Dom[C* — I, X] = X, pick x € X.
Then C*x — x € X and hence C*x € X. Thus, using Lemma 2.1 we conclude that
C* : X — X is bounded. By a dual argument we also get that C : X — X. O

Remark 1 We observe that, in Lemma 2, it is not true that C : X — X if and only if
Dom[C -1, X] = X+R, since C : {*(N) — £*(N), but we will prove in Theorem 1
that Dom[C — I, £ (N)] # ¢°(N).

Let us now consider the case of the Cesaro operator C on ¢! (N). Recall that f& (N)
denotes the subspace of ¢! () sequences with vanishing sum. As we have mentioned
above, it is well-known that C is not bounded on ¢! (N) and, moreover, x = 0 is the
only non-negative sequence satisfying that Cx € ¢'(N). With more generality, we
can prove the following (see [10] for some related results):

Proposition 1
(i) If x is non-negative sequence such that Cx € €' (N), then x = 0. That is,
£{(N) N Dom|[C, £' (N)] = {0}.

(ii) There exists x € €'(N) \ {0} such that Cx € €' (N). Moreover, any such
sequence satisfies that 3, | x, = 0. That is,

¢'(N) N Dom[C, £'(N)] = £, (N) N Dom|[C, £' (N)] # {0}.

(iii) There exists x ¢ €= (N) such that Cx € £'(N) and there exists y € 5(1] (N) such
that Cy ¢ €' (N). That is,

¢5(N) ¢ Dom[C, £'(N)] and Dom[C, ' (N)] ¢ ¢~ (N). )
Proof The proof of (i) follows from the remark that, for every j, n € N, we have that
Xp > xj6;(n), where
0, ifj#n
S = 5
i) {1 ifj = n. ©)
Now, for j € N fixed:

0, ifn<j-1,
Cx(n) 2 x;C6;(n) = ﬁ’ itn> .
n

Thus, Cx € ¢!(N) if and only if x; = 0, for every j € N.
In order to find x € £!(N) such that Cx € £'(N), we observe that if y = Cx, then,

X1 =Yy1,X2 =2y2 = y1,..., Xk = kyg — (k= Dyr_1, k€ {2,3,...}.  (6)
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Therefore, the series Y, x,, converges, if and only if there exists limg_co kyk.
Now, since y € £'(N), then limy_, kyx = 0. In fact, if limy_,o [kyx| = 1 > 0,
then we could find ky € N such that |yg| > ﬁ for k > ko, contradicting the
fact that y € ¢£'(N). Therefore, we have proved that £'(N) N Dom[C, ' (N)] =
£ (N) N Dom|[C, £'(N)].

To finish the proof of (ii), take a positive sequence y € £'(N) so that {kyy }ren
decreases and limg_,o kyx = 0 (e.g., yx = 1/k?), and define x as in (6). In this case,

an = klim kyr =0.

n=1

Moreover, x; < 0, for k € {2,3,...} and hence

(o) (o]
D bal = el = )" x =231 < oo,
n=1 n=2

To prove (iii), we consider

k, ifj=2%keN,
xj=13-k, ifj=2%+1keN,
0, otherwise.

Then, x ¢ £ (N) and

k
—, ifj=2KkeN,
Cx(jy=4 20 /T RE
0, otherwise,
which is clearly in ¢! (N). Finally, with
-1 -1 1

n>2

Y1 Yn

s

= —_— = + 2
log2 log(n+1) logn

we have that y € fé (N) and

-1

1
nlog(n+1) }neN 2O,

{Cy(mYnen = {

We will now fix our attention to the study of the optimal domain in all different

£P (N) spaces, 1 < p < co. We will see that C — I enjoys a different behavior at the

end-points £! (N) and £ (). Recall that, given a weight w (a sequence with w,, > 0,
for every n € N), and 1 < p < oo, we define

o0 l/p
def
P (w,N) = {{x,}jeN e RY : |lxller (wany = (Z|xj|”wj) < oo},
J=1
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and analogously if p = co. With this notation, {7 (N) = ¢P(1,N), where 1 is the
constant weight 1,, = 1, for every n € N. Similarly,

€8 (w,N) = €7 (w,N) N £5(N),

with [1x[lr 10y = II¥ller wan) + 1xller .-

We need first a previous result (which follows using the Closed Graph Theorem),
proving the continuity of several inclusions. Observe that, with the previous defi-
nition, Ké’ (w,N) is a Banach space (i.e., the cancellation property holds true in the
limit, since fé (N) is closed in £! ().

Proposition 2 Let w be a weight. Then,

(i) £y (w,N) € Dom[C -1, £'(N)] &= [ICx—xllo1ay S Ixll1 (i) +11xll g2 ey -

(i) (Dom[C, ¢! (N)] nfé(N)) c Ké(w,N) = ||x||[3(w’N) S NCx|lpry +
||x||53(N)-

(iii) £ (w,N) € Dom[C = L, {*(N)] & [|Cx = x|lg=nv) < X[l w0y -

Proof Observe that, in all (i), (ii), and (iii), the right-hand side immediately implies
the embeddings on the left. Thus, it suffices to prove the implications “="".

To prove (i), let us see the continuity of the embedding:
ICx _x”{’l(N) < ||x||€1(w,N) + ||x||p(; (N)-
Using the Closed Graph Theorem, it suffices to show that

£ (w,N)

= y=0. )

Now, since
Z |C(xN)(n) —xN (n) — y,| = 0 and Z IxN (n)|w, — 0, as N — oo,
n=1 n=1
then |C(x™)(n) = xN (n) = y,| — 0and |xV (n)| — 0, for every n € N. Hence,
|IC(x™)(n) — yu| = 0, as N — o and for every n € N.

Finally, for a fixed n € N,

n

CEM)m =3 N (k) >y =0,
k=1
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which proves (7).
To prove (ii), let us see the continuity of the embedding:

”x”g(;(w,N) < ||Cx||€1(N) + ”x”f&(N)'
Using Proposition 1 (ii) and the Closed Graph Theorem, it suffices to show that

6 (M)

O’

p—4 y
l’(; (w,N)
N

X —Yy

but this follows easily from the fact that |xY -y, |w, — 0and |x| — 0,as N — oo
and for very n € N.
Finally, to prove (iii), let us see the continuity of the embedding:
ICx = xlle= vy S llxllew (w,m)- ®)
Using the Closed Graph Theorem, it suffices to show that
)CN % (w,N)
= y=0. )

Given the sequence {x" }yen C €% (w,N), fix n € N. Then, for every N € N,
yal < lyn = (Cx™) () + 2N ()] + 1(Cx) ()] + | (n)].

Observe that, given € > 0, we can find N| € N such that, for all N > Ny,
&

lyn = (CxM) () +xN ()] < fly = (CxN =)l o) < 3

Similarly, there exists N> € N such that, for all N > N,

1 1 &
N ()] = —lwax™ ()] < — XN llgw ) < 3
wn wn 3

Finally, there exists N3 € N such that, for all N > N3,

L mV D+t eV ()]
i, sk "
1

~ min {w;
lSan{ J}

l(CxM)(m)] <

&

6N g (wxey < 3
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Thus, with n € N fixed, given € > 0, if Ny = max{Ny, N2, N3}, we have that for
every N > N,
lynl <&, foreverye >0,

and, hence, y, = 0, for every n € N, which proves (9). |

Theorem 1 (Optimal domain for C —Ion (P (N),1 < p < )

(i) Case p = 1: Dom[C -1, £'(N)] = (Dom[C, £ (N)] N €} (N)) +R. In addition,

a. fé(w, N) ¢ (Dom|[C, ¢'(N)] n é’é (N)) = w, = log(n+1). Hence, the
logarithmic space fé (log(n+1),N) is the largest fé (w, N) space contained
in (Dom[C, ¢ (N)] N 5& (N)) and, moreover,

¢y (log(n+1),N) ¢ (Dom[C, £'(N)] N £ (N)).

b. (Dom[C, ' (N)] N £(N)) ¢ £ (w,N) & w, < 1. Hence, {}(N)
is the smallest fé(w, N) space containing (Dom[C, £' (N)] N Ké (N)) and,
moreover,

(Dom[C, £'(N)] N £)(N)) & £3(N).
(ii) Case 1 < p < c0: Dom[C -1, ¢P (N)] = ¢7(N) +R.

(iii) Case p = oo:

a. £ (w,N) c Dom[C-1,{*(N)] & w, = 1. Hence, {*(N) is the largest
£ (w, N) space contained in Dom|[C — 1, £ (N)] and, moreover,

¢*(N) ¢ Dom[C -1, £7(N)].

b. Dom[C - L£*(N)] c *(w,N) < w, < 1/log(n + 1). Hence,
£°({1/log(n+1)},,N) is the smallest weighted > (w, N) space containing
Dom|[C -1, £°(N)] and, moreover,

Dom[C - L ¢ (N)] ¢ ¢*({1/log(n +1)},,N).

Proof We start by proving (i). Using the equality:

X1+ -+ X4 n (x1+-~+xn

n+l —Xn+l = _xn+l)’

T+l n

the hypothesis Cx — x € £!(N) is equivalent to Cx — ox € ¢! (N), where, as before,
ox(n) = x4 is the left shift operator. For convenience, we will then work with this
second condition.

Assume now that Cx — ox € ¢'(N). Let us first see that, necessarily, x is a
convergent sequence (to some value @ € R): We define the sequence d = Cx — ox.
Then, inductively as in (1), we have that
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dy
x2:xl_dl,x3=xl_7_d2’-~-,xn+l =X — =~ ——— —dy.

Therefore,

lim x,, = x1 — E - jl'
—00
n j:1J+

Setting @ = x; —Z;":l dj/(j+1),letus now prove thatx—a = {x;—a}ecn € £ (N).
In fact,

S -l = |x1—a|+|xz—a|+Z] ) nl—(m—iffl)!

n=1 Jj=1 Jj=1
= b - a|+|xz—a|+z|2 = n_1|
n3]n1]
< vy - a|+|x2—a|+zz +1 et
n3/nlJ
s|x1—a|+|x2—a|+2|dj|+2|dn,l|<oo.
j=2 n=3

Before proving that x — a € Ké (N) (i.e., the cancellation property), let us show that
x —a € Dom[C, ¢! (N)]:

Cx-x=Cx-a)-(x—a)e!(N)andx —a € £!(N) = C(x — a) € £ (N),

which means x — & € Dom[C, ¢! (N)]. Now, using Proposition 1-(ii), we also con-
clude that x — @ € £j(N). Thus, Dom[C —1, ¢' (N)] € (Dom[C, £'(N)]N{) (N)) +R.

Conversely, if x — @ € (Dom[C, £' (N)] N £;(N)), then:
Cx-—a)el'(NMand (x—a) € /(N) > Cx—x=C(x —a) — (x —a) € }(N),

i.e., x € Dom[C —1,£'(N)]. Observe that, by (4), the intersection in (i) cannot be
simplified.

Let us prove (i)-(a). Using Proposition 2 (i), if we assume that f&(w, N) c
(Dom[C, £'(N)] N £y (N)), then, with x = §; — 6y, N > 2 (see (5)), we have

log(N + 1) ~ ICx™ = xMlp1any  IXV et uozy + 16N g1y = w1 + wiy +2 < wiy.

Conversely, since £} (log(n + 1), N) c £} (N), using the first equality of (i), we only
need to show that £} (log(n+1),N) c Dom[C, ¢! (N)]: If x € £} (log(n+1),N), then
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e

k=n+1

0o

2N
<D bl ) =~

|xx|log(k +1) < oo.
k=1 n=1 k=1

sl =Y
n=1 n=1

To finish this part, it suffices to observe that, if

1
— if j is even
_ ) Jlogj
Xj = -1
- 5 , if jisodd
(j+Dlog”(j+1)
then, {x;}jen € €(N) \ £;(log(n +1),N), and
0, if j is even
Cx(j) = -1
el . if j is odd

JG+Dlog*(j +1)
which clearly satisfies that Cx € ¢! (). Hence,
¢y (log(n +1),N) ¢ (Dom[C, £' (N)] N £,(N)).

Let us now see (i)-(b). If (Dom[C, €' (N)] N £(N)) c £} (w,N), using Propo-
sition 2 (ii), with the sequence xN = 6n — 6n+1, we conclude that CxN = %61\1,
and

wnN < ”xN”(’é(w,N) =WN +WN+] S ||CXN||(’1(N) + ”xN”f&(N) =(1+1/N) < 1.

Conversely, if w, < 1, then trivially
(Dom[C, ' (N)] N €y (N)) € €5 (N) € £)(w,N).

That the embedding is strict follows from (4).

The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for
1 < p < o0, both operators C,C* : £ (N) — (P (N) are bounded (as was proved in
[8, Theorems 326 and 331] and [4]).

We now consider (iii), the end-point case p = oo. It is clear that if w > 1,
then £ (w,N) c ¢*°(N) c Dom[C -1, £*(N)]. If we now assume the embedding
£°(w,N) c Dom[C — 1, £*(N)], then necessarily w,, > 0, for every n € N, since,
otherwise, we could find x € ¢ (w, N), with x,, = oo, which clearly does not belong
to Dom[C — 1, £*(N)] (we need x € €]10C(N) to define C). Let us see that, in fact,
inf, e w, > 0, which is equivalent to w > 1.

Take now x = ¢,, = {0,771,0,1,0,...}, n > 2. Then, using (8),
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w(n) 2 ||Ce, — enlle= v

1 1
x {O,?T!,O,;,—,...}—{0,'?.‘!,0,1,0,...}

n+1
1 1
2 ——1‘2—-
)n 2

Hence, w > 1 and ¢*(N) is the largest £ (w,N) space contained in Dom[C —

I, £*(N)]. To finish the proof of (iii)-(a), we pick x = {logn},en ¢ €< (N). On the
other hand,

(10)

=(N)

(n!)l/"
(Cx)(n) = - log(n') and (Cx)(n) —x, = log( . )
But,
(n+1)!
_ (nh)ln ) nt\'/" . (n+;r)"+1 . n+1 1

lim = lim | — = lim , =lim ——— X = —.

n—oo n n—oo \ pt n—oo ::_n n—oo (n + 1)(1 + l/n)" e
Thus, (Cx —x) € {*(N); i.e.,

x = {logn},en € Dom[C -1, £ (N)] \ £7(N). (11)

We now consider the proof of (iii)-(b). Since w, < 1/log(n + 1) implies that
£ ({1/log(n + 1)},,N) c £*(w,N), it suffices to see that Dom[C — I, £*(N)] c
£°({1/log(n+1)},,N). In fact, if x € Dom[C —1,£*(N)] and wesety = Cx —x €
£ (N), using (1) we obtain, for n > 2:

|xn |
log(n + 1)

le_n y"+zk—1 log(n+1)

[yl
(Iml + 1yl +Z k-1 log(n+ 1)

S [l + [y lles v (1 + log n)

S el + llylle= o -

1
log(n+ 1)
Thus, x € £°({1/log(n + 1)},,N). Let us see that the embedding is strict. Consider

x = {xntnert = {(=1)" logn}nen € gw(m).

Then,
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([~ 0) 121

X1+t X, Jj=1 j=1 loa 2
2n " 2n £

~
Il

( 2"n! )Z"
=log — .
en™ [ ]@i-1

Jj=1

But,
27+ (n+1)!
n+l
@n+2)2 [ ]2j-1)
j=1 3 @n)?™  n+l
2"n! T (n+2)22n+ 1
en™ [ ]@i-1
j=1
n+1 1 1
= — 0
2n+1 (2n+2)2 (1 +1/n)?" n—oeo
Hence,
(Cx-x)(2n) — —c0 and x ¢ Dom[C -1, {7 (N)]. (12)
n—00

Finally, let us prove that £*({1/log(n + 1)},,N) is the smallest ¢*°(w, N) space
containing Dom[C — I, £*(N)]. In fact, as we have already observed in (11), x =
{logn}yen € Dom[C -1, £ (N)]. Therefore, if x € £*°(w, N), then

1 1
W —m = | —— | c ®(w,N).
v log(n + 1) (log(n+ 1)) (w, N)

Remark 2 As a consequence of Theorem 1, we can prove that, for all values 1 < p <
oo, Dom[C -1, P (N)] is not a space satisfying the lattice property (i.e., if |y| < |x|
and x belongs to the space, so does y). In fact, if p = 1,

x=e;—ey € Dom[C -1, (N)], buty =|e; —es| = e; +e2 ¢ Dom[C -, £ (N)].

For 1 < p < oo, it suffices to consider
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1 afl
x:{-+1} € (P(N) +R, buty:{(—l) (—+1)} ¢ (P(N) +R.
n neN n neN
Similarly, as proved in (11) and (12), for p = oo,

{logn},en € Dom[C -1, £ (N)], but {(—1)"logn},en € Dom[C — 1, £7(N)].

3 Weak-type estimates

We are now going to consider some extensions, at the end-point p = 1, of the
classical weak-type estimates for the Cesaro operator. In particular, we will study
the domain Dom[C — I, £7-*°], where, for 1 < p < oo and x* being the decreasing
rearrangement of the sequence x,

) def *
m<m=h=ummwmmmm§wywn<w}
ne

Let us first observe that, if 1 < p < oo, since both C and C* are bounded in £7-*(N),
and using Lemma 2, then

Dom|[C - T, 7 (N)] = ¢7°(N) + R,
as in Theorem 1 (ii). Now, if p = 1, we have the following results:
Proposition 3 Ler w be a weight in N. Then,
' (w,N) +R c Dom[C — L, £"*°(N)] &= w, > 1.

Hence, (' (N) is the largest €' (w, N) space contained in Dom[C — 1, £ (N)] and,
moreover,

' (N) +R ¢ Dom[C — I, £"*(N)].

Proof Since w,, > 1 implies that £'(w,N) c ¢!(N), using that £'(N) c £L°(I)
and

n

nmmwﬁMthﬁwwﬁzn}wmmfwwm
neN n =1

we finally get that £! (w,N) + R ¢ Dom[C — L, £1-*°(N)].

Conversely, if we fix N > 2 and pick x = 0, then as in (10),

||C6N _6N||l’1’°°(N) = max{l - l/N, sup

=1< .
kzzk"'N} > ON
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To prove that the inclusion is strict, it suffices to consider the alternating sequence
x ={(=1)"/n}pexn ¢ €' (N) + R. Then

(Cx-x)m)l = - <o

E (="
e

Thus, since {1/n},en € €4°(N), then (Cx — x) € ¢1*(N) and we conclude the
result. O

We end this section with some further results dealing with Dom[C -1, £1:°(N)],
and give also a complete description when restricted to the cone of decreasing
sequences. We begin with some useful definitions and an interesting weak-type
estimate for the Copson operator C*:

Definition 1 Given a positive sequence (a weight) w, we define the weighted weak-
type space

fl’oo(w, N) = {x = {xn}nen € RY: ”x”fl’“’(w,N) = sup wnx:l < oo}
neN

Observe that, with this definition, £1°(N) = £ ({n},en, N). Also, for reasons
that will be clarified in the next proposition, we have that

() 51’”({ N) c P(N), forp > 1.

1+logn }nEN’
Definition 2 Given a sequence space X, we denote by
Xgee ={x=(xn)n € X :x, >20and x,, > x,41, n € N}.

Lemma 3 Let p > 0. Then, £1°(N) c €7 (w,N), with embedding constant A > 0,
if and only if w € £ (N). Moreover

. < w\ /P © wi\1/p
max il (Y 2] <as (3 2)
= =

In particular, ifw is a decreasing weight, then £ (N) c €P (w, N), with embedding
constant A > 0, if and only if A = (Zc;o:l %)l/p < oo,
Proof For the necessity part, taking x = ¢;, we clearly get that
1
”x”fl’(w,N) = wj/P < A”)C”]’oo =A.

Thus, [|w||X? < A. Now, with x, = 1/n, ||x|||.co = 1 and

> wj I/p
e DI

J=1
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Conversely, using Hardy and Littlewood’s inequality [1, Theorem I1.2.2],
w

00 1/p 00 1/p 0 ;‘1/17
Ilerwn = D i) = Sepras) < st Y )

J=1 J=1 J=1

Proposition 4
5oL plioo 1,e0 L)
(i) 0= — 0|t w),
(ii) C* : €1°(N) 4> 12 (N).
(iii) C* : £ (N)gee —> €1 (N).

Proof We start with (i). We observe that, if x € ¢!>°(N), then the series pIp %
converges (absolutely) and C*(x) is well defined. Now,

S [l
<25

Ms

~
1l
S

and, hence,

Ms

Xk o |kl
(23] <
n—1
—
Now, using Lemma 3, with w = (0, ...,0,1/n,1/(n+1),...) and p = 1, we have that
w* = {1/(k +n-— 1)}k€N and

Lalaip <Y ———— ¥l S
; = el < ; ETETiall

Finally,

>~
Il

n

1+logn
—— ¥l

. n o X |
C = —_— —| < co-
|| (x)n[]yw({ ol ) ig§1+logn(;k) ell,
N

I+logn ne
The proof of (ii) goes as follows. For a fixed odd number m € N, we consider
the sequence x”* = (1/m,1/(m - 1), ...,1,0,...,0,...) and set j = (m + 1)/2. Then,

(x™* =(,1/2,...,1/m,0,...,0...) and ||x™||;,cc = 1. On the other hand, with the
same value of j = (m +1)/2,

m+l 1
IC"x" 1,00 2 jCX™(j) = —— Km—k+D)
k=(m+1) /2
el (men/2 (m+1)/2 |
T2 m+l _+ Z ke
ke(miy2 K
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To finish, if we now select y € £1°(N)gec, then (C*y)*(n) < C*(|y|)(n) =
C*(y*)(n) and
ly11,00
2

S Iylh.eo-

n(C*y)*(n) < nZ
k=n

Remark 3 We observe that Proposition 4 (ii) shows that £1*(N) is not an interpola-
tion quasi-Banach space between ¢! (N) and £ (N), for every 1 < p < co.

Proposition 5

(i) Dom[C =1 &) € & ({ iz |

(ii) Dom[C — 1, £*(N)] ¢ £L°(N) +R.
(iii) Domgec[C, €5 (N)] = €} (N) = Domgec [C = 1, €1 (N)] N £1°(N).

dec

N) +R

Proof Using (2), if x € Dom[C -1, £1°(N)] and y = Cx — x € £1:°(N), then

(o Nk Nk
x"_(xl kz_;k—l) Tt T

k=n

and the result of (i) follows using Proposition 4 (i).
The proof of (ii) follows similarly using now Proposition 4 (ii).

For the first equality in (iii), we already know that £!(N) ¢ Dom[C, £1*(N)]
and hence
€1..(N) € Domgec[C, €1 (N)].

Conversely, if x | and Cx € £1"°(N), then

n
supn(Cx); = Supzx:} = |lxllgryy < 0.
n k=1

That é’ollec (N) € Domgec[C =1, £ (N)] n £1°(N) is trivial. Finally, if
x € Domgec[C — I, £ (N)] N £1-°(N),
then Cx = (C —Dx +x € £*°(N) and x € Domge[C, £1°(N)]. o

4 Domain for Copson type operators on sequence spaces

In this final section, we are going to study the analogous results of Section 2, but
for the Copson operator C*. We start with some properties for C*, similar to those
proved in Proposition 1 for C.
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Proposition 6

(i) There exists x € {7 (N) \ {0} such that C*x € £ (N); that is,
= (N) N Dom[C*, £ (N)] + {0}.
(ii) There exists x ¢ {*°(N) such that C*x € *(N), that is,
Dom|[C*, 7 (N)] ¢ £ (N).

Proof To prove (i), take x = (—1)", n > 1. To show (ii), pick x = (=1)" \/n, n > 1.
Then, x ¢ {*(N) but C*x € {*(N). O

Proposition 7 Let w > 0. Then,
C*: % (w,N) — {*(N)

is bounded if and only if A = Y,

nlnw < .

Proof We prove first the sufficiency of the condition; i.e.,if A = 37 | =~ < o then
the operator is bounded. By homogeneity it is sufficient to prove that ||C*x||Oo <A,
for all x such that |x,|w, < 1. Now,

oo Xi oo 1
C*xoo:su) —)Ssu — =
1€l = sup kz = 2,

Hence C* is bounded and [|C*||o < A.
To prove the necessity, take x = (wll, rraXRRE #, 0,...,0,...) (asequence for
every N € N). Since C* is bounded, we get

N
IC*x lloo = sup Z
k=n

n Wi

N

1 .
Z—k < [IC* s
k=1

for any N, which implies that A = ¥')°, ﬁ < ||C*|l- Hence, A is also the best
constant in the inequality. O

Theorem 2 (Optimal domain for C* — I on {7 (N), 1 < p < c0)

(i) Case p = 1:

a. £"(w,N) c Dom[C* - I, £} (N)] & w, = 1. Hence, €' (N) is the largest
weighted space €' (w, N) contained in Dom[C* -1, £ (N)] and the inclusion
is strict.

b. Dom[C* — I, £'(N)] € £ (N).
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(ii) Case 1 < p < co: Dom[C* — I, £P (N)] = ¢P(N).
(iii) Case p = co: Dom[C* — 1, £{*(N)] = Dom[C*, £*(N)] N £*(N). Moreover,

a. if W= {(wn)n cwp 2 land 32, L < 00}, then

n=1 nw,
£ (w,N) c Dom[C* - L{*(N)] e weW.

b. Dom[C* — L,{*(N)] c ¢*(w,N) & w, < 1. Hence, {*(N) is the
smallest weighted space € (w,N) that contains Dom[C* — 1, {*(N)] and
the inclusion is strict.

Proof We prove first (i)-(a). If we assume that £! (w, N) ¢ Dom[C* -1, £ (N)];i.e.,
IC*x —x|l1 < llxlle1 (), taking xN =6y, for N > 2, we have

ol ifl<n<N-1,
(C*xN —xN), =3 -N=1 ifp=N, (13)
0, ifn>N.

Hence, we have

2(N-1)
S —_—

N

Conversely, if w, 2 1, £!(w,N) c ¢/(N) ¢ Dom[C* - I, £!(N)], since C* is
bounded from ¢! (N) into ¢! (N). That the inclusion is strict follows by considering
the sequence x, = 1/(n+ 1), n > 1, which belongs to Dom[C* — I, £!(N)] but not
to £' (N). In fact,

N
1 Swn =[x o1 (w,0)-

\ w1 1 (1 1 1
( _I)(x)‘;k(k+1) n+1_Z(k k+1) n
(S 1

n n+1:n(n+1):

which shows that x € Dom[C* — 1, ¢! (N)].

Let us now see (i)-(b). Let x € Dom[C* -1, ¢! (N)]. Hence, y = C*x —x € £'(N)
and using (3) we get that

Xn =(Cy) oy =yn, n22.

Thus, using Proposition 3 we conclude that x € ¢'**. Finally, to prove that the
embedding is strict, we define

I X7 (=DF b
n-1 k n

Xn =
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As above, using (3), we have that y,, = (C*x — x)(n) = () l) ¢ ¢'(N) and, hence,
x ¢ Dom[C* — T, £ (N)], but

1 1
- s -et"™.
n n

lxn| <

o
2

The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for
1 < p < o0, both C and C* are bounded on ¢” (N).

We consider now the equality Dom[C* — I, £ (N)] = Dom[C*, £~ (N)] N £~ (N)
in (iii). Assume firstly that y = C*x — x € ¢*(N). As above, using (3), since
(Cy),, € £*(N), when y € ¢*(N), we necessarily get that x € ¢*(N). Also, the
equality

Z)& =Xn+Yn, n>2
k
k=n
implies
1C"xlleo < I¥lloo + IIx[le0 < 00
i.e., x € Dom[C*, £*(N)].
Conversely, if x € Dom[C*, £ (N)] N ¢ (N), then trivially y = C*x —x € {*(N).

For the proof of (iii)-(a), let w € W. Then, w,, = 1 (i.e., {*(w,N) c £*(N))
and hence, by the previous equality, it is enough to show that £*°(w,N) c
Dom[C*, £°(N)], which follows from Proposition 7.

Conversely, if <(w,N) c Dom[C* — I,£*(N)], we get that £*(w,N) C
Dom|[C*, £ (N)] and €% (w,N) c £*°(N), which as before, and from Proposition 7,
imply that w € W.

To prove the necessity part of (iii)-(b), we choose x"V = § . The embedding and
(13) imply wy < 1.

For the sufficiency part, if w,, < 1, using (iii) we get the embeddings
Dom[C* - [,{*(N)] c £ (N) c £ (w,N).

That Dom[C* — I, £*°(N)] ¢ ¢*°(N) follows by taking x = 1, which is in £*°(N) but
not in Dom[C* — I, £*(N)]. O
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