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Abstract. In this work we develop a weight theory in the setting of hyperbolic
spaces. Our starting point is a variant of the well-known endpoint Fefferman-Stein
inequality for the centered Hardy-Littlewood maximal function. This inequality gen-
eralizes, in the hyperbolic setting, the weak (1, 1) estimates obtained by Strömberg
in [17] who answered a question posed by Stein and Wainger in [16]. Our approach
is based on a combination of geometrical arguments and the techniques used in
the discrete setting of regular trees by Naor and Tao in [11]. This variant of the
Fefferman-Stein inequality paves the road to weighted estimates for the maximal
function for p > 1. On the one hand, we show that the classical Ap conditions are
not the right ones in this setting. On the other hand, we provide sharp sufficient
conditions for weighted weak and strong type (p, p) boundedness of the centered
maximal function, when p > 1. The sharpness is in the sense that, given p > 1,
we can construct a weight satisfying our sufficient condition for that p, and so it
satisfies the weak type (p, p) inequality, but the strong type (p, p) inequality fails. In
particular, the weak type (q, q) fails as well for every q < p.

1. Introduction

Let Hn denote the n-dimensional hyperbolic space, i.e. the unique (up to isometries)
n-dimensional, complete, and simply connected Riemannian manifold with constant
sectional curvature −1. Let µn denote the corresponding volume measure. If BH(x, r)

denotes the hyperbolic ball of radio r centered at x, then the centered Hardy-Littlewood
maximal function on Hn is defined as

Mf(x) = sup
r>0

1

µn(BH(x, r))

∫
BH(x,r)

|f(y)|dµn(y).

In the seminal work [16], Stein and Wainger proposed the study of the end-point esti-
mates for the centered Hardy-Littlewood maximal function when the curvature of the
underline space could be non-negative. In this more general scenario, the euclidean
spaces Rn and the aforementioned hyperbolic spaces Hn represent two extreme cases.

In [17], Strömberg proved the (unweighted) weak type (1, 1) boundedness of M in
symmetric spaces of noncompact type, suggesting that the behavior of the maximal
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operator is the same in both spaces, Rn and Hn. However, this is not the case in
general, and it will be reveled by analyzing weighted estimates. More precisely, to
complete the answer to Stein-Wainger’s question we study an end-point two-weight
Fefferman-Stein inequality for M in the hyperbolic setting.

1.1. Fefferman Stein type inequality. In the Euclidean setting, the classical Feffer-
man Stein inequality [4] is

w ({x ∈ Rn : Mf(x) > λ}) . 1

λ

∫
Rn
|f(x)|Mw(x)dx,

where w is non-negative measurable function (a weight) defined in Rn, and w(E) =∫
E w(x)dx. This is a cornerstone in the theory of weights, and a powerful tool to
consider vector valued extension of the maximal function M . This result follows from
a classical covering lemma, which is not available in the hyperbolic setting. Indeed, in
this setting

(1.1) µn

(
BH(x, r)

)
= Ωn

∫ r

0
(sinh t)n−1dt ∼n

rn

1 + rn
e(n−1)r,

where Ωn is the euclidean (n− 1)-volume of the sphere Sn−1, and the subindex in the
symbol ∼ means that the constant behind this symbol depends only on the dimension
n. This exponential behaviour, as well as the metric properties ofHn, make the classical
covering arguments fail. In consequence, it is unclear how to decompose the level set
{x ∈ Hn : Mf(x) > λ} in such way that the appropriate averages of w appear.

As in the euclidean case, from now on, given a non-negative measurable function w (a
weight) defined on Hn, let w(E) =

∫
E w(x)dµn(x) for a measurable set E ⊂ Hn. On

the other hand, given s > 1, let

Msw = M(ws)1/s.

Using this notation, our first main result is the following variant of the Fefferman-Stein
inequality.

Theorem 1.1. For every weight w ≥ 0 we have that

w ({x ∈ Hn : Mf(x) > λ}) ≤ Cs,n
1

λ

∫
Hn
|f(x)|Msw(x)dµn(x)

where the constant Cs,n → +∞ when s→ 1.

This theorem is a generalization of the result of Strömberg [17], and as far as we know,
it represents the first result for general weights in the hyperbolic setting. The reader
may wonder if this result could hold for s = 1. We will show that this result is false
in general if s = 1 (see Example 4.1 item 1 below). Moreover, our example shows that
it is false, even if we put iterations of the maximal function in the right hand side.
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In some sense, this is an evidence of a stronger singularity of the maximal function in
the hyperbolic setting. In Section 4 we will show that there are non trivial weights
satisfying the pointwise condition Ms(w)(x) ≤ Cw(x) a.e x ∈ Hn. Then, for these
weights it holds that the maximal function M satisfies the weak type (1, 1) respect to
the measure wdµn.

About the proof of Theorem 1.1. For each r > 0, let Ar be the averaging operator

Arf(x) =
1

µn(BH(x, r))

∫
BH(x,r)

|f(y)| dµn(y).

HenceMf(x) = supr≥0Arf(x). IfM loc(f) denotes the operator obtained if supremum
is restricted to r ≤ 2, and Mfar(f) denotes the operator obtained if the supremum is
taken over all r ≥ 2, then

Mf(x) ≤M locf(x) +Mfarf(x).

On the one hand, the operatorM loc behaves as in the Euclidean setting. The main diffi-
culties appear in the estimations ofMfar. In [17], Strömberg uses a pointwise inequality
obtained by Clerc and Stein in [3]. This pointwise inequality reduced the problem to
get a good estimate for a convolution operator associated with a k-bi-invariant kernel τ ,
which in the case of hyperbolic setting is τ(z, w) = (1 + µn(B(0, d(z, w))−1. A similar
approach was used by Li and Lohoué in [9] to obtain sharp constants with respect to
the dimension n. However, Strömberg’s argument strongly uses the homogeneity of the
measure µn. So, it is not clear that one can apply a similar idea in the general case of
any weight w. This makes it necessary to look for a more flexible approach.

Our general strategy is based in the scheme used by Naor and Tao in [11], where the
weak type (1, 1) of the centered maximal function on the discrete setting of rooted
k-ary trees is obtained. The flexibility of this approach was shown in [13] and [14],
where the authors used this approach to get weighted estimates in the same discrete
setting. It is well known that regular trees can be thought as discrete models of the
hyperbolic space. Moreover, this kind of heuristic was used by Cowling, Meda and Setti
in [2], but in the other way round, that is, in this work the authors used Strömberg’s
approach to prove weak estimates in the setting of trees. A novelty of our paper is to
bring ideas of the discrete setting to the continue hyperbolic context. Adapting this
strategy to a continuous context requires overcoming certain obstacles. On the one
hand, the combinatorial arguments used in the discrete setting of trees are not longer
available, so they have to be replaced by geometrical arguments. In this sense, the
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following estimate (Proposition 2.1)

µn

(
BH(y, s) ∩BH(x, r)

)
≤ Cne

n−1
2

( r+s−dn(x,y) )

is behind many estimates, as well as, some examples. It will also play a key role in the
inequality ∫

F
Ar(χE)(y)w(y)dµn(y) ≤ cs,n e−(n−1) r

s′+1w(F )
1

s′+1Msw(E)
s′
s′+1 ,

that is very important to prove Theorem 1.1. In this inequality, E and F are measurable
subsets of Hn, s > 1, s′ = s

s−1 , and r is a positive integer. On the other hand, in our
setting the measure is not atomic. This leads us to make some estimations on some
convenient averages of the original function instead of the function itself (see for instance
Lemma 3.3).

1.2. Weighted estimates in the hyperbolic space for p > 1. In the Euclidean
case, the weak and strong boundedness of the maximal operator M in weighted Lp

spaces is completely characterized by the Ap condition defined in the seminal work of
Muckenhoupt [10]:

(1.2) sup

(
1

|B|

∫
B
w dx

)(
1

|B|

∫
B
w
− 1
p−1 dx

)p−1

<∞,

where the supremum is taken over all the Euclidean balls. Different type of weighted
inequalities were proved for measures such that the measure of the balls grows polynom-
ically with respect to the radius (see for instance [5], [12], [15], [18], and [19]). However,
the techniques used in those works can not be applied in our framework because of the
geometric properties of Hn and the exponential growth of the measures of balls with
respect to the radius. Unweighted strong (p, p) inequalities for the maximal function
were proved for p > 1 by Clerc and Stein in [3]. Moreover, singular integral operators
also were studied on symmetric spaces by Ionescu ([6, 7]).

Roughly speaking, in the hyperbolic spaces, the behaviour of the maximal function is
a kind of combination of what happens in the Euclidean case and in the trees. More
precisely, recall that we have defined the operators

M locf(x) = sup
0<r≤2

Arf(x) and Mfarf(x) = sup
2<r

Arf(x).

As we have already mentioned, the operator M loc behaves as if it were defined in the
Euclidean space. So, it is natural to expect that it boundedness could be controlled by
a kind of “local Ap condition”. We say that a weight w ∈ Ap,loc(Hn) if

sup
0<r(B)≤1

(
1

µn(B)

∫
B
wµn

)(
1

µn(B)

∫
B
w
− 1
p−1µn

)p−1

<∞.
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The situation is very different for large values of the radius, when the hyperbolic struc-
ture comes into play. For instance, it is not difficult to show that the natural Ap
condition is too strong for the boundedness of Mfar in the hyperbolic setting. Indeed,
in the Example 4.1 we show a weight for which the maximal function is bounded in all
the Lp-spaces, but it does not belong to any (hyperbolic) Ap class. This suggests to
follow a different approach. Inspired by the condition introduced in [14], in the case
of k-ary trees, we are able to define sufficient conditions to obtain weak and strong
estimates for the maximal function respect to a weight w. Our main result in this
direction is the following:

Theorem 1.2. Let p > 1 and w a weight. Suppose that

i.) w ∈ Ap,loc(Hn).
ii.) There exist 0 < β < 1 and β ≤ α < p such that for every r ≥ 1 we have

(1.3)
∫
F
Ar(χE)(y)w(y)dµn(y) . e(n−1)r(β−1)w(E)

α
pw(F )

1−α
p ,

for any pair of measurable subsets E,F ⊆ Hn.

Then

(1.4) ‖Mf‖Lp,∞(w) . ‖f‖Lp(w).

Furthermore, if β < α then for each fixed γ ≥ 0 we have

(1.5)
∞∑
j=1

jγ‖Ajf‖Lp(w) . ‖f‖Lp(w).

And therefore

‖Mf‖Lp(w) . ‖f‖Lp(w),

‖Mf‖Lp′ (σ) . ‖f‖Lp′ (σ),

where σ = w1−p′ and p′ = p
p−1 .

Remark 1.3. We observe that the estimate (1.5) in the previous theorem is stronger
than the boundedness of the maximal function Mfar(f). In particular, it implies that
if an operator T satisfies the pointwise estimate

|Tf(x)| .M loc(|f |)(x) +
∑
j≥1

jγAj(|f |)(x),

for some γ ≥ 0, then the requested conditions on the weight w in Theorem 1.2 will be
sufficient condition for the boundedness of T in the space Lp(w) with p > 1. In partic-
ular, this generalized, in the hyperbolic setting, the unweighted estimates obtained by
Clerc and Stein in [3, Thm. 2] for the maximal function.
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Remark 1.4. It is not clear whether or not the condition (1.3) for α = β is a necessary
condition for the weak type (p, p) boundedness of M with respect to w. However, the
condition is sharp in the following sense: if β = α we can construct a weight w satisfying
(1.3) and w ∈ Ap,loc(Hn), therefore the weak type (p, p) holds, but the strong type (p, p)

fails. Consequently, the weak type (q, q) fails as well for every q < p (see Example 4.1
(2)). In particular, this shows that, unlike the classical case, in the hyperbolic context
the weak (p, p) inequality with respect to w of the maximal operator is not equivalent
to the strong estimate for p > 1.

The condition (1.3) could be not easy to be checked. For this reason, we consider the
following result which provides a more tractable condition. To simplify the statement,
given a positive integer j, let

Cj = B(0, j) \B(0, j − 1).

Observe that the sets considered in the condition in (1.3) may have non-empty intersec-
tion with several different levels Cj . The condition in the following proposition studies
the behavior of the weight at each level.

Proposition 1.5. Let 1 < p < ∞, and let w be a weight such that there exists a real
number δ < 1, so that for every j, l, r ≥ 1 integers with the restriction |l − j| ≤ r, we
have that

(1.6) w(Cl ∩B(x, r)) . e(n−1) r+l−j
2

(p−δ)e(n−1)rδw(x), for a.e. x ∈ Cj .

Then, the condition (1.3) in Theorem 1.2 holds with β = α = p
p−δ+1 .

Combining Theorem 1.2, Remark 1.3 and Proposition 1.5 we obtain the following corol-
lary.

Corollary 1.6. Let 1 ≤ p < ∞, and w ∈ Ap,loc(Hn) such that there exists a real
number δ < 1 such that for every j, l, r ≥ 1 integers with the restriction |l − j| ≤ r, we
have that

w(Cl ∩B(x, r)) . e(n−1) r+l−j
2

(p−δ)e(n−1)rδw(x), for a.e. x ∈ Cj .

Then

‖Mf‖Lp,∞(w) . ‖f‖Lp(w).

Furthermore, if p < q we have

‖Tf‖Lq(w) . ‖f‖Lq(w),
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for every operator T satisfying the pointwise estimate

|Tf(x)| .M loc(|f |)(x) + jγ
∑
j≥1

Aj(|f |)(x),

for some γ ≥ 0.

1.3. Organization of the paper. This paper is organized as follow. In Section 2 we
prove an estimate on the measure of the intersection of two hyperbolic balls. Section 3
is devoted to the proof of the main results of this paper. The proof of Theorem 1.1 is
contained in Subsection 3.1, while the proof of Theorem 1.2 is contained in Subsection
3.2. The Section 3 concludes with the proof of Proposition 1.5. The Section 4 contains
examples that clarify several points previously mentioned. Finally, the paper concludes
with an appendix on the ball model of the hyperbolic space.

2. Geometric results

2.1. The hyperbolic space. Although the precise realisation of hyperbolic space is
not important for our purposes, for sake of concreteness, throughout this article we will
consider the ball model. Recall that µn denotes the volume measure, and by dn we will
denote the hyperbolic distance. A brief review of some basic facts about this model
and its isometries is left to the Appendix A.

2.2. Two results on the intersection of balls in the hyperbolic space. This
subsection is devoted to prove the following two geometric results, which will be very
important in the sequel.

Proposition 2.1. Let BH(y, s) and BH(x, r) be two balls in Hn. Then

µn

(
BH(y, s) ∩BH(x, r)

)
≤ Cne

n−1
2

( r+s−dn(x,y) ),

where Cn is a constant that only depends on the dimension.

Proof. We can assume that BH(y, s) ∩ BH(x, r) 6= ∅. On the other hand, since the
estimate is trivial if r and s are less than a fixed constant, we can also assume that
r, s > 2. Without loss of generality, we can assume that y = 0 and x = (d, 0, . . . , 0)

with d = dn(x, y). Note that we can also assume that d > 0, otherwise the estimate is
trivial. The geodesic passing through the centers is the segment

L = {(t, 0, . . . , 0) : t ∈ (−1, 1)}.

Since the balls are symmetric with respect to this geodesic line, the intersection is also
symmetric with respect to this line. Let OL(n− 1) be the subgroup of the orthogonal
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group O(n) defined by

OL(n) = {A ∈ O(n) : A leaves invariant the geodesic line L},

then the intersection is invariant by the action of OL(n− 1). Moreover, the subgroup
OL(n−1) acts transitively in the intersection of the boundaries ∂BH(0, s)∩∂BH(x, r),
which turns out to be an (n− 2)-sphere. Let S denote this intersection of boundaries,
and consider the point m ∈ L that satisfies

dn(0,m) =
s+ d− r

2
⇐⇒ dn(m,x) =

r + d− s
2

.

Since L is a symmetry axis for S, the points in S are at the same distance to the point
m. Let ρ denote this distance. The volume of the ball of radius ρ can be estimated
using the hyperbolic law of cosines. Take q ∈ S, and consider the two dimensional
hyperbolic (also linear) plane P containing q and L. Let us restrict our attention to
this hyperbolic plane (see Figure 1).

0 x
m

ρ

q

S

Figure 1. Intersection of the balls with the two dimensional plane P .

Since ∠(0,m, q) + ∠(q,m, x) = π, one of them is greater or equal to π
2 . Suppose that

the angle θ = ∠(0,m, q) is greater than π
2 , and consider the geodesic triangle whose

vertices are 0, m and q (see Figure 2).

0

m

ρ

q

S

s+d−r
2

x

r+d−s
2

s

Figure 2. Geodesic triangle.

If the angle (0,m, q) were smaller than π
2
, we use the angle (q,m, x) and the triangle with vertices

q, m and x.
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Since cos(θ) is non-positive, we have that

cosh(s) = cosh
(s+ d− r

2

)
cosh(ρ)− sinh

(s+ d− r
2

)
sinh(ρ) cos(θ)

≥ cosh
(s+ d− r

2

)
cosh(ρ).

Therefore, we get the following estimate

eρ ≤ cosh(ρ) ≤ cosh(s)

cosh
(
s+d−r

2

) ≤ 2e
s+r−d

2 .

By equation (1.1), we get that

(2.1) Vol
(
BH(m, ρ)

)
= Ωn

∫ ρ

0
(sinh t)n−1dr ≤ Kne

(n−1)ρ ≤ 2nKne
(n−1)( s+r−d2 ).

Now, it is enough to prove that BH(0, s)∩BH(x, r) ⊆ BH(m, ρ). Since the intersection
is an open-connected set, it is enough to prove that the boundary BH(m, ρ) is not
contained in the intersection. So, take p ∈ ∂BH(m, ρ). By a continuity argument, we
can assume that p /∈ L. Then, as before, consider the plane P generated by p and the
geodesic L. The geodesic L divide this plane in two parts. Let q be the unique point
in P ∩ S in the same half-plane as p, and suppose that θp = ∠(p,m, x) is greater or
equal than θq = ∠(q,m, x) (see Figure 3).

0

m

ρ

p q

r

S

s+d−r
2

x

r+d−s
2

t

Figure 3. Comparison of triangles.

If t = dn(x, p), since the cosine is decreasing in (0, π) we get that

cosh(t) = cosh
(r + d− s

2

)
cosh(ρ)− sinh

(r + d− s
2

)
sinh(ρ) cos(θp)

≥ cosh
(r + d− s

2

)
cosh(ρ)− sinh

(r + d− s
2

)
sinh(ρ) cos(θq)

= cosh(r).

In consequence, t ≥ r and therefore, the point t /∈ BH(x, r). If ∠(p,m, x) is smaller
than ∠(q,m, x), it holds that ∠(p,m, 0) is greater than ∠(q,m, 0). Hence, the same ar-
gument, replacing the vertex x by the vertex 0 shows that t /∈ BH(0, s). This concludes
the proof. �
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The following is a corollary of the proof of the previous lemma.

Corollary 2.2. Let BH(0, s) and BH(x, r) be two balls in Hn such that their intersec-
tion has positive measure. If ρ0 = 1

2( r + s− dn(0, x) ), then

BH(m, ρ0) ⊆ BH(0, s) ∩BH(x, r) ⊆ BH(m, ρ0 + 1),

where m = αx, and α = tanh
(s+ d− r

2

)
.

3. Proof of Main results

First of all, we will prove the following arithmetical lemma, which is a slight general-
ization of a result contained in [14].

Lemma 3.1. Let 1 ≤ p <∞, −p < δ < 1,and κ > 1. Let the sequences of non-negative
real numbers {cj}∞j=0 and {dl}∞l=0 satisfying

∞∑
j=0

κ(p−δ)jcj = A and
∞∑
l=0

κldl = B.

Then, for every integer r ≥ 1 we have that

(3.1)
∑

j,l∈N∪{0}

min
{
κδrκ

(l+j+r)(p−δ)
2 cj , κ

l+j+r
2 dl

}
≤ cp,δ,κ κ

p
p−δ+1

r
A

1
p−δ+1B

1− 1
p−δ+1 .

Proof. To prove this inequality, let ρ be a real parameter to be chosen later, and argue
as follows ∑

j,l∈N∪{0}

min
{
κδrκ

(l+j+r)(p−δ)
2 cj , κ

l+j+r
2 dl

}
≤ κ

p+δ
2
r

∑
l,j∈N∪{0}
l<j+ρ

κ
(l+j)(p−δ)

2 cj + κ
r
2

∑
l,j∈N∪{0}
l≥j+ρ

k
l+j
2 dl

. κ
p+δ
2
r
∞∑
j=0

κ
(j+ρ+j)(p−δ)

2 cj + κ
r
2

∞∑
l=0

κl−
ρ
2 dl

= κ
p+δ
2
rκ

ρ(p−δ)
2

∞∑
j=0

kj(p−δ)cj + κ
r
2k−

ρ
2

∞∑
l=0

κldl

= κ
p+δ
2
rκ

ρ(p−δ)
2 A+ κ

r
2κ−

ρ
2B.

Choosing ρ =
2 logκ(BA )
p−δ+1 −

(p+δ−1)r
p−δ+1 , it follows that

κ
p+δ
2
rκ

ρ(p−δ)
2 A+ κ

r
2κ−

ρ
2B ≤ cp,δκ

p
p−δ+1

r
A

1
p−δ+1B

1− 1
p−δ+1 ,

which concludes the proof. �
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3.1. Proof of Theorem 1.1. The first step consists on proving that Lemma 2.1 leads
to the following result. This is a key point to push the scheme on the discrete cases in
[11] or [13]. Recall that, given r ≥ 0, we denote by Ar the averaging operator

Arf(x) =
1

µn(BH(x, r))

∫
y∈BH(x,r)

|f(x)| dµn(x).

Lemma 3.2. Let E,F measurable sets of Hn, s > 1 and let r be a positive integer.
Then ∫

F
Ar(χE)(y)w(y)dµn(y) ≤ cs,ne−(n−1) r

s′+1w(F )
1

s′+1Msw(E)
s′
s′+1 ,

where s′ = s
s−1 and cs,n is a constant depending on s and the dimension n.

Proof. We divide the hyperbolic space Hn in level sets as follows

Hn =

∞⋃
j=1

Cj ,

where Cj = {x ∈ Hn : j − 1 ≤ dH(0, x) < j}. Let Ej = E ∩ Cj and F` = F ∩ C`. Hence,
we can write

I :=

∫
F
Ar(χE)(y)w(y)dµn(y) =

∑
`,j≥0

∫
F`

Ar(χEj )(y)w(y)dµn(y).(3.2)

Now, we will estimate the integrals

Ij,` :=

∫
F`

Ar(χEj )(y)w(y)dµn(y)

in two different ways. On the one hand, given x ∈ Ej , let

Ωx
j,` = {y ∈ F` : d(x, y) ≤ r}.

Then, by Lemma 2.1

µn(Ωx
j,`) ≤ Cne

n−1
2

(`+r−j).

Using this estimate, we obtain that

Ij,` = e−(n−1)r

∫
F`

∫
B(y,r)

χEj (x) dµn(x)w(y)dµn(y)

= e−(n−1)r

∫
Ej

∫
Ωxj,`

w(y)dµn(y) dµn(x)

= e−(n−1)r

∫
Ej

(∫
Ωxj,`

dµn

) 1
s′
(∫

BH(x,r)
ws(y) dµn(y)

) 1
s

dµn(x)

≤ Cne−(n−1)re
n−1
2s′ (`+r−j) e

(n−1)r
s Ms(w)(Ej).
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On the other hand, if y ∈ F`, let Ωy
j,` = {x ∈ Ej : d(x, y) ≤ r}. Then, by Lemma 2.1

Ij,` = e−(n−1)r

∫
F`

∫
Ωyj,`

dµn(x)w(y)dµn(y)

≤ Cne−(n−1)re
n−1
2

(j+r−`)w(F`).

In consequence

Ij,` ≤ Cne−(n−1)r min
{
e
n−1
2s′ (`+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2

(j+r−`)w(F`)
}
,

and

I ≤ Cne−(n−1)r
∑

|`−j|≤r+2

min
{
e
n−1
2s′ (`+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2

(j+r−`)w(F`)
}
.

Now, if we define cj =
M◦sw(Ej)

e
(n−1)

j
s′

and dl = w(Fl)

e(n−1)l . We have that

(3.3)
∞∑
j=0

e(n−1) j
s′ cj = M◦sw(E) and

∞∑
j=0

e(n−1)ldj = w(F ),

and

min
{
e
n−1
2s′ (`+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2

(j+r−`)w(F`)
}

= min
{
e

(n−1)r
s e(n−1)

(l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}
Then we have that

(3.4) I . e−(n−1)r
∑

l,j∈N∪{0}

min
{
e

(n−1)r
s e(n−1)

(l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}
.

Now, if we choose δ = 1
s and p = 1 (then p− δ = 1

s′ ) we have that

min
{
e

(n−1)r
s e(n−1)

(l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}
is equal to

min
{
e(n−1)δre(n−1)

(l+j+r)(p−δ)
2 cj , e

(n−1) l+j+r
2 dl

}
.

Therefore, if κ = en−1 and we take into account (3.3), applying Lemma 3.1 in (3.4) we
get

I . e−(n−1) r
s′+1w(F )

1
s′+1Msw(E)

s′
s′+1 .

�

We can use Lemma 3.2 to obtain a distributional estimate on Ar.
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Lemma 3.3. Let r ≥ 1 and λ > 0. Then

w ({Ar(A1f) ≥ λ}) . cs
r∑

k=0

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kMsw
({
|A2f | ≥ ηe(n−1)k

})
,

where cs depends only on s and cs →∞ when s→ 1.

Proof of Lemma 3.3. Let f1 = A1f . We bound

(3.5) f1 ≤
1

e
+

r∑
k=0

e(n−1)kχEk + f1χ{f1≥ 1
2
e(n−1)r},

where Ek is the sublevel set

(3.6) Ek =
{
e(n−1)(k−1) ≤ f1 < e(n−1)k

}
.

Hence

(3.7) Arf1 ≤
1

e
+

r∑
k=0

e(n−1)kAr (χEk) +Ar

(
f1χ{f1≥ 1

2
e(n−1)r}

)
.

Given any λ > 0

w
({
Ar

(
f1χ{f1≥e(n−1)r}

)
> λ

})
≤ w

({
Ar

(
f1χ{f1≥e(n−1)r}

)
6= 0
})

≤ w
({
x : BH(r, x) ∩ {f1 ≥ e(n−1)r} 6= ∅

})
.

Take x such that BH(x, r) ∩ {f1 ≥ e(n−1)r 6= ∅, and let y be an element of this
intersection. It is not difficult to see that

BH(y, 1) ⊆ BH(x, r + 1) ∩
{
f2 ≥ ce(n−1)r

}
,

where f2 = A2f and c0 = µn(B(0,1))
µn(B(0,2)) . Therefore

w
({
x : BH(r, x) ∩ {f1 ≥ e(n−1)r} 6= ∅

})
≤ w

({
Ar+1

(
χ{f2≥ce(n−1)r}

)
>

1

c1e(n−1)r

})
≤ c1e

(n−1)r

∫
Hn

Ar+1

(
χ{f2≥ce(n−1)r}

)
wdµ

≤ c1e
(n−1)rM(w)

(
χ{f2≥ce(n−1)r}

)
.

On the other hand, let β ∈ (0, 1) that will be chosen later. Note that if
r∑

k=0

e(n−1)kAr (χEk) ≥ 1

e
,

then we necessarily have some k ∈ N such that 1 ≤ k ≤ r for which

Ar (χEk) ≥ e(n−1)β − 1

e(n−1)(k+2)

(
e(n−1)k

e(n−1)r

)β
.
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Indeed, otherwise we have that

1

e
≤

r∑
k=0

e(n−1)kAr (χEk) <
e(n−1)β − 1

e(n−1)(βr+2)

r∑
k=0

e(n−1)βk

=
e(n−1)β − 1

e(n−1)(βr+2)

e(n−1)β(r+1) − 1

e(n−1)β − 1
<

1

e
,

which is a contradiction. Thus

w (Arf1 ≥ 1) ≤
r∑

k=0

w(Fk) + c1e
(n−1)rM(w)

(
χ{f2≥ce(n−1)r}

)
,

where

Fk =

Ar (χEk) ≥ e(n−1)β − 1

e(n−1)(k+2)

(
e(n−1)k

e(n−1)r

)β .

Note that Fk has finite measure, and

w(Fk)
e(n−1)β − 1

e(n−1)(k+2)

(
e(n−1)k

e(n−1)r

)β
≤
∫
Fk

Ar(χEk)wdµn(x).

On the other hand, by Lemma 3.2,∫
Fk

Ar(χEk)wdµn(x) ≤ cse−(n−1) r
s′+1w(Fk)

1
s′+1Msw(Ek)

s′
s′+1 .

Hence

w(Fk)
e(n−1)β − 1

e(n−1)(k+2)

(
e(n−1)k

e(n−1)r

)β
≤ cse−(n−1) r

s′+1w(Fn)
1

s′+1Msw(En)
s′
s′+1 .

So, choosing β = 1
2(s′+1) we have that

w(Fk) ≤ cse−(n−1) r
2s′ e

(n−1)k

2s′ e(n−1)kMsw(En)

≤ cs

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kMsw
({
f1 ≥ e(n−1)(k−1)

})
.

Therefore

w({Arf1 ≥ 1}) ≤ cs
r∑

k=0

cs

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kMsw
({
f1 ≥ e(n−1)(k−1)

})
+ c1e

(n−1)rM(w)
(
χ{f2≥ce(n−1)r}

)
.(3.8)

So, there exists η > 0 depending only on the dimension such that

w({Arf1 ≥ 1}) ≤ c̃s
r∑

k=0

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kMsw
({
f2 ≥ ηe(n−1)(k−1)

})
.
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Indeed, note that in the right-hand side of (3.8), the second term is dominated by the
last term of the sum. This yields the desired conclusion. �

Combining the ingredients above we are in position to settle Theorem 1.1.

Proof of Theorem 1.1. By the discussion in the introduction we only need to argue for
Mfar(f)(x). Then, by Lemma 3.3 implies that

w
(
Mfarf ≥ λ

)
≤ w

(
Mfarf1 ≥ λ

)
≤
∞∑
r=1

w (Arf1 ≥ λ)

= c̃s

∞∑
r=0

r∑
k=0

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kMsw
({
f2 ≥ e(n−1)(k−1)ηλ

})

= c̃s

∫
Hn

∞∑
r=0

r∑
k=0

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dµn(x)

= c̃s

∫
Hn

∞∑
k=0

∞∑
r=k

(
e(n−1)k

e(n−1)r

) 1
2s′

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dµn(x)

= c̃s

∫
Hn

∞∑
k=0

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dµn(x)

≤ ĉs
ηλ

∫
Hn

f2(x)Msw(x)dµn(x)

=
ĉs
ηλ

∫
Hn

f(x)A2(Msw)(x)dµn(x).

Now, if w is identically 1 we have A2(Msw)(x) = 1 and we are done. In particular, this
recovers the Strömberg’s weak type (1, 1) estimate. If w is not constant, we claim that

A2 ((Msw)) (x) .s Msw(x).

Indeed,

1

µn(B(x, 2))

∫
B(x,2)

Msw(y)dµn(y) ≤ 1

µn(B(x, 2))

∫
B(x,2)

M(wsχB(x,4)(y))
1
s dµn(y)

+
1

µn(B(x, 2))

∫
B(x,2)

M(wsχ(B(x,4))c(y))
1
s dµn(y).

The second term in the last line can be controlled by cMs(w)(x) because

M(wsχ(B(x,4))c(y))
1
s ∼M(wsχ(B(x,4))c(x))

1
s ,
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for every y ∈ B(x, 2). Using Kolmogorov’s inequality and the weak type (1, 1) ofM the
first term can be estimate by cβ(A4(ws)(x))

1
s and the claim follows. This completes

the proof in the general case. �

3.2. Proof of Theorem 1.2. The proof of Theorem 1.2 follows the same ideas of
the proof of Theorem 1.1. in [14]. First, the hypothesis w ∈ Ap,loc(Hn) implies the
estimates for M loc by standard arguments as in the classical setting. On the other
hand, the arguments used to prove that Lemma 3.2 implies Lemma 3.3 can be used to
prove that the hypothesis in Theorem 1.2 implies that

(3.9)

w ({Ar(A1f) ≥ λ}) . cs
r∑

k=0

(
e(n−1)k

e(n−1)r

) 1−β
2

p
α

e(n−1)β p
α
kw
({
|A2f | ≥ ηe(n−1)kλ

})
.

This inequality shows that the case β < α produces a better estimate than the case
β = α. First of all, assume that we are in the worst case β = α. Arguing as in the
proof of Theorem 1.1 we get

w
({
Mfarf(x) ≥ λ

})
.

c

λp

∫
Hn
|A2(f)(x)|pw(x)dµn(x)dx.

Since |A2(f)(x)| ≤ M locf(x) and w ∈ Ap,loc(Hn), paying a constant we can eliminate
A2 in the right hand side of the previous estimate, and the proof is complete in this
case. If we assume that β < α, then by (3.9) we have that

‖Arf‖pLp(w) = p

∫ ∞
0

λp−1w (Arf ≥ λ) dλ

.
r∑

k=0

(
e(n−1)k

e(n−1)r

) 1−β
2

p
α

e(n−1)β p
α
k

∫ ∞
0

λp−1w
({
|A2f | ≥ ηe(n−1)kλ

})

=

r∑
k=0

(
e(n−1)k

e(n−1)r

) 1−β
2

p
α

e(n−1)β p
α
ke−(n−1)kp‖A2f‖pLp(w)

. e(n−1)rp( β
α
−1)‖A2f‖pLp(w).

Since w ∈ Ap,loc(Hn) we can eliminate A2 in the last norm, and taking into account
that β

α − 1 < 0, we have that
∞∑
r=1

rγ‖Arf‖Lp(w) .
∞∑
r=1

rγe(n−1)rp( β
α
−1)‖f‖Lp(w) ∼γ,α,β,p ‖f‖Lp(w).
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This leads to (1.5). From (1.5) and the fact that
∑∞

j=1Aj(f) is self-adjoint (γ = 0)
we obtain the boundedness of Mfar in the spaces Lp(w) and Lp′(σ). Moreover, since
w ∈ Ap,loc(Hn) and therefore σ is in Ap′,loc(Hn) we have the same inequalities forM loc,
and as a consequence we obtain

‖Mf‖Lp(w) . ‖f‖Lp(w)

‖Mf‖Lp′ (σ) . ‖f‖Lp′ (σ)

This ends the proof of the Theorem.

3.3. Proof of Proposition 1.5. The proof follows similar ideas as Lemma 3.2.

Proof of Proposition 1.5. Given E,F subsets in Hn, we should prove that

(3.10)
∫
F
Ar(χE)(y)w(y)dµn(y) . e

(n−1)r
(

p
p−δ+1

−1
)
w(E)

1
p−δ+1w(F )

1− 1
p−δ+1 .

Using the same notation as in the Lemma 3.2, we have

Ij,` :=

∫
F`

Ar(χEj )(y)w(y)dµn(y).

Given x ∈ Ej , let Ωx
j,` = {y ∈ F` : d(x, y) ≤ r}. Then, by condition (1.6)

w(Ωx
j,`) ≤ Cne(n−1) r+l−j

2
(p−δ)e(n−1)rδw(x).

Therefore,

Ij,` = e−(n−1)r

∫
F`

∫
B(y,r)

χEj (x) dµ(x)w(y)dµn(y)

= e−(n−1)r

∫
Ej

∫
Ωxj,`

w(y)dµn(y) dµn(x)

. e−(n−1)re(n−1) r+l−j
2

(p−δ)e(n−1)rδw(Ej).

On the other hand, if y ∈ F`, let Ωy
j,` = {x ∈ Ej : d(x, y) ≤ r}. Then, by Lemma 2.1

Ij,` = e−(n−1)r

∫
F`

∫
Ωyj,`

dµn(x)w(y)dµn(y)

≤ Cne−(n−1)re
n−1
2

(j+r−`)w(F`).

So,

Ij,` ≤ Cne−(n−1)r min
{
e(n−1) r+l−j

2
(p−δ)e(n−1)rδw(Ej), e

n−1
2

(j+r−`)w(F`)
}
.

From now on, we can follow the same steps as in the proof of Lemma 3.2, and using
Lemma 3.1 we obtain (3.10).

�
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4. Examples

In this last section we show several examples to clarify several points previously men-
tioned. We omit details since the examples follow from continue variants of Theorem
1.3 in [14].
Let −∞ < γ ≤ 1, we denote

wγ(x) =
1(

1 + µn(B(0, dH(0, x) )
)γ .

Examples 4.1.

(1) If 0 ≤ γ ≤ 1, then

M(wγ)(x) . wγ(x)

In particular if γ < 1 taking s > 1 such that γs ≤ 1 we have that

Ms(wγ)(x) . wγ(x)

Therefore there are non trivial weights satisfying Ms(w) . w. On the other
hand, Mw1(x) . w1(x). However, the weak type (1, 1) of M with respect to
w1 fails. In fact, taking fk(x) = χCk(x) for k big, it is not difficult to show that
w1{x : M(fk)(x) > 1/2} ≥ k and the L1(w1)-norm of fk is uniformly bounded.
In particular, this example shows that in Theorem 1.1 is not possible to put
s = 1. In fact, it is not possible to put any iteration (Mm(f) = M(Mm−1f))
of M for any fixed natural number m.

(2) Let p > 1. Then w1−p(x) satisfies the hypothesis of Corollary 1.6 and therefore

‖Mf‖Lp,∞(w1−p) . ‖f‖Lp(w1−p)

holds. Nevertheless, ‖Mf‖Lp(w1−p) . ‖f‖Lp(w1−p) does not. This can be seen
by considering the function f = χB(0,1), and taking into account that w '
(MχB(0,1))

1−p.
(3) Fixed γ ∈ (0, 1). We have seen in the item 1 that the maximal function satisfies

a weak type (1, 1) inequality for this weight. In particular, for every q > 1,

‖Mf‖Lq(wγ) . ‖f‖Lq(wγ).

However, it is not difficult to see that, for any fixed p > 1, it holds that

sup
r>0

1

µn(B(0, r))

∫
B(0,r)

wγ

(
1

µn(B(0, r))

∫
B(0,r)

w
− 1
p−1

γ

)p−1

=∞.

This example shows that boundedness of M does not imply the natural condi-
tion Ap for any p > 1 in this setting. In the Euclidean setting in the context of
a general measure µ an example in this line was also obtained by Lerner in [8].
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Appendix A. The ball model of the hyperbolic space

Let Bn = {x ∈ Rn : ‖x‖ < 1}, where ‖ · ‖ denotes the euclidean norm in Rn. In this
ball we will consider the following Riemannian structure

ds2
x(v) =

2‖v‖2

(1− ‖x‖2)2
.

The hyperbolic distance in this model can be computed by

dn(x, y) = arctanh

(
‖x− y‖

(1− 2 〈x, y 〉+ ‖x‖2‖y‖2)
1
2

)
.

The group of isometries I(Bn) in this representation coincides with the group of con-
formal diffeomorphisms from Bn onto itself. For n = 2, we can identify R2 with C, and
this group is the one generated by:

• Rotations: z 7→ eitz, t ∈ R.
• Möbius maps: z 7→ z − w

1− w̄z
.

• Conjugation: z 7→ z.

For dimension n > 2, recall that, by Liouville’s theorem, every conformal map between
two domains of Rn has the form

x 7→ λA ◦ ιx0,α(x) + b

where λ > 0, b ∈ Rn, A belongs to the orthogonal group O(n), and for x0 ∈ Rn, α ∈ R

ιx0,α(x) = α
x− x0

‖x− x0‖2
+ x0.

Note that, when α > 0, the maps ιx0,α correspond to a reflection with respect to the
sphere

Sn−1(x0, α) = {x ∈ Rn : ‖x− x0‖2 = α}.

If α < 0, it is a composition of the inversion with respect to the sphere Sn−1(x0,−α)

and the symmetry centered at x0. Using this result, we get that the group I(Bn)

consists of the maps of the form

A ◦ θ

whereA belongs to the orthogonal groupO(n) and θ is either the identity or an inversion
with respect to a sphere that intersect orthogonally ∂Bn. Recall that we say that two
spheres S1 and S2 intersects orthogonally if for every p ∈ S1 ∩ S2

(TpS1)⊥⊥ (TpS2)⊥.

Remark A.1. This representation is also true for n = 2. Indeed, on the one hand, the
rotations as well as the conjugation belongs to O(2). On the other hand, given α ∈ C
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such that |α| < 1, the circle of center α−1 and squared radius |α|−2 − 1 is orthogonal
to ∂B2, and if ι denotes the inversion with respect to this circle then

ι(z) =
z − w
1− w̄z

.

In this model, the r-dimensional hyperbolic subspaces that contains the origin are pre-
cisely the intersection the r-dimensional linear subspaces of Rd with Bn. The other
ones, are images of these ones by isometries. So, they are r-dimensional spheres or-
thogonal to ∂Bn. The orthogonality in this case, as before, is defined in the natural
way in terms of the orthogonal complements of the corresponding tangent spaces.
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