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Abstract We characterize the optimal non-absolute domain for the Cesàro operator
minus the identity (𝐶 − I), in the sequence space ℓ𝑝 (N), 1 ≤ 𝑝 ≤ ∞, and compare
the results obtained with the case of 𝐶, showing the different behavior in both cases.
We also address this question for the Copson operator 𝐶∗.
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1 Introduction

We are going to consider the classical Cesàro averaging operator acting on the
sequence 𝑥 = {𝑥 𝑗 } 𝑗∈N ∈ RN:

𝐶𝑥(𝑛) = (𝐶𝑥)𝑛 =
𝑥1 + · · · + 𝑥𝑛

𝑛

as well as the Copson operator:
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𝐶∗𝑥(𝑛) = (𝐶∗𝑥)𝑛 =

∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘

(depending on each particular case, and in order to clarify the calculations, for the
elements of a sequence 𝑥 ∈ RN, we will use the notations 𝑥𝑛 or 𝑥(𝑛), preferably the
first one).

Our main goal in this work is the characterization of the optimal domains for 𝐶
minus the identity on the classical sequence spaces ℓ𝑝 (N). Motivations for these
considerations come twofold: on the one-hand, there is already a great interest in
this topic for the Hardy operator

𝑆 𝑓 (𝑥) = 1
𝑥

∫ 𝑥

0
𝑓 (𝑡) 𝑑𝑡 𝑥 > 0,

(the continuous equivalent version of 𝐶), but for non-negative functions, as shown
in [5, 7, 12, 13, 14]. In particular, if 𝑋 is a rearrangement invariant (r.i.) Banach
function space [1, Definition II.4.1], BFS for short, for which 𝑆 : 𝑋 → 𝑋 is bounded,
then the class of functions for which 𝑆( | 𝑓 |) ∈ 𝑋 is known to be much larger than
𝑋 and, in fact, not even a subspace of (𝐿1 + 𝐿∞) (R+) [7, Theorem 2.6]. It is also
an easy exercise to prove that the only non-negative function 𝑓 ∈ 𝐿1 (R+) such that
𝑆 𝑓 ∈ 𝐿1 (R+) is the zero function (similarly for𝐶 and ℓ1 (N)). Some consideration in
the discrete setting of sequence spaces can be also found, for 𝐶 and 𝐶∗, in [2, 3, 6].
On the other-hand, no much is known when positivity is dropped from the definition
of the domain (see [10] for some preliminary results, dealing more with duality
properties of what the author refers to as the non-absolute domain: the space of
sequences 𝑥 for which 𝐶𝑥 ∈ ℓ𝑝 (N)).

Moreover, it is also well-known that subtracting the identity from an averaging
operator provides some additional regularity and smoothness [9], which is the setting
in which we are going to work. In particular, we want to consider the following
problem: given a discrete BFS 𝑋 = 𝑋 (N) (mostly, 𝑋 = ℓ𝑝 (N)), study conditions
for a general sequence 𝑥 so that (𝐶𝑥 − 𝑥) ∈ 𝑋 . That is, determine the conditions to
describe the optimal domain:

Dom[𝐶 − I, 𝑋] = {𝑥 = {𝑥 𝑗 } 𝑗∈N ∈ RN : (𝐶𝑥 − 𝑥) ∈ 𝑋}.

Observe that, this time, we do not assume a priori that the sequence {𝑥 𝑗 } 𝑗∈N is
non-negative. It is worth noticing that (𝐶𝑥 − 𝑥) ≡ 0 if and only if 𝑥 is a constant
sequence. Hence, the optimal domain will always be invariant under the addition of
constants (the kernel of the operator 𝐶 − I). Thus, if 𝐶 : 𝑋 → 𝑌 is bounded and

𝑋 + R = {𝑥 + 𝑐 : 𝑥 ∈ 𝑋, 𝑐 ∈ R},

then, since 𝑋 is r.i., we have that 𝑋 ⊂ 𝑌 and 𝑋 + R ⊂ Dom[𝐶 − I, 𝑌 ].

The paper is structured as follows: in Section 2 we start by showing some general
results for a BFS 𝑋 . We then establish a useful tool, in Proposition 2, for getting
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precise norm estimates. Our main result is Theorem 1, where we fully characterize
Dom[𝐶 − I, ℓ𝑝 (N)], 1 ≤ 𝑝 ≤ ∞. As a consequence of these results, we can see
that while Dom[𝐶, ℓ1 (N)] ⊄ ℓ∞ (N), however Dom[𝐶 − I, ℓ1 (N)] ⊂ ℓ1

0 (N) + R. In
Section 3 we briefly describe the behavior at the end-point 𝑝 = 1, in terms of the
weak-type space ℓ1,∞ (N). Finally, in Section 4 we consider the study of optimal
domains for the Copson operator 𝐶∗ minus the identity, and show the analogous
results in Theorem 2.

In what follows, we will use the standard notation 𝐴 ≲ 𝐵 to denote the existence
of a positive constant 𝐾 > 0 (independent of the main parameters defining 𝐴 and 𝐵)
such that 𝐴 ≤ 𝐾𝐵 (analogously for the notation 𝐴 ≳ 𝐵). If both 𝐴 ≲ 𝐵 and 𝐴 ≳ 𝐵
hold true, we will write 𝐴 ≈ 𝐵.

2 Domain for Cesàro type operators on sequence spaces

We start with the following auxiliary result (see, e.g., [11, end of page 2]):

Lemma 1 Let 𝑋,𝑌 be two BFS and assume 𝑇 is a positive operator (i.e., 𝑇 𝑓 ≥ 0, if
𝑓 ≥ 0), such that 𝑇 𝑓 ∈ 𝑌 , whenever 𝑓 ∈ 𝑋 . Then, 𝑇 : 𝑋 → 𝑌 , boundedly.

We now prove a general result on a discrete BFS 𝑋 , that completes the observation
made in the previous section (we refer to [1, Definition I.2.3] for the definition of
𝑋 ′, the associate space of 𝑋):

Lemma 2 Let 𝑋 be a discrete BFS and let 𝑋 ′ be its associate space. Then, the
following statements are equivalent:

(i) 𝐶 : 𝑋 → 𝑋 and 𝐶∗ : 𝑋 → 𝑋 are bounded.
(ii) Dom[𝐶 − I, 𝑋] = 𝑋 + R and Dom[𝐶 − I, 𝑋 ′] = 𝑋 ′ + R.

(iii) Dom[𝐶∗ − I, 𝑋] = 𝑋 and Dom[𝐶∗ − I, 𝑋 ′] = 𝑋 ′.

Proof We start by proving that (i) is equivalent to (ii): As we have already observed,
the fact that𝐶 : 𝑋 → 𝑋 is bounded, immediately gives that 𝑋 +R ⊂ Dom[𝐶 − I, 𝑋].
Since 𝐶∗ : 𝑋 → 𝑋 is equivalent to 𝐶 : 𝑋 ′ → 𝑋 ′, we also get 𝑋 ′ + R ⊂ Dom[𝐶 −
I, 𝑋 ′].

For the reverse inclusions, if 𝑥 ∈ Dom[𝐶 − I, 𝑋], let 𝑦 = 𝐶𝑥 − 𝑥 ∈ 𝑋 . Then

𝑥2 − 𝑥1 + 2𝑦2 = 0 and 𝑥𝑛 − 𝑥1 +
𝑛

𝑛 − 1
𝑦𝑛 = −

𝑛−1∑︁
𝑘=2

𝑦𝑘

𝑘 − 1
, 𝑛 ≥ 3. (1)

In fact, the equality is trivial for 𝑛 = 2. If 𝑛 = 3, then −𝑦2 − 3𝑦3/2 = −(𝑥1 + 𝑥2)/2 +
𝑥2 − (𝑥1 + 𝑥2 + 𝑥3)/2 + 3𝑥3/2 = 𝑥3 − 𝑥1. If we now assume (1) to hold for a given
𝑛 ≥ 3, then
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−
𝑛∑︁

𝑘=2

𝑦𝑘

𝑘 − 1
= 𝑥𝑛 − 𝑥1 +

𝑛

𝑛 − 1
𝑦𝑛 −

𝑦𝑛

𝑛 − 1
=
𝑥1 + · · · + 𝑥𝑛

𝑛
− 𝑥1

= 𝑥𝑛+1 − 𝑥1 +
𝑥1 + · · · + 𝑥𝑛+1

𝑛
− 𝑛 + 1

𝑛
𝑥𝑛+1

= 𝑥𝑛+1 − 𝑥1 +
𝑛 + 1
𝑛

𝑦𝑛+1.

Now, observe that 𝐶∗ : 𝑋 → 𝑋 implies that {1/𝑘}𝑘∈N ∈ 𝑋 ′. In fact, using [1,
Theorem I.2.7] and [1, Corollary II.6.8]

{ 1
𝑘

}
𝑘∈N


𝑋′

= sup
∥𝑥 ∥𝑋=1

∑︁
𝑘∈N

|𝑥𝑘 |
𝑘

= sup
∥𝑥 ∥𝑋=1

∥𝐶∗ ( |𝑥 |) ∥ℓ∞ (N)

≤ sup
∥𝑥 ∥𝑋=1

∥𝐶∗ ( |𝑥 |) ∥𝑋 = ∥𝐶∗∥𝑋→𝑋 < ∞.

Thus, if we call 𝜎𝑦(𝑘) = 𝑦𝑘+1 (the left shift operator), we have that 𝜎 : 𝑋 → 𝑋 and,
for 𝑛 ≥ 3,

𝑛−1∑︁
𝑘=2

𝑦𝑘

𝑘 − 1
= 𝐶∗ (𝜎𝑦) (1) − 𝐶∗ (𝜎𝑦) (𝑛 − 1),

since 𝑦 ∈ 𝑋 , using (1) we obtain

𝑥𝑛 = 𝑥1 − 𝐶∗ (𝜎𝑦) (1) − 𝑛

𝑛 − 1
𝑦𝑛 + 𝐶∗ (𝜎𝑦) (𝑛 − 1), (2)

and taking into account that{
𝑛 + 1
𝑛

𝑦𝑛+1 + 𝐶∗ (𝜎𝑦) (𝑛)
}
𝑛∈N

∈ 𝑋N,

we finally deduce that 𝑥 ∈ 𝑋 + R. Similarly, since 𝐶∗ : 𝑋 ′ → 𝑋 ′ is equivalent to
𝐶 : 𝑋 → 𝑋 , reversing the role of 𝑋 and 𝑋 ′ in the previous argument we also obtain
that Dom[𝐶 − I, 𝑋 ′] ⊂ 𝑋 ′ + R.

Conversely, to prove that (ii) implies (i), if Dom[𝐶 − I, 𝑋] = 𝑋 + R, pick 𝑥 ∈ 𝑋 .
Then, 𝐶𝑥 − 𝑥 ∈ 𝑋 and hence 𝐶𝑥 ∈ 𝑋 . Thus, using Lemma 1, we conclude that
𝐶 : 𝑋 → 𝑋 is bounded. By a similar and dual argument, we can also get that
𝐶∗ : 𝑋 → 𝑋 .

We now show that (i) implies (iii): The fact that𝐶∗ : 𝑋 → 𝑋 is bounded gives that
𝑋 ⊂ Dom[𝐶∗ − I, 𝑋] . Since 𝐶∗ : 𝑋 ′ → 𝑋 ′ we also get that 𝑋 ′ ⊂ Dom[𝐶∗ − I, 𝑋 ′] .

For the reversed inclusion, if 𝑥 ∈ Dom[𝐶∗ − I, 𝑋], let 𝑦 = 𝐶∗𝑥 − 𝑥 ∈ 𝑋 . As in (1),
one can prove by induction that

𝑥𝑛 =
1

𝑛 − 1

𝑛−1∑︁
𝑘=1

𝑦𝑘 − 𝑦𝑛 = (𝐶𝑦)𝑛−1 − 𝑦𝑛, 𝑛 ≥ 2, (3)
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with 𝑥1 arbitrary. Hence 𝑥 ∈ 𝑋 . Similarly, since 𝐶 : 𝑋 ′ → 𝑋 ′ we get also that
Dom[𝐶∗ − I, 𝑋 ′] ⊂ 𝑋 ′.

To finish, we prove that (iii) implies (i): If Dom[𝐶∗ − I, 𝑋] = 𝑋 , pick 𝑥 ∈ 𝑋 .
Then 𝐶∗𝑥 − 𝑥 ∈ 𝑋 and hence 𝐶∗𝑥 ∈ 𝑋 . Thus, using Lemma 2.1 we conclude that
𝐶∗ : 𝑋 → 𝑋 is bounded. By a dual argument we also get that 𝐶 : 𝑋 → 𝑋 . □

Remark 1 We observe that, in Lemma 2, it is not true that 𝐶 : 𝑋 → 𝑋 if and only if
Dom[𝐶 − I, 𝑋] = 𝑋 +R, since𝐶 : ℓ∞ (N) → ℓ∞ (N), but we will prove in Theorem 1
that Dom[𝐶 − I, ℓ∞ (N)] ≠ ℓ∞ (N).

Let us now consider the case of the Cesàro operator𝐶 on ℓ1 (N). Recall that ℓ1
0 (N)

denotes the subspace of ℓ1 (N) sequences with vanishing sum. As we have mentioned
above, it is well-known that 𝐶 is not bounded on ℓ1 (N) and, moreover, 𝑥 ≡ 0 is the
only non-negative sequence satisfying that 𝐶𝑥 ∈ ℓ1 (N). With more generality, we
can prove the following (see [10] for some related results):

Proposition 1

(i) If 𝑥 is non-negative sequence such that 𝐶𝑥 ∈ ℓ1 (N), then 𝑥 ≡ 0. That is,

ℓ1
+ (N) ∩ Dom[𝐶, ℓ1 (N)] = {0}.

(ii) There exists 𝑥 ∈ ℓ1 (N) \ {0} such that 𝐶𝑥 ∈ ℓ1 (N). Moreover, any such
sequence satisfies that

∑∞
𝑛=1 𝑥𝑛 = 0. That is,

ℓ1 (N) ∩ Dom[𝐶, ℓ1 (N)] = ℓ1
0 (N) ∩ Dom[𝐶, ℓ1 (N)] ≠ {0}.

(iii) There exists 𝑥 ∉ ℓ∞ (N) such that 𝐶𝑥 ∈ ℓ1 (N) and there exists 𝑦 ∈ ℓ1
0 (N) such

that 𝐶𝑦 ∉ ℓ1 (N). That is,

ℓ1
0 (N) ⊄ Dom[𝐶, ℓ1 (N)] and Dom[𝐶, ℓ1 (N)] ⊄ ℓ∞ (N). (4)

Proof The proof of (i) follows from the remark that, for every 𝑗 , 𝑛 ∈ N, we have that
𝑥𝑛 ≥ 𝑥 𝑗𝛿 𝑗 (𝑛), where

𝛿 𝑗 (𝑛) =
{

0, if 𝑗 ≠ 𝑛
1 if 𝑗 = 𝑛.

(5)

Now, for 𝑗 ∈ N fixed:

𝐶𝑥(𝑛) ≥ 𝑥 𝑗𝐶𝛿 𝑗 (𝑛) =
{

0, if 𝑛 ≤ 𝑗 − 1,
𝑥 𝑗

𝑛
, if 𝑛 ≥ 𝑗 .

Thus, 𝐶𝑥 ∈ ℓ1 (N) if and only if 𝑥 𝑗 = 0, for every 𝑗 ∈ N.

In order to find 𝑥 ∈ ℓ1 (N) such that 𝐶𝑥 ∈ ℓ1 (N), we observe that if 𝑦 = 𝐶𝑥, then,

𝑥1 = 𝑦1, 𝑥2 = 2𝑦2 − 𝑦1, . . . , 𝑥𝑘 = 𝑘𝑦𝑘 − (𝑘 − 1)𝑦𝑘−1, 𝑘 ∈ {2, 3, . . . }. (6)
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Therefore, the series
∑∞

𝑛=1 𝑥𝑛 converges, if and only if there exists lim𝑘→∞ 𝑘𝑦𝑘 .
Now, since 𝑦 ∈ ℓ1 (N), then lim𝑘→∞ 𝑘𝑦𝑘 = 0. In fact, if lim𝑘→∞ |𝑘𝑦𝑘 | = 𝑙 > 0,
then we could find 𝑘0 ∈ N such that |𝑦𝑘 | > 𝑙

2𝑘 , for 𝑘 ≥ 𝑘0, contradicting the
fact that 𝑦 ∈ ℓ1 (N). Therefore, we have proved that ℓ1 (N) ∩ Dom[𝐶, ℓ1 (N)] =

ℓ1
0 (N) ∩ Dom[𝐶, ℓ1 (N)].

To finish the proof of (ii), take a positive sequence 𝑦 ∈ ℓ1 (N) so that {𝑘𝑦𝑘}𝑘∈N
decreases and lim𝑘→∞ 𝑘𝑦𝑘 = 0 (e.g., 𝑦𝑘 = 1/𝑘2), and define 𝑥 as in (6). In this case,

∞∑︁
𝑛=1

𝑥𝑛 = lim
𝑘→∞

𝑘𝑦𝑘 = 0.

Moreover, 𝑥𝑘 ≤ 0, for 𝑘 ∈ {2, 3, . . . } and hence

∞∑︁
𝑛=1

|𝑥𝑛 | = |𝑥1 | −
∞∑︁
𝑛=2

𝑥𝑛 = 2𝑦1 < ∞.

To prove (iii), we consider

𝑥 𝑗 =


𝑘, if 𝑗 = 2𝑘 , 𝑘 ∈ N,

−𝑘, if 𝑗 = 2𝑘 + 1, 𝑘 ∈ N,
0, otherwise.

Then, 𝑥 ∉ ℓ∞ (N) and

𝐶𝑥( 𝑗) =

𝑘

2𝑘
, if 𝑗 = 2𝑘 , 𝑘 ∈ N,

0, otherwise,

which is clearly in ℓ1 (N). Finally, with

𝑦1 =
−1

log 2
and 𝑦𝑛 =

−1
log(𝑛 + 1) +

1
log 𝑛

≥ 0, 𝑛 ≥ 2

we have that 𝑦 ∈ ℓ1
0 (N) and

{𝐶𝑦(𝑛)}𝑛∈N =

{ −1
𝑛 log(𝑛 + 1)

}
𝑛∈N

∉ ℓ1 (N).

We will now fix our attention to the study of the optimal domain in all different
ℓ𝑝 (N) spaces, 1 ≤ 𝑝 ≤ ∞. We will see that 𝐶 − I enjoys a different behavior at the
end-points ℓ1 (N) and ℓ∞ (N). Recall that, given a weight 𝑤 (a sequence with 𝑤𝑛 > 0,
for every 𝑛 ∈ N), and 1 ≤ 𝑝 < ∞, we define

ℓ𝑝 (𝑤,N) =
{
{𝑥 𝑗 } 𝑗∈N ∈ RN : ∥𝑥∥ℓ𝑝 (𝑤,N)

def
=

( ∞∑︁
𝑗=1

|𝑥 𝑗 |𝑝𝑤 𝑗

)1/𝑝
< ∞

}
,
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and analogously if 𝑝 = ∞. With this notation, ℓ𝑝 (N) = ℓ𝑝 (1,N), where 1 is the
constant weight 1𝑛 = 1, for every 𝑛 ∈ N. Similarly,

ℓ
𝑝

0 (𝑤,N) = ℓ𝑝 (𝑤,N) ∩ ℓ1
0 (N),

with ∥𝑥∥ℓ𝑝

0 (𝑤,N) = ∥𝑥∥ℓ𝑝 (𝑤,N) + ∥𝑥∥ℓ1 (N) .

We need first a previous result (which follows using the Closed Graph Theorem),
proving the continuity of several inclusions. Observe that, with the previous defi-
nition, ℓ𝑝0 (𝑤,N) is a Banach space (i.e., the cancellation property holds true in the
limit, since ℓ1

0 (N) is closed in ℓ1 (N)).

Proposition 2 Let 𝑤 be a weight. Then,

(i) ℓ1
0 (𝑤,N) ⊂ Dom[𝐶 − I, ℓ1 (N)] ⇐⇒ ∥𝐶𝑥 − 𝑥∥ℓ1 (N) ≲ ∥𝑥∥ℓ1 (𝑤,N) + ∥𝑥∥ℓ1

0 (N)
.

(ii) (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) ⊂ ℓ1

0 (𝑤,N) ⇐⇒ ∥𝑥∥ℓ1
0 (𝑤,N)

≲ ∥𝐶𝑥∥ℓ1 (N) +
∥𝑥∥ℓ1

0 (N)
.

(iii) ℓ∞ (𝑤,N) ⊂ Dom[𝐶 − I, ℓ∞ (N)] ⇐⇒ ∥𝐶𝑥 − 𝑥∥ℓ∞ (N) ≲ ∥𝑥∥ℓ∞ (𝑤,N) .

Proof Observe that, in all (i), (ii), and (iii), the right-hand side immediately implies
the embeddings on the left. Thus, it suffices to prove the implications “⇒”.

To prove (i), let us see the continuity of the embedding:

∥𝐶𝑥 − 𝑥∥ℓ1 (N) ≲ ∥𝑥∥ℓ1 (𝑤,N) + ∥𝑥∥ℓ1
0 (N)

.

Using the Closed Graph Theorem, it suffices to show that

𝑥𝑁
ℓ1

0 (𝑤,N)−−−−−−→ 0

𝐶𝑥𝑁 − 𝑥𝑁
ℓ1 (N)
−−−−→ 𝑦

 ===⇒ 𝑦 ≡ 0. (7)

Now, since

∞∑︁
𝑛=1

|𝐶 (𝑥𝑁 ) (𝑛) − 𝑥𝑁 (𝑛) − 𝑦𝑛 | → 0 and
∞∑︁
𝑛=1

|𝑥𝑁 (𝑛) |𝑤𝑛 → 0, as 𝑁 → ∞,

then |𝐶 (𝑥𝑁 ) (𝑛) − 𝑥𝑁 (𝑛) − 𝑦𝑛 | → 0 and |𝑥𝑁 (𝑛) | → 0, for every 𝑛 ∈ N. Hence,

|𝐶 (𝑥𝑁 ) (𝑛) − 𝑦𝑛 | → 0, as 𝑁 → ∞ and for every 𝑛 ∈ N.

Finally, for a fixed 𝑛 ∈ N,

𝐶 (𝑥𝑁 ) (𝑛) = 1
𝑛

𝑛∑︁
𝑘=1

𝑥𝑁 (𝑘) −→ 𝑦𝑛 = 0,
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which proves (7).
To prove (ii), let us see the continuity of the embedding:

∥𝑥∥ℓ1
0 (𝑤,N)

≲ ∥𝐶𝑥∥ℓ1 (N) + ∥𝑥∥ℓ1
0 (N)

.

Using Proposition 1 (ii) and the Closed Graph Theorem, it suffices to show that

𝑥𝑁
ℓ1

0 (N)−−−−→ 0

𝑥𝑁
ℓ1

0 (𝑤,N)−−−−−−→ 𝑦

 ===⇒ 𝑦 ≡ 0,

but this follows easily from the fact that |𝑥𝑁𝑛 − 𝑦𝑛 |𝑤𝑛 → 0 and |𝑥𝑁𝑛 | → 0, as 𝑁 → ∞
and for very 𝑛 ∈ N.

Finally, to prove (iii), let us see the continuity of the embedding:

∥𝐶𝑥 − 𝑥∥ℓ∞ (N) ≲ ∥𝑥∥ℓ∞ (𝑤,N) . (8)

Using the Closed Graph Theorem, it suffices to show that

𝑥𝑁
ℓ∞ (𝑤,N)
−−−−−−−→ 0

𝐶𝑥𝑁 − 𝑥𝑁
ℓ∞ (N)
−−−−−→ 𝑦

 ===⇒ 𝑦 ≡ 0. (9)

Given the sequence {𝑥𝑁 }𝑁 ∈N ⊂ ℓ∞ (𝑤,N), fix 𝑛 ∈ N. Then, for every 𝑁 ∈ N,

|𝑦𝑛 | ≤ |𝑦𝑛 − (𝐶𝑥𝑁 ) (𝑛) + 𝑥𝑁 (𝑛) | + |(𝐶𝑥𝑁 ) (𝑛) | + |𝑥𝑁 (𝑛) |.

Observe that, given Y > 0, we can find 𝑁1 ∈ N such that, for all 𝑁 ≥ 𝑁1,

|𝑦𝑛 − (𝐶𝑥𝑁 ) (𝑛) + 𝑥𝑁 (𝑛) | ≤ ∥𝑦 − (𝐶𝑥𝑁 − 𝑥𝑁 )∥ℓ∞ (N) <
Y

3
.

Similarly, there exists 𝑁2 ∈ N such that, for all 𝑁 ≥ 𝑁2,

|𝑥𝑁 (𝑛) | = 1
𝑤𝑛

|𝑤𝑛𝑥
𝑁 (𝑛) | ≤ 1

𝑤𝑛

∥𝑥𝑁 ∥ℓ∞ (𝑤,N) <
Y

3
.

Finally, there exists 𝑁3 ∈ N such that, for all 𝑁 ≥ 𝑁3,

| (𝐶𝑥𝑁 ) (𝑛) | ≤ 1
min

1≤ 𝑗≤𝑛
{𝑤 𝑗 }

𝑤1 |𝑥𝑁 (1) | + · · · + 𝑤𝑛 |𝑥𝑁 (𝑛) |
𝑛

≤ 1
min

1≤ 𝑗≤𝑛
{𝑤 𝑗 }

∥𝑥𝑁 ∥ℓ∞ (𝑤,N) <
Y

3
.



Optimal non-absolute domains 9

Thus, with 𝑛 ∈ N fixed, given Y > 0, if 𝑁0 = max{𝑁1, 𝑁2, 𝑁3}, we have that for
every 𝑁 ≥ 𝑁0,

|𝑦𝑛 | < Y, for every Y > 0,

and, hence, 𝑦𝑛 = 0, for every 𝑛 ∈ N, which proves (9). □

Theorem 1 (Optimal domain for 𝐶 − I on ℓ𝑝 (N), 1 ≤ 𝑝 ≤ ∞)

(i) Case 𝑝 = 1: Dom[𝐶 − I, ℓ1 (N)] = (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) +R. In addition,

a. ℓ1
0 (𝑤,N) ⊂ (Dom[𝐶, ℓ1 (N)] ∩ ℓ1

0 (N)) ⇐⇒ 𝑤𝑛 ≳ log(𝑛 + 1). Hence, the
logarithmic space ℓ1

0 (log(𝑛 + 1),N) is the largest ℓ1
0 (𝑤,N) space contained

in (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) and, moreover,

ℓ1
0 (log(𝑛 + 1),N) ⊊ (Dom[𝐶, ℓ1 (N)] ∩ ℓ1

0 (N)).

b. (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) ⊂ ℓ1

0 (𝑤,N) ⇐⇒ 𝑤𝑛 ≲ 1. Hence, ℓ1
0 (N)

is the smallest ℓ1
0 (𝑤,N) space containing (Dom[𝐶, ℓ1 (N)] ∩ ℓ1

0 (N)) and,
moreover,

(Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) ⊊ ℓ

1
0 (N).

(ii) Case 1 < 𝑝 < ∞: Dom[𝐶 − I, ℓ𝑝 (N)] = ℓ𝑝 (N) + R.
(iii) Case 𝑝 = ∞:

a. ℓ∞ (𝑤,N) ⊂ Dom[𝐶−I, ℓ∞ (N)] ⇐⇒ 𝑤𝑛 ≳ 1. Hence, ℓ∞ (N) is the largest
ℓ∞ (𝑤,N) space contained in Dom[𝐶 − I, ℓ∞ (N)] and, moreover,

ℓ∞ (N) ⊊ Dom[𝐶 − I, ℓ∞ (N)] .

b. Dom[𝐶 − I, ℓ∞ (N)] ⊂ ℓ∞ (𝑤,N) ⇐⇒ 𝑤𝑛 ≲ 1/log(𝑛 + 1). Hence,
ℓ∞ ({1/log(𝑛+1)}𝑛,N) is the smallest weighted ℓ∞ (𝑤,N) space containing
Dom[𝐶 − I, ℓ∞ (N)] and, moreover,

Dom[𝐶 − I, ℓ∞ (N)] ⊊ ℓ∞ ({1/log(𝑛 + 1)}𝑛,N).

Proof We start by proving (i). Using the equality:

𝑥1 + · · · + 𝑥𝑛+1
𝑛 + 1

− 𝑥𝑛+1 =
𝑛

𝑛 + 1

( 𝑥1 + · · · + 𝑥𝑛
𝑛

− 𝑥𝑛+1

)
,

the hypothesis 𝐶𝑥 − 𝑥 ∈ ℓ1 (N) is equivalent to 𝐶𝑥 − 𝜎𝑥 ∈ ℓ1 (N), where, as before,
𝜎𝑥(𝑛) = 𝑥𝑛+1 is the left shift operator. For convenience, we will then work with this
second condition.

Assume now that 𝐶𝑥 − 𝜎𝑥 ∈ ℓ1 (N). Let us first see that, necessarily, 𝑥 is a
convergent sequence (to some value 𝛼 ∈ R): We define the sequence 𝑑 = 𝐶𝑥 − 𝜎𝑥.
Then, inductively as in (1), we have that
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𝑥2 = 𝑥1 − 𝑑1, 𝑥3 = 𝑥1 −
𝑑1
2

− 𝑑2, . . . , 𝑥𝑛+1 = 𝑥1 −
𝑑1
2

− · · · − 𝑑𝑛−1
𝑛

− 𝑑𝑛.

Therefore,

lim
𝑛→∞

𝑥𝑛 = 𝑥1 −
∞∑︁
𝑗=1

𝑑 𝑗

𝑗 + 1
.

Setting 𝛼 = 𝑥1−
∑∞

𝑗=1 𝑑 𝑗/( 𝑗 + 1), let us now prove that 𝑥−𝛼 = {𝑥 𝑗 −𝛼} 𝑗∈N ∈ ℓ1 (N).
In fact,

∞∑︁
𝑛=1

|𝑥𝑛 − 𝛼 | = |𝑥1 − 𝛼 | + |𝑥2 − 𝛼 | +
∞∑︁
𝑛=3

���𝑥1 −
𝑛−2∑︁
𝑗=1

𝑑 𝑗

𝑗 + 1
− 𝑑𝑛−1 −

(
𝑥1 −

∞∑︁
𝑗=1

𝑑 𝑗

𝑗 + 1

)���
= |𝑥1 − 𝛼 | + |𝑥2 − 𝛼 | +

∞∑︁
𝑛=3

��� ∞∑︁
𝑗=𝑛−1

𝑑 𝑗

𝑗 + 1
− 𝑑𝑛−1

���
≤ |𝑥1 − 𝛼 | + |𝑥2 − 𝛼 | +

∞∑︁
𝑛=3

∞∑︁
𝑗=𝑛−1

|𝑑 𝑗 |
𝑗 + 1

+
∞∑︁
𝑛=3

|𝑑𝑛−1 |

≤ |𝑥1 − 𝛼 | + |𝑥2 − 𝛼 | +
∞∑︁
𝑗=2

|𝑑 𝑗 | +
∞∑︁
𝑛=3

|𝑑𝑛−1 | < ∞.

Before proving that 𝑥 − 𝛼 ∈ ℓ1
0 (N) (i.e., the cancellation property), let us show that

𝑥 − 𝛼 ∈ Dom[𝐶, ℓ1 (N)]:

𝐶𝑥 − 𝑥 = 𝐶 (𝑥 − 𝛼) − (𝑥 − 𝛼) ∈ ℓ1 (N) and 𝑥 − 𝛼 ∈ ℓ1 (N) ⇒ 𝐶 (𝑥 − 𝛼) ∈ ℓ1 (N),

which means 𝑥 − 𝛼 ∈ Dom[𝐶, ℓ1 (N)]. Now, using Proposition 1-(ii), we also con-
clude that 𝑥−𝛼 ∈ ℓ1

0 (N). Thus, Dom[𝐶− I, ℓ1 (N)] ⊂ (Dom[𝐶, ℓ1 (N)] ∩ℓ1
0 (N)) +R.

Conversely, if 𝑥 − 𝛼 ∈ (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)), then:

𝐶 (𝑥 − 𝛼) ∈ ℓ1 (N) and (𝑥 − 𝛼) ∈ ℓ1 (N) ⇒ 𝐶𝑥 − 𝑥 = 𝐶 (𝑥 − 𝛼) − (𝑥 − 𝛼) ∈ ℓ1 (N),

i.e., 𝑥 ∈ Dom[𝐶 − I, ℓ1 (N)]. Observe that, by (4), the intersection in (i) cannot be
simplified.

Let us prove (i)-(a). Using Proposition 2 (i), if we assume that ℓ1
0 (𝑤,N) ⊂

(Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)), then, with 𝑥𝑁 = 𝛿1 − 𝛿𝑁 , 𝑁 ≥ 2 (see (5)), we have

log(𝑁 + 1) ≈ ∥𝐶𝑥𝑁 − 𝑥𝑁 ∥ℓ1 (N) ≲ ∥𝑥𝑁 ∥ℓ1 (𝑤,N) + ∥𝑥𝑁 ∥ℓ1 (N) = 𝑤1 + 𝑤𝑁 + 2 ≲ 𝑤𝑁 .

Conversely, since ℓ1
0 (log(𝑛 + 1),N) ⊂ ℓ1

0 (N), using the first equality of (i), we only
need to show that ℓ1

0 (log(𝑛+1),N) ⊂ Dom[𝐶, ℓ1 (N)]: If 𝑥 ∈ ℓ1
0 (log(𝑛+1),N), then
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∞∑︁
𝑛=1

|𝐶𝑥(𝑛) | =
∞∑︁
𝑛=1

����1𝑛 ∞∑︁
𝑘=𝑛+1

𝑥𝑘

���� ≤ ∞∑︁
𝑘=1

|𝑥𝑘 |
𝑘∑︁

𝑛=1

1
𝑛
≈

∞∑︁
𝑘=1

|𝑥𝑘 | log(𝑘 + 1) < ∞.

To finish this part, it suffices to observe that, if

𝑥 𝑗 =


1

𝑗 log2 𝑗
, if 𝑗 is even

−1
( 𝑗 + 1) log2 ( 𝑗 + 1)

, if 𝑗 is odd

then, {𝑥 𝑗 } 𝑗∈N ∈ ℓ1
0 (N) \ ℓ

1
0 (log(𝑛 + 1),N), and

𝐶𝑥( 𝑗) =


0, if 𝑗 is even

−1
𝑗 ( 𝑗 + 1) log2 ( 𝑗 + 1)

, if 𝑗 is odd

which clearly satisfies that 𝐶𝑥 ∈ ℓ1 (N). Hence,

ℓ1
0 (log(𝑛 + 1),N) ⊊ (Dom[𝐶, ℓ1 (N)] ∩ ℓ1

0 (N)).

Let us now see (i)-(b). If (Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) ⊂ ℓ1

0 (𝑤,N), using Propo-
sition 2 (ii), with the sequence 𝑥𝑁 = 𝛿𝑁 − 𝛿𝑁+1, we conclude that 𝐶𝑥𝑁 = 1

𝑁
𝛿𝑁 ,

and

𝑤𝑁 ≤ ∥𝑥𝑁 ∥ℓ1
0 (𝑤,N)

= 𝑤𝑁 + 𝑤𝑁+1 ≲ ∥𝐶𝑥𝑁 ∥ℓ1 (N) + ∥𝑥𝑁 ∥ℓ1
0 (N)

= (1 + 1/𝑁) ≲ 1.

Conversely, if 𝑤𝑛 ≲ 1, then trivially

(Dom[𝐶, ℓ1 (N)] ∩ ℓ1
0 (N)) ⊂ ℓ

1
0 (N) ⊂ ℓ

1
0 (𝑤,N).

That the embedding is strict follows from (4).

The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for
1 < 𝑝 < ∞, both operators 𝐶,𝐶∗ : ℓ𝑝 (N) → ℓ𝑝 (N) are bounded (as was proved in
[8, Theorems 326 and 331] and [4]).

We now consider (iii), the end-point case 𝑝 = ∞. It is clear that if 𝑤 ≳ 1,
then ℓ∞ (𝑤,N) ⊂ ℓ∞ (N) ⊂ Dom[𝐶 − I, ℓ∞ (N)]. If we now assume the embedding
ℓ∞ (𝑤,N) ⊂ Dom[𝐶 − I, ℓ∞ (N)], then necessarily 𝑤𝑛 > 0, for every 𝑛 ∈ N, since,
otherwise, we could find 𝑥 ∈ ℓ∞ (𝑤,N), with 𝑥𝑛 = ∞, which clearly does not belong
to Dom[𝐶 − I, ℓ∞ (N)] (we need 𝑥 ∈ ℓ1

loc (N) to define 𝐶). Let us see that, in fact,
inf𝑛∈N 𝑤𝑛 > 0, which is equivalent to 𝑤 ≳ 1.

Take now 𝑥 = 𝑒𝑛 = {0, 𝑛−1. . . , 0, 1, 0, . . . }, 𝑛 ≥ 2. Then, using (8),
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𝑤(𝑛) ≳ ∥𝐶𝑒𝑛 − 𝑒𝑛∥ℓ∞ (N)

≈
{0, 𝑛−1. . . , 0,

1
𝑛
,

1
𝑛 + 1

, . . .

}
− {0, 𝑛−1. . . , 0, 1, 0, . . . }


ℓ∞ (N)

(10)

≳
���1
𝑛
− 1

��� ≳ 1
2
.

Hence, 𝑤 ≳ 1 and ℓ∞ (N) is the largest ℓ∞ (𝑤,N) space contained in Dom[𝐶 −
I, ℓ∞ (N)]. To finish the proof of (iii)-(a), we pick 𝑥 = {log 𝑛}𝑛∈N ∉ ℓ∞ (N). On the
other hand,

(𝐶𝑥) (𝑛) = 1
𝑛

log(𝑛!) and (𝐶𝑥) (𝑛) − 𝑥𝑛 = log
(
(𝑛!)1/𝑛

𝑛

)
But,

lim
𝑛→∞

(𝑛!)1/𝑛

𝑛
= lim

𝑛→∞

(
𝑛!
𝑛𝑛

)1/𝑛
= lim

𝑛→∞

(𝑛+1)!
(𝑛+1)𝑛+1

𝑛!
𝑛𝑛

= lim
𝑛→∞

𝑛 + 1
(𝑛 + 1) (1 + 1/𝑛)𝑛 =

1
𝑒
.

Thus, (𝐶𝑥 − 𝑥) ∈ ℓ∞ (N); i.e.,

𝑥 = {log 𝑛}𝑛∈N ∈ Dom[𝐶 − I, ℓ∞ (N)] \ ℓ∞ (N). (11)

We now consider the proof of (iii)-(b). Since 𝑤𝑛 ≲ 1/log(𝑛 + 1) implies that
ℓ∞ ({1/log(𝑛 + 1)}𝑛,N) ⊂ ℓ∞ (𝑤,N), it suffices to see that Dom[𝐶 − I, ℓ∞ (N)] ⊂
ℓ∞ ({1/log(𝑛 + 1)}𝑛,N). In fact, if 𝑥 ∈ Dom[𝐶 − I, ℓ∞ (N)] and we set 𝑦 = 𝐶𝑥 − 𝑥 ∈
ℓ∞ (N), using (1) we obtain, for 𝑛 ≥ 2:

|𝑥𝑛 |
log(𝑛 + 1) =

����𝑥1 −
𝑛

𝑛 − 1
𝑦𝑛 +

𝑛−1∑︁
𝑘=2

𝑦𝑘

𝑘 − 1

���� 1
log(𝑛 + 1)

≲

(
|𝑥1 | + |𝑦𝑛 | +

𝑛−1∑︁
𝑘=2

|𝑦𝑘 |
𝑘 − 1

)
1

log(𝑛 + 1)

≲ |𝑥1 | + ∥𝑦∥ℓ∞ (N) (1 + log 𝑛) 1
log(𝑛 + 1) ≲ |𝑥1 | + ∥𝑦∥ℓ∞ (N) .

Thus, 𝑥 ∈ ℓ∞ ({1/log(𝑛 + 1)}𝑛,N). Let us see that the embedding is strict. Consider

𝑥 = {𝑥𝑛}𝑛∈N = {(−1)𝑛 log 𝑛}𝑛∈N ∈ ℓ∞
(

1
log(𝑛 + 1)

)
.

Then,
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𝑥1 + · · · + 𝑥2𝑛
2𝑛

− 𝑥2𝑛 =

− log
( 𝑛∏

𝑗=1
(2 𝑗 − 1)

)
+ log

( 𝑛∏
𝑗=1

2 𝑗
)

2𝑛
− log 2𝑛

=
1

2𝑛
log

(
2𝑛𝑛!

𝑛∏
𝑗=1

(2 𝑗 − 1)

)
− log 2𝑛

= log

(
2𝑛𝑛!

(2𝑛)2𝑛
𝑛∏
𝑗=1

(2 𝑗 − 1)

) 1
2𝑛

.

But,

2𝑛+1 (𝑛+1)!

(2𝑛 + 2)2𝑛+2
𝑛+1∏
𝑗=1

(2 𝑗 − 1)

2𝑛𝑛!

(2𝑛)2𝑛
𝑛∏
𝑗=1

(2 𝑗 − 1)

= 2
(2𝑛)2𝑛

(2𝑛 + 2)2𝑛+2
𝑛 + 1

2𝑛 + 1

= 2
𝑛 + 1

2𝑛 + 1
1

(2𝑛 + 2)2
1

(1 + 1/𝑛)2𝑛 −→
𝑛→∞

0.

Hence,

(𝐶𝑥 − 𝑥) (2𝑛) −→
𝑛→∞

−∞ and 𝑥 ∉ Dom[𝐶 − I, ℓ∞ (N)] . (12)

Finally, let us prove that ℓ∞ ({1/log(𝑛 + 1)}𝑛,N) is the smallest ℓ∞ (𝑤,N) space
containing Dom[𝐶 − I, ℓ∞ (N)]. In fact, as we have already observed in (11), 𝑥 =

{log 𝑛}𝑛∈N ∈ Dom[𝐶 − I, ℓ∞ (N)]. Therefore, if 𝑥 ∈ ℓ∞ (𝑤,N), then

𝑤𝑛 ≲
1

log(𝑛 + 1) =⇒ ℓ∞
(

1
log(𝑛 + 1)

)
⊂ ℓ∞ (𝑤,N).

Remark 2 As a consequence of Theorem 1, we can prove that, for all values 1 ≤ 𝑝 ≤
∞, Dom[𝐶 − I, ℓ𝑝 (N)] is not a space satisfying the lattice property (i.e., if |𝑦 | ≤ |𝑥 |
and 𝑥 belongs to the space, so does 𝑦). In fact, if 𝑝 = 1,

𝑥 = 𝑒1 − 𝑒2 ∈ Dom[𝐶 − I, ℓ1 (N)], but 𝑦 = |𝑒1 − 𝑒2 | = 𝑒1 + 𝑒2 ∉ Dom[𝐶 − I, ℓ1 (N)] .

For 1 < 𝑝 < ∞, it suffices to consider
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𝑥 =

{1
𝑛
+ 1

}
𝑛∈N

∈ ℓ𝑝 (N) + R, but 𝑦 =
{
(−1)𝑛

(1
𝑛
+ 1

)}
𝑛∈N

∉ ℓ𝑝 (N) + R.

Similarly, as proved in (11) and (12), for 𝑝 = ∞,

{log 𝑛}𝑛∈N ∈ Dom[𝐶 − I, ℓ∞ (N)], but {(−1)𝑛 log 𝑛}𝑛∈N ∉ Dom[𝐶 − I, ℓ∞ (N)] .

3 Weak-type estimates

We are now going to consider some extensions, at the end-point 𝑝 = 1, of the
classical weak-type estimates for the Cesàro operator. In particular, we will study
the domain Dom[𝐶 − I, ℓ𝑝,∞], where, for 1 ≤ 𝑝 < ∞ and 𝑥∗ being the decreasing
rearrangement of the sequence 𝑥,

ℓ𝑝,∞ (N) =
{
𝑥 = {𝑥 𝑗 } 𝑗∈N : ∥𝑥∥ℓ𝑝,∞ (N)

def
= sup

𝑛∈N
𝑛1/𝑝𝑥∗𝑛 < ∞

}
.

Let us first observe that, if 1 < 𝑝 < ∞, since both𝐶 and𝐶∗ are bounded in ℓ𝑝,∞ (N),
and using Lemma 2, then

Dom[𝐶 − I, ℓ𝑝,∞ (N)] = ℓ𝑝,∞ (N) + R,

as in Theorem 1 (ii). Now, if 𝑝 = 1, we have the following results:

Proposition 3 Let 𝑤 be a weight in N. Then,

ℓ1 (𝑤,N) + R ⊂ Dom[𝐶 − I, ℓ1,∞ (N)] ⇐⇒ 𝑤𝑛 ≳ 1.

Hence, ℓ1 (N) is the largest ℓ1 (𝑤,N) space contained in Dom[𝐶 − I, ℓ1,∞ (N)] and,
moreover,

ℓ1 (N) + R ⊊ Dom[𝐶 − I, ℓ1,∞ (N)] .

Proof Since 𝑤𝑛 ≳ 1 implies that ℓ1 (𝑤,N) ⊂ ℓ1 (N), using that ℓ1 (N) ⊂ ℓ1,∞ (N)
and

∥𝐶𝑥∥ℓ1,∞ (N) ≤ ∥𝐶𝑥∗∥ℓ1,∞ (N) = sup
𝑛∈N

𝑛

(
1
𝑛

𝑛∑︁
𝑘=1

𝑥∗𝑘

)
= ∥𝑥∗∥ℓ1 (N) = ∥𝑥∥ℓ1 (N) ,

we finally get that ℓ1 (𝑤,N) + R ⊂ Dom[𝐶 − I, ℓ1,∞ (N)].

Conversely, if we fix 𝑁 ≥ 2 and pick 𝑥 = 𝛿𝑁 , then as in (10),

∥𝐶𝛿𝑁 − 𝛿𝑁 ∥ℓ1,∞ (N) = max
{
1 − 1/𝑁, sup

𝑘≥2

𝑘

𝑘 + 𝑁

}
= 1 ≲ 𝑤𝑁 .
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To prove that the inclusion is strict, it suffices to consider the alternating sequence
𝑥 = {(−1)𝑛/𝑛}𝑛∈N ∉ ℓ1 (N) + R. Then

| (𝐶𝑥 − 𝑥) (𝑛) | = 1
𝑛

���� 𝑛∑︁
𝑘=1

(−1)𝑘
𝑘

− (−1)𝑛
���� ≲ 1

𝑛
.

Thus, since {1/𝑛}𝑛∈N ∈ ℓ1,∞ (N), then (𝐶𝑥 − 𝑥) ∈ ℓ1,∞ (N) and we conclude the
result. □

We end this section with some further results dealing with Dom[𝐶 − I, ℓ1,∞ (N)],
and give also a complete description when restricted to the cone of decreasing
sequences. We begin with some useful definitions and an interesting weak-type
estimate for the Copson operator 𝐶∗:

Definition 1 Given a positive sequence (a weight) 𝑤, we define the weighted weak-
type space

ℓ1,∞ (𝑤,N) = {𝑥 = {𝑥𝑛}𝑛∈N ∈ RN : ∥𝑥∥ℓ1,∞ (𝑤,N) = sup
𝑛∈N

𝑤𝑛𝑥
∗
𝑛 < ∞}.

Observe that, with this definition, ℓ1,∞ (N) = ℓ1,∞ ({𝑛}𝑛∈N,N). Also, for reasons
that will be clarified in the next proposition, we have that

ℓ1,∞ (N) ⊂ ℓ1,∞
({ 𝑛

1 + log 𝑛

}
𝑛∈N

,N
)
⊂ ℓ𝑝 (N), for 𝑝 > 1.

Definition 2 Given a sequence space 𝑋 , we denote by

𝑋dec = {𝑥 = (𝑥𝑛)𝑛 ∈ 𝑋 : 𝑥𝑛 ≥ 0 and 𝑥𝑛 ≥ 𝑥𝑛+1, 𝑛 ∈ N}.

Lemma 3 Let 𝑝 > 0. Then, ℓ1,∞ (N) ⊂ ℓ𝑝 (𝑤,N), with embedding constant 𝐴 > 0,
if and only if 𝑤 ∈ ℓ∞ (N). Moreover

max
{
∥𝑤∥1/𝑝

∞ ,

( ∞∑︁
𝑗=1

𝑤 𝑗

𝑗

)1/𝑝}
≤ 𝐴 ≤

( ∞∑︁
𝑗=1

𝑤∗
𝑗

𝑗

)1/𝑝
.

In particular, if 𝑤 is a decreasing weight, then ℓ1,∞ (N) ⊂ ℓ𝑝 (𝑤,N), with embedding
constant 𝐴 > 0, if and only if 𝐴 =

( ∑∞
𝑗=1

𝑤 𝑗

𝑗

)1/𝑝
< ∞.

Proof For the necessity part, taking 𝑥 = 𝛿 𝑗 , we clearly get that

∥𝑥∥ℓ𝑝 (𝑤,N) = 𝑤
1/𝑝
𝑗

≤ 𝐴∥𝑥∥1,∞ = 𝐴.

Thus, ∥𝑤∥1/𝑝
∞ ≤ 𝐴. Now, with 𝑥𝑛 = 1/𝑛, ∥𝑥∥1,∞ = 1 and

∥𝑥∥ℓ𝑝 (𝑤,N) =

( ∞∑︁
𝑗=1

𝑤 𝑗

𝑗

)1/𝑝
≤ 𝐴.
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Conversely, using Hardy and Littlewood’s inequality [1, Theorem II.2.2],

∥𝑥∥ℓ𝑝 (𝑤,N) =

( ∞∑︁
𝑗=1

|𝑥 𝑗 |𝑝𝑤 𝑗

)1/𝑝
≤

( ∞∑︁
𝑗=1

(𝑥∗𝑗 ) 𝑝𝑤∗
𝑗

)1/𝑝
≤ ∥𝑥∥1,∞

( ∞∑︁
𝑗=1

𝑤∗
𝑗

𝑗

)1/𝑝
.

Proposition 4

(i) 𝐶∗ : ℓ1,∞ (N) −→ ℓ1,∞
({

𝑛
1+log 𝑛

}
𝑛∈N

,N
)
.

(ii) 𝐶∗ : ℓ1,∞ (N) −→/ ℓ1,∞ (N).
(iii) 𝐶∗ : ℓ1,∞ (N)dec −→ ℓ1,∞ (N).

Proof We start with (i). We observe that, if 𝑥 ∈ ℓ1,∞ (N), then the series
∑∞

𝑘=1
𝑥𝑘
𝑘

converges (absolutely) and 𝐶∗ (𝑥) is well defined. Now,���� ∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘

���� ≤ ∞∑︁
𝑘=𝑛

|𝑥𝑘 |
𝑘

and, hence, ( ∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘

)∗
≤

∞∑︁
𝑘=𝑛

|𝑥𝑘 |
𝑘
.

Now, using Lemma 3, with 𝑤 = (

𝑛−1︷ ︸︸ ︷
0, ..., 0, 1/𝑛, 1/(𝑛 + 1), ...) and 𝑝 = 1, we have that

𝑤∗ = {1/(𝑘 + 𝑛 − 1)}𝑘∈N and

∞∑︁
𝑘=𝑛

|𝑥𝑘 |
𝑘

= ∥𝑥∥ℓ1 (𝑤,N) ≤
∞∑︁
𝑘=1

1
𝑘 (𝑘 + 𝑛 − 1) ∥𝑥∥1,∞ ≲

1 + log 𝑛
𝑛

∥𝑥∥1,∞.

Finally,

∥𝐶∗ (𝑥)∥
ℓ1,∞

({
𝑛

1+log𝑛

}
𝑛∈N

,N

) = sup
𝑛∈N

𝑛

1 + log 𝑛

( ∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘

)∗
≲ ∥𝑥∥1,∞.

The proof of (ii) goes as follows. For a fixed odd number 𝑚 ∈ N, we consider
the sequence 𝑥𝑚 = (1/𝑚, 1/(𝑚 − 1), ..., 1, 0, ..., 0, ...) and set 𝑗 = (𝑚 + 1)/2. Then,
(𝑥𝑚)∗ = (1, 1/2, ..., 1/𝑚, 0, ..., 0...) and ∥𝑥𝑚∥1,∞ = 1. On the other hand, with the
same value of 𝑗 = (𝑚 + 1)/2,

∥𝐶∗𝑥𝑚∥1,∞ ≥ 𝑗𝐶∗𝑥𝑚 ( 𝑗) = 𝑚 + 1
2

𝑚∑︁
𝑘=(𝑚+1)/2

1
𝑘 (𝑚 − 𝑘 + 1)

=
𝑚 + 1

2
1

𝑚 + 1

( 𝑚∑︁
𝑘=(𝑚+1)/2

1
𝑘
+

(𝑚+1)/2∑︁
𝑘=1

1
𝑘

)
≳

(𝑚+1)/2∑︁
𝑘=1

1
𝑘

−→
𝑚→∞

∞.
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To finish, if we now select 𝑦 ∈ ℓ1,∞ (N)dec, then (𝐶∗𝑦)∗ (𝑛) ≤ 𝐶∗ ( |𝑦 |) (𝑛) =

𝐶∗ (𝑦∗) (𝑛) and

𝑛(𝐶∗𝑦)∗ (𝑛) ≤ 𝑛
∞∑︁
𝑘=𝑛

∥𝑦∥1,∞
𝑘2 ≲ ∥𝑦∥1,∞.

Remark 3 We observe that Proposition 4 (ii) shows that ℓ1,∞ (N) is not an interpola-
tion quasi-Banach space between ℓ1 (N) and ℓ𝑝 (N), for every 1 < 𝑝 < ∞.

Proposition 5

(i) Dom[𝐶 − I, ℓ1,∞ (N)] ⊂ ℓ1,∞
({

𝑛
1+log 𝑛

}
𝑛∈N

,N
)
+ R.

(ii) Dom[𝐶 − I, ℓ1,∞ (N)] ⊄ ℓ1,∞ (N) + R.

(iii) Domdec [𝐶, ℓ1,∞ (N)] = ℓ1
dec (N) = Domdec [𝐶 − I, ℓ1,∞ (N)] ∩ ℓ1,∞ (N).

Proof Using (2), if 𝑥 ∈ Dom[𝐶 − I, ℓ1,∞ (N)] and 𝑦 = 𝐶𝑥 − 𝑥 ∈ ℓ1,∞ (N), then

𝑥𝑛 =

(
𝑥1 −

∞∑︁
𝑘=2

𝑦𝑘

𝑘 − 1

)
− 𝑛

𝑛 − 1
𝑦𝑛 +

∞∑︁
𝑘=𝑛

𝑦𝑘

𝑘 − 1
,

and the result of (i) follows using Proposition 4 (i).

The proof of (ii) follows similarly using now Proposition 4 (ii).

For the first equality in (iii), we already know that ℓ1 (N) ⊂ Dom[𝐶, ℓ1,∞ (N)]
and hence

ℓ1
dec (N) ⊂ Domdec [𝐶, ℓ1,∞ (N)] .

Conversely, if 𝑥 ↓ and 𝐶𝑥 ∈ ℓ1,∞ (N), then

sup
𝑛

𝑛(𝐶𝑥)∗𝑛 = sup
𝑛

𝑛∑︁
𝑘=1

𝑥∗𝑛 = ∥𝑥∥ℓ1 (N) < ∞.

That ℓ1
dec (N) ⊂ Domdec [𝐶 − I, ℓ1,∞ (N)] ∩ ℓ1,∞ (N) is trivial. Finally, if

𝑥 ∈ Domdec [𝐶 − I, ℓ1,∞ (N)] ∩ ℓ1,∞ (N),

then 𝐶𝑥 = (𝐶 − I)𝑥 + 𝑥 ∈ ℓ1,∞ (N) and 𝑥 ∈ Domdec [𝐶, ℓ1,∞ (N)]. □

4 Domain for Copson type operators on sequence spaces

In this final section, we are going to study the analogous results of Section 2, but
for the Copson operator 𝐶∗. We start with some properties for 𝐶∗, similar to those
proved in Proposition 1 for 𝐶.
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Proposition 6

(i) There exists 𝑥 ∈ ℓ∞ (N) \ {0} such that 𝐶∗𝑥 ∈ ℓ∞ (N); that is,

ℓ∞ (N) ∩ Dom[𝐶∗, ℓ∞ (N)] ≠ {0}.

(ii) There exists 𝑥 ∉ ℓ∞ (N) such that 𝐶∗𝑥 ∈ ℓ∞ (N); that is,

Dom[𝐶∗, ℓ∞ (N)] ⊄ ℓ∞ (N).

Proof To prove (i), take 𝑥 = (−1)𝑛, 𝑛 ≥ 1. To show (ii), pick 𝑥 = (−1)𝑛
√
𝑛, 𝑛 ≥ 1.

Then, 𝑥 ∉ ℓ∞ (N) but 𝐶∗𝑥 ∈ ℓ∞ (N). □

Proposition 7 Let 𝑤 > 0. Then,

𝐶∗ : ℓ∞ (𝑤,N) −→ ℓ∞ (N)

is bounded if and only if 𝐴 =
∑∞

𝑛=1
1

𝑛𝑤𝑛
< ∞.

Proof We prove first the sufficiency of the condition; i.e., if 𝐴 =
∑∞

𝑛=1
1

𝑛𝑤𝑛
< ∞ then

the operator is bounded. By homogeneity it is sufficient to prove that ∥𝐶∗𝑥∥∞ ≤ 𝐴,
for all 𝑥 such that |𝑥𝑛 |𝑤𝑛 ≤ 1. Now,

∥𝐶∗𝑥∥∞ = sup
𝑛

��� ∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘

��� ≤ sup
𝑛

∞∑︁
𝑘=𝑛

1
𝑘𝑤𝑘

= 𝐴.

Hence 𝐶∗ is bounded and ∥𝐶∗∥∞ ≤ 𝐴.
To prove the necessity, take 𝑥𝑁 = ( 1

𝑤1
, 1
𝑤2
, . . . , 1

𝑤𝑁
, 0, . . . , 0, . . .) (a sequence for

every 𝑁 ∈ N). Since 𝐶∗ is bounded, we get

∥𝐶∗𝑥𝑁 ∥∞ = sup
𝑛

𝑁∑︁
𝑘=𝑛

1
𝑘𝑤𝑘

=

𝑁∑︁
𝑘=1

1
𝑘𝑤𝑘

≤ ∥𝐶∗∥∞,

for any 𝑁 , which implies that 𝐴 =
∑∞

𝑘=1
1

𝑘𝑤𝑘
≤ ∥𝐶∗∥∞. Hence, 𝐴 is also the best

constant in the inequality. □

Theorem 2 (Optimal domain for 𝐶∗ − I on ℓ𝑝 (N), 1 ≤ 𝑝 ≤ ∞)

(i) Case 𝑝 = 1:

a. ℓ1 (𝑤,N) ⊂ Dom[𝐶∗ − I, ℓ1 (N)] ⇐⇒ 𝑤𝑛 ≳ 1. Hence, ℓ1 (N) is the largest
weighted space ℓ1 (𝑤,N) contained in Dom[𝐶∗−I, ℓ1 (N)] and the inclusion
is strict.

b. Dom[𝐶∗ − I, ℓ1 (N)] ⊊ ℓ1,∞ (N).
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(ii) Case 1 < 𝑝 < ∞: Dom[𝐶∗ − I, ℓ𝑝 (N)] = ℓ𝑝 (N).

(iii) Case 𝑝 = ∞: Dom[𝐶∗ − I, ℓ∞ (N)] = Dom[𝐶∗, ℓ∞ (N)] ∩ ℓ∞ (N). Moreover,

a. if𝑊 =

{
(𝑤𝑛)𝑛 : 𝑤𝑛 ≳ 1 and

∑∞
𝑛=1

1
𝑛𝑤𝑛

< ∞
}
, then

ℓ∞ (𝑤,N) ⊂ Dom[𝐶∗ − I, ℓ∞ (N)] ⇐⇒ 𝑤 ∈ 𝑊.

b. Dom[𝐶∗ − I, ℓ∞ (N)] ⊂ ℓ∞ (𝑤,N) ⇐⇒ 𝑤𝑛 ≲ 1. Hence, ℓ∞ (N) is the
smallest weighted space ℓ∞ (𝑤,N) that contains Dom[𝐶∗ − I, ℓ∞ (N)] and
the inclusion is strict.

Proof We prove first (i)-(a). If we assume that ℓ1 (𝑤,N) ⊂ Dom[𝐶∗ − I, ℓ1 (N)]; i.e.,
∥𝐶∗𝑥 − 𝑥∥1 ≲ ∥𝑥∥ℓ1 (𝑤,N) , taking 𝑥𝑁 = 𝛿𝑁 , for 𝑁 ≥ 2, we have

(𝐶∗𝑥𝑁 − 𝑥𝑁 )𝑛 =


1
𝑁
, if 1 ≤ 𝑛 ≤ 𝑁 − 1,

− 𝑁−1
𝑁
, if 𝑛 = 𝑁,

0, if 𝑛 > 𝑁.
(13)

Hence, we have
1 ≤ 2(𝑁 − 1)

𝑁
≲ 𝑤𝑁 = ∥𝑥𝑁 ∥ℓ1 (𝑤,N) .

Conversely, if 𝑤𝑛 ≳ 1, ℓ1 (𝑤,N) ⊂ ℓ1 (N) ⊂ Dom[𝐶∗ − I, ℓ1 (N)], since 𝐶∗ is
bounded from ℓ1 (N) into ℓ1 (N). That the inclusion is strict follows by considering
the sequence 𝑥𝑛 = 1/(𝑛 + 1), 𝑛 ≥ 1, which belongs to Dom[𝐶∗ − I, ℓ1 (N)] but not
to ℓ1 (N). In fact,

(𝐶∗ − I) (𝑥) =
∞∑︁
𝑘=𝑛

1
𝑘 (𝑘 + 1) −

1
𝑛 + 1

=

∞∑︁
𝑘=𝑛

(
1
𝑘
− 1
𝑘 + 1

)
− 1
𝑛 + 1

=
1
𝑛
− 1
𝑛 + 1

=
1

𝑛(𝑛 + 1) = 𝑦𝑛,

which shows that 𝑥 ∈ Dom[𝐶∗ − I, ℓ1 (N)].

Let us now see (i)-(b). Let 𝑥 ∈ Dom[𝐶∗ − I, ℓ1 (N)]. Hence, 𝑦 = 𝐶∗𝑥 − 𝑥 ∈ ℓ1 (N)
and using (3) we get that

𝑥𝑛 = (𝐶𝑦)𝑛−1 − 𝑦𝑛, 𝑛 ≥ 2.

Thus, using Proposition 3 we conclude that 𝑥 ∈ ℓ1,∞. Finally, to prove that the
embedding is strict, we define

𝑥𝑛 =
1

𝑛 − 1

𝑛−1∑︁
𝑘=1

(−1)𝑘
𝑘

− (−1)𝑛
𝑛

.
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As above, using (3), we have that 𝑦𝑛 = (𝐶∗𝑥 − 𝑥) (𝑛) = (−1)𝑛
𝑛

∉ ℓ1 (N) and, hence,
𝑥 ∉ Dom[𝐶∗ − I, ℓ1 (N)], but

|𝑥𝑛 | ≤
1

𝑛 − 1

���� 𝑛−1∑︁
𝑘=1

(−1)𝑘
𝑘

���� + 1
𝑛
≲

1
𝑛
∈ ℓ1,∞.

The proof of (ii) is a direct consequence of Lemma 2 and the fact that, for
1 < 𝑝 < ∞, both 𝐶 and 𝐶∗ are bounded on ℓ𝑝 (N).

We consider now the equality Dom[𝐶∗ − I, ℓ∞ (N)] = Dom[𝐶∗, ℓ∞ (N)] ∩ ℓ∞ (N)
in (iii). Assume firstly that 𝑦 = 𝐶∗𝑥 − 𝑥 ∈ ℓ∞ (N). As above, using (3), since
(𝐶𝑦)𝑛 ∈ ℓ∞ (N), when 𝑦 ∈ ℓ∞ (N), we necessarily get that 𝑥 ∈ ℓ∞ (N). Also, the
equality

∞∑︁
𝑘=𝑛

𝑥𝑘

𝑘
= 𝑥𝑛 + 𝑦𝑛, 𝑛 ≥ 2

implies
∥𝐶∗𝑥∥∞ ≤ ∥𝑦∥∞ + ∥𝑥∥∞ < ∞;

i.e., 𝑥 ∈ Dom[𝐶∗, ℓ∞ (N)].

Conversely, if 𝑥 ∈ Dom[𝐶∗, ℓ∞ (N)] ∩ℓ∞ (N), then trivially 𝑦 = 𝐶∗𝑥−𝑥 ∈ ℓ∞ (N).

For the proof of (iii)-(a), let 𝑤 ∈ 𝑊. Then, 𝑤𝑛 ≳ 1 (i.e., ℓ∞ (𝑤,N) ⊂ ℓ∞ (N))
and hence, by the previous equality, it is enough to show that ℓ∞ (𝑤,N) ⊂
Dom[𝐶∗, ℓ∞ (N)], which follows from Proposition 7.

Conversely, if ℓ∞ (𝑤,N) ⊂ Dom[𝐶∗ − I, ℓ∞ (N)], we get that ℓ∞ (𝑤,N) ⊂
Dom[𝐶∗, ℓ∞ (N)] and ℓ∞ (𝑤,N) ⊂ ℓ∞ (N), which as before, and from Proposition 7,
imply that 𝑤 ∈ 𝑊 .

To prove the necessity part of (iii)-(b), we choose 𝑥𝑁 = 𝛿𝑁 . The embedding and
(13) imply 𝑤𝑁 ≲ 1.

For the sufficiency part, if 𝑤𝑛 ≲ 1, using (iii) we get the embeddings

Dom[𝐶∗ − I, ℓ∞ (N)] ⊂ ℓ∞ (N) ⊂ ℓ∞ (𝑤,N).

That Dom[𝐶∗ − I, ℓ∞ (N)] ⊊ ℓ∞ (N) follows by taking 𝑥 ≡ 1, which is in ℓ∞ (N) but
not in Dom[𝐶∗ − I, ℓ∞ (N)] . □
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