Optimal non-absolute domains for the Cesàro operator minus the identity

Sorina Barza and Javier Soria

Abstract

We characterize the optimal non-absolute domain for the Cesàro operator minus the identity $(C-\mathrm{I})$, in the sequence space $\ell^{p}(\mathbb{N}), 1 \leq p \leq \infty$, and compare the results obtained with the case of C, showing the different behavior in both cases. We also address this question for the Copson operator C^{*}.

Dedicated to the memory of Professor Guido Weiss, an excellent advisor, a brilliant mathematician, and an outstanding person.

1 Introduction

We are going to consider the classical Cesàro averaging operator acting on the sequence $x=\left\{x_{j}\right\}_{j \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$:

$$
C x(n)=(C x)_{n}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

as well as the Copson operator:

[^0]$$
C^{*} x(n)=\left(C^{*} x\right)_{n}=\sum_{k=n}^{\infty} \frac{x_{k}}{k}
$$
(depending on each particular case, and in order to clarify the calculations, for the elements of a sequence $x \in \mathbb{R}^{\mathbb{N}}$, we will use the notations x_{n} or $x(n)$, preferably the first one).

Our main goal in this work is the characterization of the optimal domains for C minus the identity on the classical sequence spaces $\ell^{p}(\mathbb{N})$. Motivations for these considerations come twofold: on the one-hand, there is already a great interest in this topic for the Hardy operator

$$
S f(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad x>0
$$

(the continuous equivalent version of C), but for non-negative functions, as shown in [5, 7, 12, 13, 14]. In particular, if X is a rearrangement invariant (r.i.) Banach function space [1, Definition II.4.1], BFS for short, for which $S: X \rightarrow X$ is bounded, then the class of functions for which $S(|f|) \in X$ is known to be much larger than X and, in fact, not even a subspace of $\left(L^{1}+L^{\infty}\right)\left(\mathbb{R}^{+}\right)$[7, Theorem 2.6]. It is also an easy exercise to prove that the only non-negative function $f \in L^{1}\left(\mathbb{R}^{+}\right)$such that $S f \in L^{1}\left(\mathbb{R}^{+}\right)$is the zero function (similarly for C and $\ell^{1}(\mathbb{N})$). Some consideration in the discrete setting of sequence spaces can be also found, for C and C^{*}, in [2, 3, 6]. On the other-hand, no much is known when positivity is dropped from the definition of the domain (see [10] for some preliminary results, dealing more with duality properties of what the author refers to as the non-absolute domain: the space of sequences x for which $C x \in \ell^{p}(\mathbb{N})$).

Moreover, it is also well-known that subtracting the identity from an averaging operator provides some additional regularity and smoothness [9], which is the setting in which we are going to work. In particular, we want to consider the following problem: given a discrete BFS $X=X(\mathbb{N})$ (mostly, $X=\ell^{p}(\mathbb{N})$), study conditions for a general sequence x so that $(C x-x) \in X$. That is, determine the conditions to describe the optimal domain:

$$
\operatorname{Dom}[C-\mathrm{I}, X]=\left\{x=\left\{x_{j}\right\}_{j \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}:(C x-x) \in X\right\}
$$

Observe that, this time, we do not assume a priori that the sequence $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ is non-negative. It is worth noticing that $(C x-x) \equiv 0$ if and only if x is a constant sequence. Hence, the optimal domain will always be invariant under the addition of constants (the kernel of the operator $C-\mathrm{I}$). Thus, if $C: X \rightarrow Y$ is bounded and

$$
X+\mathbb{R}=\{x+c: x \in X, c \in \mathbb{R}\}
$$

then, since X is r.i., we have that $X \subset Y$ and $X+\mathbb{R} \subset \operatorname{Dom}[C-\mathrm{I}, Y]$.
The paper is structured as follows: in Section 2 we start by showing some general results for a BFS X. We then establish a useful tool, in Proposition 2, for getting
precise norm estimates. Our main result is Theorem 1, where we fully characterize $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{p}(\mathbb{N})\right], 1 \leq p \leq \infty$. As a consequence of these results, we can see that while $\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \not \subset \ell^{\infty}(\mathbb{N})$, however $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right] \subset \ell_{0}^{1}(\mathbb{N})+\mathbb{R}$. In Section 3 we briefly describe the behavior at the end-point $p=1$, in terms of the weak-type space $\ell^{1, \infty}(\mathbb{N})$. Finally, in Section 4 we consider the study of optimal domains for the Copson operator C^{*} minus the identity, and show the analogous results in Theorem 2.

In what follows, we will use the standard notation $A \lesssim B$ to denote the existence of a positive constant $K>0$ (independent of the main parameters defining A and B) such that $A \leq K B$ (analogously for the notation $A \gtrsim B$). If both $A \lesssim B$ and $A \gtrsim B$ hold true, we will write $A \approx B$.

2 Domain for Cesàro type operators on sequence spaces

We start with the following auxiliary result (see, e.g., [11, end of page 2]):
Lemma 1 Let X, Y be two BFS and assume T is a positive operator (i.e., $T f \geq 0$, if $f \geq 0$), such that $T f \in Y$, whenever $f \in X$. Then, $T: X \rightarrow Y$, boundedly.

We now prove a general result on a discrete BFS X, that completes the observation made in the previous section (we refer to [1, Definition I.2.3] for the definition of X^{\prime}, the associate space of X):

Lemma 2 Let X be a discrete BFS and let X^{\prime} be its associate space. Then, the following statements are equivalent:
(i) $C: X \rightarrow X$ and $C^{*}: X \rightarrow X$ are bounded.
(ii) $\operatorname{Dom}[C-\mathrm{I}, X]=X+\mathbb{R}$ and $\operatorname{Dom}\left[C-\mathrm{I}, X^{\prime}\right]=X^{\prime}+\mathbb{R}$.
(iii) $\operatorname{Dom}\left[C^{*}-\mathrm{I}, X\right]=X$ and $\operatorname{Dom}\left[C^{*}-\mathrm{I}, X^{\prime}\right]=X^{\prime}$.

Proof We start by proving that (i) is equivalent to (ii): As we have already observed, the fact that $C: X \rightarrow X$ is bounded, immediately gives that $X+\mathbb{R} \subset \operatorname{Dom}[C-\mathrm{I}, X]$. Since $C^{*}: X \rightarrow X$ is equivalent to $C: X^{\prime} \rightarrow X^{\prime}$, we also get $X^{\prime}+\mathbb{R} \subset \operatorname{Dom}[C-$ I, $\left.X^{\prime}\right]$.

For the reverse inclusions, if $x \in \operatorname{Dom}[C-\mathrm{I}, X]$, let $y=C x-x \in X$. Then

$$
\begin{equation*}
x_{2}-x_{1}+2 y_{2}=0 \quad \text { and } \quad x_{n}-x_{1}+\frac{n}{n-1} y_{n}=-\sum_{k=2}^{n-1} \frac{y_{k}}{k-1}, n \geq 3 \tag{1}
\end{equation*}
$$

In fact, the equality is trivial for $n=2$. If $n=3$, then $-y_{2}-3 y_{3} / 2=-\left(x_{1}+x_{2}\right) / 2+$ $x_{2}-\left(x_{1}+x_{2}+x_{3}\right) / 2+3 x_{3} / 2=x_{3}-x_{1}$. If we now assume (1) to hold for a given $n \geq 3$, then

$$
\begin{aligned}
-\sum_{k=2}^{n} \frac{y_{k}}{k-1} & =x_{n}-x_{1}+\frac{n}{n-1} y_{n}-\frac{y_{n}}{n-1}=\frac{x_{1}+\cdots+x_{n}}{n}-x_{1} \\
& =x_{n+1}-x_{1}+\frac{x_{1}+\cdots+x_{n+1}}{n}-\frac{n+1}{n} x_{n+1} \\
& =x_{n+1}-x_{1}+\frac{n+1}{n} y_{n+1} .
\end{aligned}
$$

Now, observe that $C^{*}: X \rightarrow X$ implies that $\{1 / k\}_{k \in \mathbb{N}} \in X^{\prime}$. In fact, using [1, Theorem I.2.7] and [1, Corollary II.6.8]

$$
\begin{aligned}
\left\|\left\{\frac{1}{k}\right\}_{k \in \mathbb{N}}\right\|_{X^{\prime}} & =\sup _{\|x\|_{X}=1} \sum_{k \in \mathbb{N}} \frac{\left|x_{k}\right|}{k}=\sup _{\|x\|_{X}=1}\left\|C^{*}(|x|)\right\|_{e^{\infty}(\mathbb{N})} \\
& \leq \sup _{\|x\|_{X}=1}\left\|C^{*}(|x|)\right\|_{X}=\left\|C^{*}\right\|_{X \rightarrow X}<\infty .
\end{aligned}
$$

Thus, if we call $\sigma y(k)=y_{k+1}$ (the left shift operator), we have that $\sigma: X \rightarrow X$ and, for $n \geq 3$,

$$
\sum_{k=2}^{n-1} \frac{y_{k}}{k-1}=C^{*}(\sigma y)(1)-C^{*}(\sigma y)(n-1)
$$

since $y \in X$, using (1) we obtain

$$
\begin{equation*}
x_{n}=x_{1}-C^{*}(\sigma y)(1)-\frac{n}{n-1} y_{n}+C^{*}(\sigma y)(n-1) \tag{2}
\end{equation*}
$$

and taking into account that

$$
\left\{\frac{n+1}{n} y_{n+1}+C^{*}(\sigma y)(n)\right\}_{n \in \mathbb{N}} \in X^{\mathbb{N}}
$$

we finally deduce that $x \in X+\mathbb{R}$. Similarly, since $C^{*}: X^{\prime} \rightarrow X^{\prime}$ is equivalent to $C: X \rightarrow X$, reversing the role of X and X^{\prime} in the previous argument we also obtain that $\operatorname{Dom}\left[C-\mathrm{I}, X^{\prime}\right] \subset X^{\prime}+\mathbb{R}$.

Conversely, to prove that (ii) implies (i), if $\operatorname{Dom}[C-\mathrm{I}, X]=X+\mathbb{R}$, pick $x \in X$. Then, $C x-x \in X$ and hence $C x \in X$. Thus, using Lemma 1, we conclude that $C: X \rightarrow X$ is bounded. By a similar and dual argument, we can also get that $C^{*}: X \rightarrow X$.

We now show that (i) implies (iii): The fact that $C^{*}: X \rightarrow X$ is bounded gives that $X \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, X\right]$. Since $C^{*}: X^{\prime} \rightarrow X^{\prime}$ we also get that $X^{\prime} \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, X^{\prime}\right]$.

For the reversed inclusion, if $x \in \operatorname{Dom}\left[C^{*}-\mathrm{I}, X\right]$, let $y=C^{*} x-x \in X$. As in (1), one can prove by induction that

$$
\begin{equation*}
x_{n}=\frac{1}{n-1} \sum_{k=1}^{n-1} y_{k}-y_{n}=(C y)_{n-1}-y_{n}, \quad n \geq 2 \tag{3}
\end{equation*}
$$

with x_{1} arbitrary. Hence $x \in X$. Similarly, since $C: X^{\prime} \rightarrow X^{\prime}$ we get also that $\operatorname{Dom}\left[C^{*}-\mathrm{I}, X^{\prime}\right] \subset X^{\prime}$.

To finish, we prove that (iii) implies (i): If $\operatorname{Dom}\left[C^{*}-\mathrm{I}, X\right]=X$, pick $x \in X$. Then $C^{*} x-x \in X$ and hence $C^{*} x \in X$. Thus, using Lemma 2.1 we conclude that $C^{*}: X \rightarrow X$ is bounded. By a dual argument we also get that $C: X \rightarrow X$.

Remark 1 We observe that, in Lemma 2, it is not true that $C: X \rightarrow X$ if and only if $\operatorname{Dom}[C-\mathrm{I}, X]=X+\mathbb{R}$, since $C: \ell^{\infty}(\mathbb{N}) \rightarrow \ell^{\infty}(\mathbb{N})$, but we will prove in Theorem 1 that $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \neq \ell^{\infty}(\mathbb{N})$.

Let us now consider the case of the Cesàro operator C on $\ell^{1}(\mathbb{N})$. Recall that $\ell_{0}^{1}(\mathbb{N})$ denotes the subspace of $\ell^{1}(\mathbb{N})$ sequences with vanishing sum. As we have mentioned above, it is well-known that C is not bounded on $\ell^{1}(\mathbb{N})$ and, moreover, $x \equiv 0$ is the only non-negative sequence satisfying that $C x \in \ell^{1}(\mathbb{N})$. With more generality, we can prove the following (see [10] for some related results):

Proposition 1

(i) If x is non-negative sequence such that $C x \in \ell^{1}(\mathbb{N})$, then $x \equiv 0$. That is,

$$
\ell_{+}^{1}(\mathbb{N}) \cap \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]=\{0\}
$$

(ii) There exists $x \in \ell^{1}(\mathbb{N}) \backslash\{0\}$ such that $C x \in \ell^{1}(\mathbb{N})$. Moreover, any such sequence satisfies that $\sum_{n=1}^{\infty} x_{n}=0$. That is,

$$
\ell^{1}(\mathbb{N}) \cap \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]=\ell_{0}^{1}(\mathbb{N}) \cap \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \neq\{0\}
$$

(iii) There exists $x \notin \ell^{\infty}(\mathbb{N})$ such that $C x \in \ell^{1}(\mathbb{N})$ and there exists $y \in \ell_{0}^{1}(\mathbb{N})$ such that $C y \notin \ell^{1}(\mathbb{N})$. That is,

$$
\begin{equation*}
\ell_{0}^{1}(\mathbb{N}) \not \subset \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \quad \text { and } \quad \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \not \subset \ell^{\infty}(\mathbb{N}) \tag{4}
\end{equation*}
$$

Proof The proof of (i) follows from the remark that, for every $j, n \in \mathbb{N}$, we have that $x_{n} \geq x_{j} \delta_{j}(n)$, where

$$
\delta_{j}(n)= \begin{cases}0, & \text { if } j \neq n \tag{5}\\ 1 & \text { if } j=n\end{cases}
$$

Now, for $j \in \mathbb{N}$ fixed:

$$
C x(n) \geq x_{j} C \delta_{j}(n)= \begin{cases}0, & \text { if } n \leq j-1 \\ \frac{x_{j}}{n}, & \text { if } n \geq j\end{cases}
$$

Thus, $C x \in \ell^{1}(\mathbb{N})$ if and only if $x_{j}=0$, for every $j \in \mathbb{N}$.
In order to find $x \in \ell^{1}(\mathbb{N})$ such that $C x \in \ell^{1}(\mathbb{N})$, we observe that if $y=C x$, then,

$$
\begin{equation*}
x_{1}=y_{1}, x_{2}=2 y_{2}-y_{1}, \ldots, x_{k}=k y_{k}-(k-1) y_{k-1}, k \in\{2,3, \ldots\} . \tag{6}
\end{equation*}
$$

Therefore, the series $\sum_{n=1}^{\infty} x_{n}$ converges, if and only if there exists $\lim _{k \rightarrow \infty} k y_{k}$. Now, since $y \in \ell^{1}(\mathbb{N})$, then $\lim _{k \rightarrow \infty} k y_{k}=0$. In fact, if $\lim _{k \rightarrow \infty}\left|k y_{k}\right|=l>0$, then we could find $k_{0} \in \mathbb{N}$ such that $\left|y_{k}\right|>\frac{l}{2 k}$, for $k \geq k_{0}$, contradicting the fact that $y \in \ell^{1}(\mathbb{N})$. Therefore, we have proved that $\ell^{1}(\mathbb{N}) \cap \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]=$ $\ell_{0}^{1}(\mathbb{N}) \cap \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]$.

To finish the proof of (ii), take a positive sequence $y \in \ell^{1}(\mathbb{N})$ so that $\left\{k y_{k}\right\}_{k \in \mathbb{N}}$ decreases and $\lim _{k \rightarrow \infty} k y_{k}=0$ (e.g., $y_{k}=1 / k^{2}$), and define x as in (6). In this case,

$$
\sum_{n=1}^{\infty} x_{n}=\lim _{k \rightarrow \infty} k y_{k}=0
$$

Moreover, $x_{k} \leq 0$, for $k \in\{2,3, \ldots\}$ and hence

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|=\left|x_{1}\right|-\sum_{n=2}^{\infty} x_{n}=2 y_{1}<\infty
$$

To prove (iii), we consider

$$
x_{j}=\left\{\begin{aligned}
k, & \text { if } j=2^{k}, k \in \mathbb{N} \\
-k, & \text { if } j=2^{k}+1, k \in \mathbb{N} \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Then, $x \notin \ell^{\infty}(\mathbb{N})$ and

$$
C x(j)= \begin{cases}\frac{k}{2^{k}}, & \text { if } j=2^{k}, k \in \mathbb{N} \\ 0, & \text { otherwise }\end{cases}
$$

which is clearly in $\ell^{1}(\mathbb{N})$. Finally, with

$$
y_{1}=\frac{-1}{\log 2} \quad \text { and } \quad y_{n}=\frac{-1}{\log (n+1)}+\frac{1}{\log n} \geq 0, \quad n \geq 2
$$

we have that $y \in \ell_{0}^{1}(\mathbb{N})$ and

$$
\{C y(n)\}_{n \in \mathbb{N}}=\left\{\frac{-1}{n \log (n+1)}\right\}_{n \in \mathbb{N}} \notin \ell^{1}(\mathbb{N})
$$

We will now fix our attention to the study of the optimal domain in all different $\ell^{p}(\mathbb{N})$ spaces, $1 \leq p \leq \infty$. We will see that C - I enjoys a different behavior at the end-points $\ell^{1}(\mathbb{N})$ and $\ell^{\infty}(\mathbb{N})$. Recall that, given a weight w (a sequence with $w_{n}>0$, for every $n \in \mathbb{N}$), and $1 \leq p<\infty$, we define

$$
\ell^{p}(w, \mathbb{N})=\left\{\left\{x_{j}\right\}_{j \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}:\|x\|_{\ell(p}(w, \mathbb{N}) \stackrel{\text { def }}{=}\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p} w_{j}\right)^{1 / p}<\infty\right\}
$$

and analogously if $p=\infty$. With this notation, $\ell^{p}(\mathbb{N})=\ell^{p}(\mathbf{1}, \mathbb{N})$, where $\mathbf{1}$ is the constant weight $\mathbf{1}_{n}=1$, for every $n \in \mathbb{N}$. Similarly,

$$
\ell_{0}^{p}(w, \mathbb{N})=\ell^{p}(w, \mathbb{N}) \cap \ell_{0}^{1}(\mathbb{N})
$$

with $\|x\|_{\ell_{0}^{p}(w, \mathbb{N})}=\|x\|_{\ell^{p}(w, \mathbb{N})}+\|x\|_{\ell^{1}(\mathbb{N})}$.
We need first a previous result (which follows using the Closed Graph Theorem), proving the continuity of several inclusions. Observe that, with the previous definition, $\ell_{0}^{p}(w, \mathbb{N})$ is a Banach space (i.e., the cancellation property holds true in the limit, since $\ell_{0}^{1}(\mathbb{N})$ is closed in $\left.\ell^{1}(\mathbb{N})\right)$.

Proposition 2 Let w be a weight. Then,
(i) $\ell_{0}^{1}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right] \Longleftrightarrow\|C x-x\|_{\ell^{1}(\mathbb{N})} \lesssim\|x\|_{\ell^{1}(w, \mathbb{N})}+\|x\|_{\ell_{0}^{1}(\mathbb{N})}$.
(ii) $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \subset \ell_{0}^{1}(w, \mathbb{N}) \Longleftrightarrow\|x\|_{\ell_{0}^{1}(w, \mathbb{N})} \lesssim\|C x\|_{\ell^{1}(\mathbb{N})}+$ $\|x\|_{\ell_{0}^{1}(\mathbb{N})}$.
(iii) $\ell^{\infty}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \Longleftrightarrow\|C x-x\|_{\ell^{\infty}(\mathbb{N})} \lesssim\|x\|_{\ell^{\infty}(w, \mathbb{N})}$.

Proof Observe that, in all (i), (ii), and (iii), the right-hand side immediately implies the embeddings on the left. Thus, it suffices to prove the implications " \Rightarrow ".

To prove (i), let us see the continuity of the embedding:

$$
\|C x-x\|_{\ell^{1}(\mathbb{N})} \lesssim\|x\|_{\ell^{1}(w, \mathbb{N})}+\|x\|_{\ell_{0}^{1}(\mathbb{N})}
$$

Using the Closed Graph Theorem, it suffices to show that

$$
\left.\begin{array}{c}
x^{N} \xrightarrow{\ell_{0}^{1}(w, \mathbb{N})} 0 \tag{7}\\
C x^{N}-x^{N} \xrightarrow{\ell^{1}(\mathbb{N})} y
\end{array}\right\} \Longrightarrow y \equiv 0 .
$$

Now, since

$$
\sum_{n=1}^{\infty}\left|C\left(x^{N}\right)(n)-x^{N}(n)-y_{n}\right| \rightarrow 0 \text { and } \sum_{n=1}^{\infty}\left|x^{N}(n)\right| w_{n} \rightarrow 0, \text { as } N \rightarrow \infty
$$

then $\left|C\left(x^{N}\right)(n)-x^{N}(n)-y_{n}\right| \rightarrow 0$ and $\left|x^{N}(n)\right| \rightarrow 0$, for every $n \in \mathbb{N}$. Hence,

$$
\left|C\left(x^{N}\right)(n)-y_{n}\right| \rightarrow 0, \text { as } N \rightarrow \infty \text { and for every } n \in \mathbb{N}
$$

Finally, for a fixed $n \in \mathbb{N}$,

$$
C\left(x^{N}\right)(n)=\frac{1}{n} \sum_{k=1}^{n} x^{N}(k) \longrightarrow y_{n}=0
$$

which proves (7).
To prove (ii), let us see the continuity of the embedding:

$$
\|x\|_{\ell_{0}^{1}(w, \mathbb{N})} \lesssim\|C x\|_{\ell^{1}(\mathbb{N})}+\|x\|_{\ell_{0}^{1}(\mathbb{N})}
$$

Using Proposition 1 (ii) and the Closed Graph Theorem, it suffices to show that

$$
\left.\begin{array}{l}
x^{N} \xrightarrow{\ell_{0}^{1}(\mathbb{N})} 0 \\
x^{N} \xrightarrow{\ell_{0}^{1}(w, \mathbb{N})} y
\end{array}\right\} \Longrightarrow y \equiv 0,
$$

but this follows easily from the fact that $\left|x_{n}^{N}-y_{n}\right| w_{n} \rightarrow 0$ and $\left|x_{n}^{N}\right| \rightarrow 0$, as $N \rightarrow \infty$ and for very $n \in \mathbb{N}$.

Finally, to prove (iii), let us see the continuity of the embedding:

$$
\begin{equation*}
\|C x-x\|_{\ell^{\infty}(\mathbb{N})} \lesssim\|x\|_{\ell^{\infty}(w, \mathbb{N})} \tag{8}
\end{equation*}
$$

Using the Closed Graph Theorem, it suffices to show that

$$
\left.\begin{array}{c}
x^{N} \xrightarrow{\ell^{\infty}(w, \mathbb{N})} 0 \tag{9}\\
C x^{N}-x^{N} \xrightarrow{\ell^{\infty}(\mathbb{N})} y
\end{array}\right\} \Longrightarrow y \equiv 0 .
$$

Given the sequence $\left\{x^{N}\right\}_{N \in \mathbb{N}} \subset \ell^{\infty}(w, \mathbb{N})$, fix $n \in \mathbb{N}$. Then, for every $N \in \mathbb{N}$,

$$
\left|y_{n}\right| \leq\left|y_{n}-\left(C x^{N}\right)(n)+x^{N}(n)\right|+\left|\left(C x^{N}\right)(n)\right|+\left|x^{N}(n)\right|
$$

Observe that, given $\varepsilon>0$, we can find $N_{1} \in \mathbb{N}$ such that, for all $N \geq N_{1}$,

$$
\left|y_{n}-\left(C x^{N}\right)(n)+x^{N}(n)\right| \leq\left\|y-\left(C x^{N}-x^{N}\right)\right\|_{\ell^{\infty}(\mathbb{N})}<\frac{\varepsilon}{3} .
$$

Similarly, there exists $N_{2} \in \mathbb{N}$ such that, for all $N \geq N_{2}$,

$$
\left|x^{N}(n)\right|=\frac{1}{w_{n}}\left|w_{n} x^{N}(n)\right| \leq \frac{1}{w_{n}}\left\|x^{N}\right\|_{\ell^{\infty}(w, \mathbb{N})}<\frac{\varepsilon}{3} .
$$

Finally, there exists $N_{3} \in \mathbb{N}$ such that, for all $N \geq N_{3}$,

$$
\begin{aligned}
\left|\left(C x^{N}\right)(n)\right| & \leq \frac{1}{\min _{1 \leq j \leq n}\left\{w_{j}\right\}} \frac{w_{1}\left|x^{N}(1)\right|+\cdots+w_{n}\left|x^{N}(n)\right|}{n} \\
& \leq \frac{1}{\min _{1 \leq j \leq n}\left\{w_{j}\right\}}\left\|x^{N}\right\|_{\ell^{\infty}(w, \mathbb{N})}<\frac{\varepsilon}{3} .
\end{aligned}
$$

Thus, with $n \in \mathbb{N}$ fixed, given $\varepsilon>0$, if $N_{0}=\max \left\{N_{1}, N_{2}, N_{3}\right\}$, we have that for every $N \geq N_{0}$,

$$
\left|y_{n}\right|<\varepsilon, \quad \text { for every } \varepsilon>0,
$$

and, hence, $y_{n}=0$, for every $n \in \mathbb{N}$, which proves (9).
Theorem 1 (Optimal domain for $C-\mathrm{I}$ on $\ell^{p}(\mathbb{N}), 1 \leq p \leq \infty$)
(i) Case $p=1: \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right]=\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)+\mathbb{R}$. In addition,
a. $\ell_{0}^{1}(w, \mathbb{N}) \subset\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \Longleftrightarrow w_{n} \gtrsim \log (n+1)$. Hence, the logarithmic space $\ell_{0}^{1}(\log (n+1), \mathbb{N})$ is the largest $\ell_{0}^{1}(w, \mathbb{N})$ space contained in $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)$ and, moreover,

$$
\ell_{0}^{1}(\log (n+1), \mathbb{N}) \subsetneq\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)
$$

b. $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \subset \ell_{0}^{1}(w, \mathbb{N}) \Longleftrightarrow w_{n} \lesssim 1$. Hence, $\ell_{0}^{1}(\mathbb{N})$ is the smallest $\ell_{0}^{1}(w, \mathbb{N})$ space containing $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)$ and, moreover,

$$
\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \subsetneq \ell_{0}^{1}(\mathbb{N})
$$

(ii) Case $1<p<\infty$: $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{p}(\mathbb{N})\right]=\ell^{p}(\mathbb{N})+\mathbb{R}$.
(iii) Case $p=\infty$:
a. $\ell^{\infty}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \Longleftrightarrow w_{n} \gtrsim 1$. Hence, $\ell^{\infty}(\mathbb{N})$ is the largest $\ell^{\infty}(w, \mathbb{N})$ space contained in $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$ and, moreover,

$$
\ell^{\infty}(\mathbb{N}) \subsetneq \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]
$$

b. $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subset \ell^{\infty}(w, \mathbb{N}) \Longleftrightarrow w_{n} \lesssim 1 / \log (n+1)$. Hence, $\ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right)$ is the smallest weighted $\ell^{\infty}(w, \mathbb{N})$ space containing $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$ and, moreover,

$$
\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subsetneq \ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right)
$$

Proof We start by proving (i). Using the equality:

$$
\frac{x_{1}+\cdots+x_{n+1}}{n+1}-x_{n+1}=\frac{n}{n+1}\left(\frac{x_{1}+\cdots+x_{n}}{n}-x_{n+1}\right),
$$

the hypothesis $C x-x \in \ell^{1}(\mathbb{N})$ is equivalent to $C x-\sigma x \in \ell^{1}(\mathbb{N})$, where, as before, $\sigma x(n)=x_{n+1}$ is the left shift operator. For convenience, we will then work with this second condition.

Assume now that $C x-\sigma x \in \ell^{1}(\mathbb{N})$. Let us first see that, necessarily, x is a convergent sequence (to some value $\alpha \in \mathbb{R}$): We define the sequence $d=C x-\sigma x$. Then, inductively as in (1), we have that

$$
x_{2}=x_{1}-d_{1}, x_{3}=x_{1}-\frac{d_{1}}{2}-d_{2}, \ldots, x_{n+1}=x_{1}-\frac{d_{1}}{2}-\cdots-\frac{d_{n-1}}{n}-d_{n}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} x_{n}=x_{1}-\sum_{j=1}^{\infty} \frac{d_{j}}{j+1} .
$$

Setting $\alpha=x_{1}-\sum_{j=1}^{\infty} d_{j} /(j+1)$, let us now prove that $x-\alpha=\left\{x_{j}-\alpha\right\}_{j \in \mathbb{N}} \in \ell^{1}(\mathbb{N})$. In fact,

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left|x_{n}-\alpha\right| & =\left|x_{1}-\alpha\right|+\left|x_{2}-\alpha\right|+\sum_{n=3}^{\infty}\left|x_{1}-\sum_{j=1}^{n-2} \frac{d_{j}}{j+1}-d_{n-1}-\left(x_{1}-\sum_{j=1}^{\infty} \frac{d_{j}}{j+1}\right)\right| \\
& =\left|x_{1}-\alpha\right|+\left|x_{2}-\alpha\right|+\sum_{n=3}^{\infty}\left|\sum_{j=n-1}^{\infty} \frac{d_{j}}{j+1}-d_{n-1}\right| \\
& \leq\left|x_{1}-\alpha\right|+\left|x_{2}-\alpha\right|+\sum_{n=3}^{\infty} \sum_{j=n-1}^{\infty} \frac{\left|d_{j}\right|}{j+1}+\sum_{n=3}^{\infty}\left|d_{n-1}\right| \\
& \leq\left|x_{1}-\alpha\right|+\left|x_{2}-\alpha\right|+\sum_{j=2}^{\infty}\left|d_{j}\right|+\sum_{n=3}^{\infty}\left|d_{n-1}\right|<\infty
\end{aligned}
$$

Before proving that $x-\alpha \in \ell_{0}^{1}(\mathbb{N})$ (i.e., the cancellation property), let us show that $x-\alpha \in \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]$:

$$
C x-x=C(x-\alpha)-(x-\alpha) \in \ell^{1}(\mathbb{N}) \text { and } x-\alpha \in \ell^{1}(\mathbb{N}) \Rightarrow C(x-\alpha) \in \ell^{1}(\mathbb{N})
$$

which means $x-\alpha \in \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]$. Now, using Proposition 1-(ii), we also conclude that $x-\alpha \in \ell_{0}^{1}(\mathbb{N})$. Thus, $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right] \subset\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)+\mathbb{R}$.

Conversely, if $x-\alpha \in\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)$, then:
$C(x-\alpha) \in \ell^{1}(\mathbb{N})$ and $(x-\alpha) \in \ell^{1}(\mathbb{N}) \Rightarrow C x-x=C(x-\alpha)-(x-\alpha) \in \ell^{1}(\mathbb{N})$,
i.e., $x \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$. Observe that, by (4), the intersection in (i) cannot be simplified.

Let us prove $(i)-(a)$. Using Proposition $2(i)$, if we assume that $\ell_{0}^{1}(w, \mathbb{N}) \subset$ $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right.$), then, with $x^{N}=\delta_{1}-\delta_{N}, N \geq 2$ (see (5)), we have $\log (N+1) \approx\left\|C x^{N}-x^{N}\right\|_{\ell^{1}(\mathbb{N})} \lesssim\left\|x^{N}\right\|_{\ell^{1}(w, \mathbb{N})}+\left\|x^{N}\right\|_{\ell^{1}(\mathbb{N})}=w_{1}+w_{N}+2 \lesssim w_{N}$.

Conversely, since $\ell_{0}^{1}(\log (n+1), \mathbb{N}) \subset \ell_{0}^{1}(\mathbb{N})$, using the first equality of (i), we only need to show that $\ell_{0}^{1}(\log (n+1), \mathbb{N}) \subset \operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right]$: If $x \in \ell_{0}^{1}(\log (n+1), \mathbb{N})$, then

$$
\sum_{n=1}^{\infty}|C x(n)|=\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=n+1}^{\infty} x_{k}\right| \leq \sum_{k=1}^{\infty}\left|x_{k}\right| \sum_{n=1}^{k} \frac{1}{n} \approx \sum_{k=1}^{\infty}\left|x_{k}\right| \log (k+1)<\infty .
$$

To finish this part, it suffices to observe that, if

$$
x_{j}= \begin{cases}\frac{1}{j \log ^{2} j}, & \text { if } j \text { is even } \\ \frac{-1}{(j+1) \log ^{2}(j+1)}, & \text { if } j \text { is odd }\end{cases}
$$

then, $\left\{x_{j}\right\}_{j \in \mathbb{N}} \in \ell_{0}^{1}(\mathbb{N}) \backslash \ell_{0}^{1}(\log (n+1), \mathbb{N})$, and

$$
C x(j)= \begin{cases}0, & \text { if } j \text { is even } \\ \frac{-1}{j(j+1) \log ^{2}(j+1)}, & \text { if } j \text { is odd }\end{cases}
$$

which clearly satisfies that $C x \in \ell^{1}(\mathbb{N})$. Hence,

$$
\ell_{0}^{1}(\log (n+1), \mathbb{N}) \subsetneq\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right)
$$

Let us now see $(i)-(b)$. If $\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \subset \ell_{0}^{1}(w, \mathbb{N})$, using Proposition $2(i i)$, with the sequence $x^{N}=\delta_{N}-\delta_{N+1}$, we conclude that $C x^{N}=\frac{1}{N} \delta_{N}$, and

$$
w_{N} \leq\left\|x^{N}\right\|_{\ell_{0}^{1}(w, \mathbb{N})}=w_{N}+w_{N+1} \lesssim\left\|C x^{N}\right\|_{\ell^{1}(\mathbb{N})}+\left\|x^{N}\right\|_{\ell_{0}^{1}(\mathbb{N})}=(1+1 / N) \lesssim 1
$$

Conversely, if $w_{n} \lesssim 1$, then trivially

$$
\left(\operatorname{Dom}\left[C, \ell^{1}(\mathbb{N})\right] \cap \ell_{0}^{1}(\mathbb{N})\right) \subset \ell_{0}^{1}(\mathbb{N}) \subset \ell_{0}^{1}(w, \mathbb{N})
$$

That the embedding is strict follows from (4).
The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for $1<p<\infty$, both operators $C, C^{*}: \ell^{p}(\mathbb{N}) \rightarrow \ell^{p}(\mathbb{N})$ are bounded (as was proved in [8, Theorems 326 and 331] and [4]).

We now consider (iii), the end-point case $p=\infty$. It is clear that if $w \gtrsim 1$, then $\ell^{\infty}(w, \mathbb{N}) \subset \ell^{\infty}(\mathbb{N}) \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$. If we now assume the embedding $\ell^{\infty}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$, then necessarily $w_{n}>0$, for every $n \in \mathbb{N}$, since, otherwise, we could find $x \in \ell^{\infty}(w, \mathbb{N})$, with $x_{n}=\infty$, which clearly does not belong to $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$ (we need $x \in \ell_{\mathrm{loc}}^{1}(\mathbb{N})$ to define C). Let us see that, in fact, $\inf _{n \in \mathbb{N}} w_{n}>0$, which is equivalent to $w \gtrsim 1$.

Take now $x=e_{n}=\{0, \stackrel{n-1}{-}, 0,1,0, \ldots\}, n \geq 2$. Then, using (8),

$$
\begin{align*}
w(n) & \gtrsim\left\|C e_{n}-e_{n}\right\|_{\ell^{\infty}(\mathbb{N})} \\
& \approx\left\|\left\{0, \frac{n-1}{\cdot}, 0, \frac{1}{n}, \frac{1}{n+1}, \ldots\right\}-\left\{0, \frac{n-1}{\cdot}, 0,1,0, \ldots\right\}\right\|_{\ell^{\infty}(\mathbb{N})} \tag{10}\\
& \gtrsim\left|\frac{1}{n}-1\right| \gtrsim \frac{1}{2}
\end{align*}
$$

Hence, $w \gtrsim 1$ and $\ell^{\infty}(\mathbb{N})$ is the largest $\ell^{\infty}(w, \mathbb{N})$ space contained in $\operatorname{Dom}[C-$ $\left.\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$. To finish the proof of $(i i i)-(a)$, we pick $x=\{\log n\}_{n \in \mathbb{N}} \notin \ell^{\infty}(\mathbb{N})$. On the other hand,

$$
(C x)(n)=\frac{1}{n} \log (n!) \quad \text { and } \quad(C x)(n)-x_{n}=\log \left(\frac{(n!)^{1 / n}}{n}\right)
$$

But,

$$
\lim _{n \rightarrow \infty} \frac{(n!)^{1 / n}}{n}=\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{n}}\right)^{1 / n}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{n+1}{(n+1)(1+1 / n)^{n}}=\frac{1}{e}
$$

Thus, $(C x-x) \in \ell^{\infty}(\mathbb{N})$; i.e.,

$$
\begin{equation*}
x=\{\log n\}_{n \in \mathbb{N}} \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \backslash \ell^{\infty}(\mathbb{N}) \tag{11}
\end{equation*}
$$

We now consider the proof of (iii)-(b). Since $w_{n} \lesssim 1 / \log (n+1)$ implies that $\ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right) \subset \ell^{\infty}(w, \mathbb{N})$, it suffices to see that $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subset$ $\ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right)$. In fact, if $x \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$ and we set $y=C x-x \in$ $\ell^{\infty}(\mathbb{N})$, using (1) we obtain, for $n \geq 2$:

$$
\begin{aligned}
\frac{\left|x_{n}\right|}{\log (n+1)} & =\left|x_{1}-\frac{n}{n-1} y_{n}+\sum_{k=2}^{n-1} \frac{y_{k}}{k-1}\right| \frac{1}{\log (n+1)} \\
& \lesssim\left(\left|x_{1}\right|+\left|y_{n}\right|+\sum_{k=2}^{n-1} \frac{\left|y_{k}\right|}{k-1}\right) \frac{1}{\log (n+1)} \\
& \lesssim\left|x_{1}\right|+\|y\|_{\ell^{\infty}(\mathbb{N})}(1+\log n) \frac{1}{\log (n+1)} \lesssim\left|x_{1}\right|+\|y\|_{\ell^{\infty}(\mathbb{N})} .
\end{aligned}
$$

Thus, $x \in \ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right)$. Let us see that the embedding is strict. Consider

$$
x=\left\{x_{n}\right\}_{n \in \mathbb{N}}=\left\{(-1)^{n} \log n\right\}_{n \in \mathbb{N}} \in \ell^{\infty}\left(\frac{1}{\log (n+1)}\right) .
$$

Then,

$$
\begin{aligned}
\frac{x_{1}+\cdots+x_{2 n}}{2 n}-x_{2 n} & =\frac{-\log \left(\prod_{j=1}^{n}(2 j-1)\right)+\log \left(\prod_{j=1}^{n} 2 j\right)}{2 n}-\log 2 n \\
& =\frac{1}{2 n} \log \left(\frac{2^{n} n!}{\prod_{j=1}^{n}(2 j-1)}\right)-\log 2 n \\
& =\log \left(\frac{2^{n} n!}{(2 n)^{2 n} \prod_{j=1}^{n}(2 j-1)^{2}}\right)^{\frac{1}{2 n}} .
\end{aligned}
$$

But,

$$
\begin{aligned}
\frac{2^{n+1}(n+1)!}{(2 n+2)^{2 n+2} \prod_{j=1}^{n+1}(2 j-1)} & =2 \frac{(2 n)^{2 n}}{(2 n+2)^{2 n+2}} \frac{n+1}{2 n+1} \\
& =2 \frac{n+1}{2 n+1} \frac{1}{\left(2 n \prod^{2 n} \prod_{j=1}^{n}(2 j-1)\right.} \frac{1}{(1+1 / n)^{2 n}} \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

Hence,

$$
\begin{equation*}
(C x-x)(2 n) \underset{n \rightarrow \infty}{\longrightarrow}-\infty \quad \text { and } \quad x \notin \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \tag{12}
\end{equation*}
$$

Finally, let us prove that $\ell^{\infty}\left(\{1 / \log (n+1)\}_{n}, \mathbb{N}\right)$ is the smallest $\ell^{\infty}(w, \mathbb{N})$ space containing $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$. In fact, as we have already observed in (11), $x=$ $\{\log n\}_{n \in \mathbb{N}} \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$. Therefore, if $x \in \ell^{\infty}(w, \mathbb{N})$, then

$$
w_{n} \lesssim \frac{1}{\log (n+1)} \quad \Longrightarrow \quad \ell^{\infty}\left(\frac{1}{\log (n+1)}\right) \subset \ell^{\infty}(w, \mathbb{N})
$$

Remark 2 As a consequence of Theorem 1, we can prove that, for all values $1 \leq p \leq$ $\infty, \operatorname{Dom}\left[C-\mathrm{I}, \ell^{p}(\mathbb{N})\right]$ is not a space satisfying the lattice property (i.e., if $|y| \leq|x|$ and x belongs to the space, so does y). In fact, if $p=1$,
$x=e_{1}-e_{2} \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$, but $y=\left|e_{1}-e_{2}\right|=e_{1}+e_{2} \notin \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$.
For $1<p<\infty$, it suffices to consider

$$
x=\left\{\frac{1}{n}+1\right\}_{n \in \mathbb{N}} \in \ell^{p}(\mathbb{N})+\mathbb{R}, \text { but } y=\left\{(-1)^{n}\left(\frac{1}{n}+1\right)\right\}_{n \in \mathbb{N}} \notin \ell^{p}(\mathbb{N})+\mathbb{R}
$$

Similarly, as proved in (11) and (12), for $p=\infty$,

$$
\{\log n\}_{n \in \mathbb{N}} \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right], \text { but }\left\{(-1)^{n} \log n\right\}_{n \in \mathbb{N}} \notin \operatorname{Dom}\left[C-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]
$$

3 Weak-type estimates

We are now going to consider some extensions, at the end-point $p=1$, of the classical weak-type estimates for the Cesàro operator. In particular, we will study the domain $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{p, \infty}\right]$, where, for $1 \leq p<\infty$ and x^{*} being the decreasing rearrangement of the sequence x,

$$
\ell^{p, \infty}(\mathbb{N})=\left\{x=\left\{x_{j}\right\}_{j \in \mathbb{N}}:\|x\|_{\ell, p, \infty}(\mathbb{N}) \stackrel{\text { def }}{=} \sup _{n \in \mathbb{N}} n^{1 / p} x_{n}^{*}<\infty\right\} .
$$

Let us first observe that, if $1<p<\infty$, since both C and C^{*} are bounded in $\ell^{p, \infty}(\mathbb{N})$, and using Lemma 2, then

$$
\operatorname{Dom}\left[C-\mathrm{I}, \ell^{p, \infty}(\mathbb{N})\right]=\ell^{p, \infty}(\mathbb{N})+\mathbb{R}
$$

as in Theorem 1 (ii). Now, if $p=1$, we have the following results:
Proposition 3 Let w be a weight in \mathbb{N}. Then,

$$
\ell^{1}(w, \mathbb{N})+\mathbb{R} \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \Longleftrightarrow w_{n} \gtrsim 1
$$

Hence, $\ell^{1}(\mathbb{N})$ is the largest $\ell^{1}(w, \mathbb{N})$ space contained in $\operatorname{Dom}\left[C-I, \ell^{1, \infty}(\mathbb{N})\right]$ and, moreover,

$$
\ell^{1}(\mathbb{N})+\mathbb{R} \varsubsetneqq \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right]
$$

Proof Since $w_{n} \gtrsim 1$ implies that $\ell^{1}(w, \mathbb{N}) \subset \ell^{1}(\mathbb{N})$, using that $\ell^{1}(\mathbb{N}) \subset \ell^{1, \infty}(\mathbb{N})$ and

$$
\|C x\|_{\ell^{1, \infty}(\mathbb{N})} \leq\left\|C x^{*}\right\|_{\ell^{1, \infty}(\mathbb{N})}=\sup _{n \in \mathbb{N}} n\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}^{*}\right)=\left\|x^{*}\right\|_{\ell^{1}(\mathbb{N})}=\|x\|_{\ell^{1}(\mathbb{N})}
$$

we finally get that $\ell^{1}(w, \mathbb{N})+\mathbb{R} \subset \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right]$.
Conversely, if we fix $N \geq 2$ and pick $x=\delta_{N}$, then as in (10),

$$
\left\|C \delta_{N}-\delta_{N}\right\|_{\ell^{1, \infty}(\mathbb{N})}=\max \left\{1-1 / N, \sup _{k \geq 2} \frac{k}{k+N}\right\}=1 \lesssim w_{N}
$$

To prove that the inclusion is strict, it suffices to consider the alternating sequence $x=\left\{(-1)^{n} / n\right\}_{n \in \mathbb{N}} \notin \ell^{1}(\mathbb{N})+\mathbb{R}$. Then

$$
|(C x-x)(n)|=\frac{1}{n}\left|\sum_{k=1}^{n} \frac{(-1)^{k}}{k}-(-1)^{n}\right| \lesssim \frac{1}{n}
$$

Thus, since $\{1 / n\}_{n \in \mathbb{N}} \in \ell^{1, \infty}(\mathbb{N})$, then $(C x-x) \in \ell^{1, \infty}(\mathbb{N})$ and we conclude the result.

We end this section with some further results dealing with $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right]$, and give also a complete description when restricted to the cone of decreasing sequences. We begin with some useful definitions and an interesting weak-type estimate for the Copson operator C^{*} :

Definition 1 Given a positive sequence (a weight) w, we define the weighted weaktype space

$$
\ell^{1, \infty}(w, \mathbb{N})=\left\{x=\left\{x_{n}\right\}_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}:\|x\|_{\ell^{1, \infty}(w, \mathbb{N})}=\sup _{n \in \mathbb{N}} w_{n} x_{n}^{*}<\infty\right\}
$$

Observe that, with this definition, $\ell^{1, \infty}(\mathbb{N})=\ell^{1, \infty}\left(\{n\}_{n \in \mathbb{N}}, \mathbb{N}\right)$. Also, for reasons that will be clarified in the next proposition, we have that

$$
\ell^{1, \infty}(\mathbb{N}) \subset \ell^{1, \infty}\left(\left\{\frac{n}{1+\log n}\right\}_{n \in \mathbb{N}}, \mathbb{N}\right) \subset \ell^{p}(\mathbb{N}), \text { for } p>1
$$

Definition 2 Given a sequence space X, we denote by

$$
X_{\mathrm{dec}}=\left\{x=\left(x_{n}\right)_{n} \in X: x_{n} \geq 0 \text { and } x_{n} \geq x_{n+1}, n \in \mathbb{N}\right\}
$$

Lemma 3 Let $p>0$. Then, $\ell^{1, \infty}(\mathbb{N}) \subset \ell^{p}(w, \mathbb{N})$, with embedding constant $A>0$, if and only if $w \in \ell^{\infty}(\mathbb{N})$. Moreover

$$
\max \left\{\|w\|_{\infty}^{1 / p},\left(\sum_{j=1}^{\infty} \frac{w_{j}}{j}\right)^{1 / p}\right\} \leq A \leq\left(\sum_{j=1}^{\infty} \frac{w_{j}^{*}}{j}\right)^{1 / p}
$$

In particular, if w is a decreasing weight, then $\ell^{1, \infty}(\mathbb{N}) \subset \ell^{p}(w, \mathbb{N})$, with embedding constant $A>0$, if and only if $A=\left(\sum_{j=1}^{\infty} \frac{w_{j}}{j}\right)^{1 / p}<\infty$.

Proof For the necessity part, taking $x=\delta_{j}$, we clearly get that

$$
\|x\|_{\ell^{p}(w, \mathbb{N})}=w_{j}^{1 / p} \leq A\|x\|_{1, \infty}=A
$$

Thus, $\|w\|_{\infty}^{1 / p} \leq A$. Now, with $x_{n}=1 / n,\|x\|_{1, \infty}=1$ and

$$
\|x\|_{\ell p(w, \mathbb{N})}=\left(\sum_{j=1}^{\infty} \frac{w_{j}}{j}\right)^{1 / p} \leq A
$$

Conversely, using Hardy and Littlewood's inequality [1, Theorem II.2.2],

$$
\|x\|_{\ell p(w, \mathbb{N})}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{p} w_{j}\right)^{1 / p} \leq\left(\sum_{j=1}^{\infty}\left(x_{j}^{*}\right)^{p} w_{j}^{*}\right)^{1 / p} \leq\|x\|_{1, \infty}\left(\sum_{j=1}^{\infty} \frac{w_{j}^{*}}{j}\right)^{1 / p}
$$

Proposition 4

(i) $C^{*}: \ell^{1, \infty}(\mathbb{N}) \longrightarrow \ell^{1, \infty}\left(\left\{\frac{n}{1+\log n}\right\}_{n \in \mathbb{N}}, \mathbb{N}\right)$.
(ii) $C^{*}: \ell^{1, \infty}(\mathbb{N}) \nrightarrow \ell^{1, \infty}(\mathbb{N})$.
(iii) $C^{*}: \ell^{1, \infty}(\mathbb{N})_{\operatorname{dec}} \longrightarrow \ell^{1, \infty}(\mathbb{N})$.

Proof We start with (i). We observe that, if $x \in \ell^{1, \infty}(\mathbb{N})$, then the series $\sum_{k=1}^{\infty} \frac{x_{k}}{k}$ converges (absolutely) and $C^{*}(x)$ is well defined. Now,

$$
\left|\sum_{k=n}^{\infty} \frac{x_{k}}{k}\right| \leq \sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k}
$$

and, hence,

$$
\left(\sum_{k=n}^{\infty} \frac{x_{k}}{k}\right)^{*} \leq \sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k}
$$

Now, using Lemma 3, with $w=(\overbrace{0, \ldots, 0}^{n-1}, 1 / n, 1 /(n+1), \ldots)$ and $p=1$, we have that $w^{*}=\{1 /(k+n-1)\}_{k \in \mathbb{N}}$ and

$$
\sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k}=\|x\|_{\ell^{1}(w, \mathbb{N})} \leq \sum_{k=1}^{\infty} \frac{1}{k(k+n-1)}\|x\|_{1, \infty} \lesssim \frac{1+\log n}{n}\|x\|_{1, \infty}
$$

Finally,

$$
\left\|C^{*}(x)\right\|_{\ell^{1, \infty}}\left(\left\{\frac{n}{1+\log n}\right\}_{n \in \mathbb{N}}, \mathbb{N}\right)=\sup _{n \in \mathbb{N}} \frac{n}{1+\log n}\left(\sum_{k=n}^{\infty} \frac{x_{k}}{k}\right)^{*} \lesssim\|x\|_{1, \infty} .
$$

The proof of (ii) goes as follows. For a fixed odd number $m \in \mathbb{N}$, we consider the sequence $x^{m}=(1 / m, 1 /(m-1), \ldots, 1,0, \ldots, 0, \ldots)$ and set $j=(m+1) / 2$. Then, $\left(x^{m}\right)^{*}=(1,1 / 2, \ldots, 1 / m, 0, \ldots, 0 \ldots)$ and $\left\|x^{m}\right\|_{1, \infty}=1$. On the other hand, with the same value of $j=(m+1) / 2$,

$$
\begin{aligned}
\left\|C^{*} x^{m}\right\|_{1, \infty} & \geq j C^{*} x^{m}(j)=\frac{m+1}{2} \sum_{k=(m+1) / 2}^{m} \frac{1}{k(m-k+1)} \\
& =\frac{m+1}{2} \frac{1}{m+1}\left(\sum_{k=(m+1) / 2}^{m} \frac{1}{k}+\sum_{k=1}^{(m+1) / 2} \frac{1}{k}\right) \gtrsim \sum_{k=1}^{(m+1) / 2} \frac{1}{k} \underset{m \rightarrow \infty}{\longrightarrow} \infty .
\end{aligned}
$$

To finish, if we now select $y \in \ell^{1, \infty}(\mathbb{N})_{\operatorname{dec}}$, then $\left(C^{*} y\right)^{*}(n) \leq C^{*}(|y|)(n)=$ $C^{*}\left(y^{*}\right)(n)$ and

$$
n\left(C^{*} y\right)^{*}(n) \leq n \sum_{k=n}^{\infty} \frac{\|y\|_{1, \infty}}{k^{2}} \lesssim\|y\|_{1, \infty}
$$

Remark 3 We observe that Proposition 4 (ii) shows that $\ell^{1, \infty}(\mathbb{N})$ is not an interpolation quasi-Banach space between $\ell^{1}(\mathbb{N})$ and $\ell^{p}(\mathbb{N})$, for every $1<p<\infty$.

Proposition 5

(i) $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \subset \ell^{1, \infty}\left(\left\{\frac{n}{1+\log n}\right\}_{n \in \mathbb{N}}, \mathbb{N}\right)+\mathbb{R}$.
(ii) $\operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \not \subset \ell^{1, \infty}(\mathbb{N})+\mathbb{R}$.
(iii) $\operatorname{Dom}_{\operatorname{dec}}\left[C, \ell^{1, \infty}(\mathbb{N})\right]=\ell_{\mathrm{dec}}^{1}(\mathbb{N})=\operatorname{Dom}_{\operatorname{dec}}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \cap \ell^{1, \infty}(\mathbb{N})$.

Proof Using (2), if $x \in \operatorname{Dom}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right]$ and $y=C x-x \in \ell^{1, \infty}(\mathbb{N})$, then

$$
x_{n}=\left(x_{1}-\sum_{k=2}^{\infty} \frac{y_{k}}{k-1}\right)-\frac{n}{n-1} y_{n}+\sum_{k=n}^{\infty} \frac{y_{k}}{k-1},
$$

and the result of (i) follows using Proposition 4 (i).
The proof of (ii) follows similarly using now Proposition 4 (ii).
For the first equality in (iii), we already know that $\ell^{1}(\mathbb{N}) \subset \operatorname{Dom}\left[C, \ell^{1, \infty}(\mathbb{N})\right]$ and hence

$$
\ell_{\mathrm{dec}}^{1}(\mathbb{N}) \subset \operatorname{Dom}_{\mathrm{dec}}\left[C, \ell^{1, \infty}(\mathbb{N})\right]
$$

Conversely, if $x \downarrow$ and $C x \in \ell^{1, \infty}(\mathbb{N})$, then

$$
\sup _{n} n(C x)_{n}^{*}=\sup _{n} \sum_{k=1}^{n} x_{n}^{*}=\|x\|_{\ell^{1}(\mathbb{N})}<\infty .
$$

That $\ell_{\mathrm{dec}}^{1}(\mathbb{N}) \subset \operatorname{Dom}_{\mathrm{dec}}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \cap \ell^{1, \infty}(\mathbb{N})$ is trivial. Finally, if

$$
x \in \operatorname{Dom}_{\operatorname{dec}}\left[C-\mathrm{I}, \ell^{1, \infty}(\mathbb{N})\right] \cap \ell^{1, \infty}(\mathbb{N})
$$

then $C x=(C-\mathrm{I}) x+x \in \ell^{1, \infty}(\mathbb{N})$ and $x \in \operatorname{Dom}_{\operatorname{dec}}\left[C, \ell^{1, \infty}(\mathbb{N})\right]$.

4 Domain for Copson type operators on sequence spaces

In this final section, we are going to study the analogous results of Section 2, but for the Copson operator C^{*}. We start with some properties for C^{*}, similar to those proved in Proposition 1 for C.

Proposition 6

(i) There exists $x \in \ell^{\infty}(\mathbb{N}) \backslash\{0\}$ such that $C^{*} x \in \ell^{\infty}(\mathbb{N})$; that is,

$$
\ell^{\infty}(\mathbb{N}) \cap \operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right] \neq\{0\}
$$

(ii) There exists $x \notin \ell^{\infty}(\mathbb{N})$ such that $C^{*} x \in \ell^{\infty}(\mathbb{N})$; that is,

$$
\operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right] \not \subset \ell^{\infty}(\mathbb{N})
$$

Proof To prove (i), take $x=(-1)^{n}, n \geq 1$. To show (ii), pick $x=(-1)^{n} \sqrt{n}, n \geq 1$. Then, $x \notin \ell^{\infty}(\mathbb{N})$ but $C^{*} x \in \ell^{\infty}(\mathbb{N})$.

Proposition 7 Let $w>0$. Then,

$$
C^{*}: \ell^{\infty}(w, \mathbb{N}) \longrightarrow \ell^{\infty}(\mathbb{N})
$$

is bounded if and only if $A=\sum_{n=1}^{\infty} \frac{1}{n w_{n}}<\infty$.
Proof We prove first the sufficiency of the condition; i.e., if $A=\sum_{n=1}^{\infty} \frac{1}{n w_{n}}<\infty$ then the operator is bounded. By homogeneity it is sufficient to prove that $\left\|C^{*} x\right\|_{\infty} \leq A$, for all x such that $\left|x_{n}\right| w_{n} \leq 1$. Now,

$$
\left\|C^{*} x\right\|_{\infty}=\sup _{n}\left|\sum_{k=n}^{\infty} \frac{x_{k}}{k}\right| \leq \sup _{n} \sum_{k=n}^{\infty} \frac{1}{k w_{k}}=A .
$$

Hence C^{*} is bounded and $\left\|C^{*}\right\|_{\infty} \leq A$.
To prove the necessity, take $x_{N}=\left(\frac{1}{w_{1}}, \frac{1}{w_{2}}, \ldots, \frac{1}{w_{N}}, 0, \ldots, 0, \ldots\right)$ (a sequence for every $N \in \mathbb{N}$). Since C^{*} is bounded, we get

$$
\left\|C^{*} x_{N}\right\|_{\infty}=\sup _{n} \sum_{k=n}^{N} \frac{1}{k w_{k}}=\sum_{k=1}^{N} \frac{1}{k w_{k}} \leq\left\|C^{*}\right\|_{\infty},
$$

for any N, which implies that $A=\sum_{k=1}^{\infty} \frac{1}{k w_{k}} \leq\left\|C^{*}\right\|_{\infty}$. Hence, A is also the best constant in the inequality.

Theorem 2 (Optimal domain for $C^{*}-\operatorname{I}$ on $\ell^{p}(\mathbb{N}), 1 \leq p \leq \infty$)
(i) Case $p=1$:
a. $\ell^{1}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right] \Longleftrightarrow w_{n} \gtrsim 1$. Hence, $\ell^{1}(\mathbb{N})$ is the largest weighted space $\ell^{1}(w, \mathbb{N})$ contained in $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$ and the inclusion is strict.
b. $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right] \subsetneq \ell^{1, \infty}(\mathbb{N})$.
(ii) Case $1<p<\infty$: $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{p}(\mathbb{N})\right]=\ell^{p}(\mathbb{N})$.
(iii) Case $p=\infty: \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]=\operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right] \cap \ell^{\infty}(\mathbb{N})$. Moreover,
a. if $W=\left\{\left(w_{n}\right)_{n}: w_{n} \gtrsim 1\right.$ and $\left.\sum_{n=1}^{\infty} \frac{1}{n w_{n}}<\infty\right\}$, then

$$
\ell^{\infty}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \Longleftrightarrow w \in W
$$

b. $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subset \ell^{\infty}(w, \mathbb{N}) \Longleftrightarrow w_{n} \lesssim 1$. Hence, $\ell^{\infty}(\mathbb{N})$ is the smallest weighted space $\ell^{\infty}(w, \mathbb{N})$ that contains $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$ and the inclusion is strict.

Proof We prove first $(i)-(a)$. If we assume that $\ell^{1}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$; i.e., $\left\|C^{*} x-x\right\|_{1} \lesssim\|x\|_{\ell^{1}(w, \mathbb{N})}$, taking $x^{N}=\delta_{N}$, for $N \geq 2$, we have

$$
\left(C^{*} x^{N}-x^{N}\right)_{n}= \begin{cases}\frac{1}{N}, & \text { if } 1 \leq n \leq N-1, \tag{13}\\ -\frac{N-1}{N}, & \text { if } n=N \\ 0, & \text { if } n>N\end{cases}
$$

Hence, we have

$$
1 \leq \frac{2(N-1)}{N} \lesssim w_{N}=\left\|x^{N}\right\|_{\ell^{1}(w, \mathbb{N})}
$$

Conversely, if $w_{n} \gtrsim 1, \ell^{1}(w, \mathbb{N}) \subset \ell^{1}(\mathbb{N}) \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$, since C^{*} is bounded from $\ell^{1}(\mathbb{N})$ into $\ell^{1}(\mathbb{N})$. That the inclusion is strict follows by considering the sequence $x_{n}=1 /(n+1), n \geq 1$, which belongs to $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$ but not to $\ell^{1}(\mathbb{N})$. In fact,

$$
\begin{aligned}
\left(C^{*}-\mathrm{I}\right)(x) & =\sum_{k=n}^{\infty} \frac{1}{k(k+1)}-\frac{1}{n+1}=\sum_{k=n}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)-\frac{1}{n+1} \\
& =\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}=y_{n}
\end{aligned}
$$

which shows that $x \in \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$.
Let us now see $(i)-(b)$. Let $x \in \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$. Hence, $y=C^{*} x-x \in \ell^{1}(\mathbb{N})$ and using (3) we get that

$$
x_{n}=(C y)_{n-1}-y_{n}, \quad n \geq 2
$$

Thus, using Proposition 3 we conclude that $x \in \ell^{1, \infty}$. Finally, to prove that the embedding is strict, we define

$$
x_{n}=\frac{1}{n-1} \sum_{k=1}^{n-1} \frac{(-1)^{k}}{k}-\frac{(-1)^{n}}{n}
$$

As above, using (3), we have that $y_{n}=\left(C^{*} x-x\right)(n)=\frac{(-1)^{n}}{n} \notin \ell^{1}(\mathbb{N})$ and, hence, $x \notin \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{1}(\mathbb{N})\right]$, but

$$
\left|x_{n}\right| \leq \frac{1}{n-1}\left|\sum_{k=1}^{n-1} \frac{(-1)^{k}}{k}\right|+\frac{1}{n} \lesssim \frac{1}{n} \in \ell^{1, \infty} .
$$

The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for $1<p<\infty$, both C and C^{*} are bounded on $\ell^{p}(\mathbb{N})$.

We consider now the equality $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]=\operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right] \cap \ell^{\infty}(\mathbb{N})$ in (iii). Assume firstly that $y=C^{*} x-x \in \ell^{\infty}(\mathbb{N})$. As above, using (3), since $(C y)_{n} \in \ell^{\infty}(\mathbb{N})$, when $y \in \ell^{\infty}(\mathbb{N})$, we necessarily get that $x \in \ell^{\infty}(\mathbb{N})$. Also, the equality

$$
\sum_{k=n}^{\infty} \frac{x_{k}}{k}=x_{n}+y_{n}, \quad n \geq 2
$$

implies

$$
\left\|C^{*} x\right\|_{\infty} \leq\|y\|_{\infty}+\|x\|_{\infty}<\infty
$$

i.e., $x \in \operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right]$.

Conversely, if $x \in \operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right] \cap \ell^{\infty}(\mathbb{N})$, then trivially $y=C^{*} x-x \in \ell^{\infty}(\mathbb{N})$.

For the proof of $(i i i)-(a)$, let $w \in W$. Then, $w_{n} \gtrsim 1$ (i.e., $\left.\ell^{\infty}(w, \mathbb{N}) \subset \ell^{\infty}(\mathbb{N})\right)$ and hence, by the previous equality, it is enough to show that $\ell^{\infty}(w, \mathbb{N}) \subset$ $\operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right]$, which follows from Proposition 7.

Conversely, if $\ell^{\infty}(w, \mathbb{N}) \subset \operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$, we get that $\ell^{\infty}(w, \mathbb{N}) \subset$ $\operatorname{Dom}\left[C^{*}, \ell^{\infty}(\mathbb{N})\right]$ and $\ell^{\infty}(w, \mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$, which as before, and from Proposition 7, imply that $w \in W$.

To prove the necessity part of (iii)-(b), we choose $x^{N}=\delta_{N}$. The embedding and (13) imply $w_{N} \lesssim 1$.

For the sufficiency part, if $w_{n} \lesssim 1$, using (iii) we get the embeddings

$$
\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subset \ell^{\infty}(\mathbb{N}) \subset \ell^{\infty}(w, \mathbb{N})
$$

That $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right] \subsetneq \ell^{\infty}(\mathbb{N})$ follows by taking $x \equiv 1$, which is in $\ell^{\infty}(\mathbb{N})$ but not in $\operatorname{Dom}\left[C^{*}-\mathrm{I}, \ell^{\infty}(\mathbb{N})\right]$.

Acknowledgements We would like to thank the anonymous referees for some important comments and clarifications, which have greatly improved the final exposition of this work.

References

1. C. Bennett and R. Sharpley, Interpolation of Operators, Academic, Boston, 1988.
2. G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc. 120, no. 576, 1996.
3. G. Bennett and K.-G. Grosse-Erdmann, Weighted Hardy inequalities for decreasing sequences and functions, Math. Ann. 334 (2006), no. 3, 489-531.
4. E. T. Copson, Note on series of positive terms, J. London Math. Soc. 2 (1927), 9-12.
5. G. Curbera and W. J. Ricker, Optimal domains for kernel operators via interpolation, Math. Nachr. 244 (2002), 47-63.
6. G. Curbera and W. J. Ricker, Solid extensions of the Cesàro operator on ℓ^{p} and c_{0}, Integral Equations Operator Theory 80 (2014), 61-77.
7. O. Delgado and J. Soria, Optimal domain for the Hardy operator, J. Funct. Anal. 244 (2007), no. 1, 119-133.
8. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1934.
9. V. I. Kolyada, Rearrangements offunctions, and embedding theorems, (Russian). Uspekhi Mat. Nauk 44 (1989), 61-95; translation in Russian Math. Surveys 44 (1989), no. 5, 73-117.
10. P. Y. Lee, Cesàro sequence spaces, Math. Chronicle 13 (1984), 29-45
11. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.
12. A. Nekvinda and L. Pick, Optimal estimates for the Hardy averaging operator, Math. Nachr. 283 (2010), no. 2, 262-271.
13. S. Okada, W. J. Ricker, and E. A. Sánchez-Pérez, Optimal Domain and Integral Extension of Operators Acting in Function Spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, 2008.
14. J. Soria and P. Tradacete, Optimal rearrangement invariant range for Hardy type operators, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), 865-893.

[^0]: Sorina Barza
 Department of Mathematics and Computer Science, Karlstad University, SE-65188 Karlstad, Sweden, e-mail: sorina.barza@kau.se.
 The first author acknowledges the support of the GARF Analysis group at the Complutense University of Madrid (https://www.ucm.es/garf/), where most of this work has been developed during a research stay.

 Javier Soria
 Interdisciplinary Mathematics Institute (IMI), Department of Analysis and Applied Mathematics, Complutense University of Madrid, 28040 Madrid, Spain e-mail: javier.soria@ucm.es.
 The second author has been partially supported by the Spanish Government grant PID2020-113048GB-I00, funded by MCIN/AEI/10.13039/501100011033, and Grupo UCM-970966.

